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Abstract: Research and industrial studies have indicated that small size, low cost, high precision,
and ease of integration are vital features that characterize microelectromechanical systems (MEMS)
inertial sensors for mass production and diverse applications. In recent times, sensors like MEMS
accelerometers and MEMS gyroscopes have been sought in an increased application range such as
medical devices for health care to defense and military weapons. An important limitation of MEMS
inertial sensors is repeatedly documented as the ease of being influenced by environmental noise
from random sources, along with mechanical and electronic artifacts in the underlying systems, and
other random noise. Thus, random error processing is essential for proper elimination of artifact
signals and improvement of the accuracy and reliability from such sensors. In this paper, a systematic
review is carried out by investigating different random error signal processing models that have been
recently developed for MEMS inertial sensor precision improvement. For this purpose, an in-depth
literature search was performed on several databases viz., Web of Science, IEEE Xplore, Science Direct,
and Association for Computing Machinery Digital Library. Forty-nine representative papers that
focused on the processing of signals from MEMS accelerometers, MEMS gyroscopes, and MEMS
inertial measuring units, published in journal or conference formats, and indexed on the databases
within the last 10 years, were downloaded and carefully reviewed. From this literature overview, 30
mainstream algorithms were extracted and categorized into seven groups, which were analyzed to
present the contributions, strengths, and weaknesses of the literature. Additionally, a summary of the
models developed in the studies was presented, along with their working principles viz., application
domain, and the conclusions made in the studies. Finally, the development trend of MEMS inertial
sensor technology and its application prospects were presented.

Keywords: MEMS gyroscope; MEMS accelerometer; random error reduction; signal
processing algorithms

1. Introduction

The microelectromechanical systems (MEMS) inertial sensor is an instrument that is used to
measure angular velocity and acceleration [1,2]. In general, MEMS inertial sensors are referred to as
MEMS gyroscopes and MEMS accelerometers, and are mainly composed of a micromechanical sensing
part, signal processing circuits, and a microprocessor part [3–5]. MEMS inertial sensors have many
advantages that have earned them varying application areas, but importantly, merits such as the small
size, low cost, high precision, ease of integration, and higher possibility of mass production are a major
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reason that MEMS inertial sensors have become prominent [6–8]. Therefore, MEMS inertial sensors
are widely popular in civil and military applications. According to the application scenario, in the
civilian field, MEMS inertial sensors are mainly used in consumer portables such as mobile phones,
game consoles, digital cameras, robots, and medical devices for health care [9–14]. In the military field,
MEMS inertial sensors are commonly employed in high-end markets such as optoelectronic devices,
aerospace, torpedo, missile, rockets, and so on [15–17]. However, until now, compared with laser
gyroscopes, fiber gyroscopes, mechanical gyroscopes, and accelerometers, the high-end application
range of the MEMS inertial sensor is still limited [18,19].

A reason for the huge difference between the application fields of the inertial sensors is mainly
due to accuracy and price. Bias stability is an important parameter to reflect the accuracy of inertial
sensors [8,20]. Therefore, on the basis of the sensor’s precision (i.e., accuracy of the inertial sensors),
bias stability is commonly used to represent the inertial sensor’s developmental level, including
laser gyroscopes, fiber gyroscopes, mechanical gyroscopes, and accelerometers, especially for MEMS
inertial sensors [8,18,21]. As shown in Figure 1, the MEMS inertial sensor can be said to have a
wide area of application, ranging from industrial to strategic grade, while the fiber gyroscope, laser
gyroscope, mechanical gyroscope, and accelerometer are mainly applied at tactical grade, inertial
grade, and strategic grade for their high precision, however their bulkiness and expensive price
restrict expansion to the downstream markets, and they are mainly used in high-end military markets
at present. Conversely, MEMS inertial sensors are moving towards inertial and strategic high-end
applications, due to their low-price advantage and finally, they are likely to achieve a monopoly from
the downstream market to the upstream high-end market.
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Figure 1. The bias stability of inertial sensors. Figure 1. The bias stability of inertial sensors.

In recent years, with the development of 5G, Internet of Things (IoT), Artificial Intelligence (AI),
national defense construction, and some special fields such as deep sea [22], deep space [23], deep
drilling [24,25], earthquake monitoring [26], and structural health monitoring [26–28], MEMS inertial
sensors’ demand is becoming bigger. However, the existing accuracy of MEMS inertial sensors seems
insufficient to meet the needs of market applications in those areas. Therefore, improving the accuracy
of MEMS inertial sensors is the only way to expand the application range. Presently, the low accuracy
of MEMS inertial sensors is the biggest challenge that limits its development. The main reason is that
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the micro size of the MEMS inertial sensor makes it more vulnerable to environmental changes [29,30].
These uncertain factors can cause various noises, which in turn affect the sensor’s output. In addition,
the mechanism of noise generation is complicated, and it is very difficult to quantitatively compensate
the error caused.

The error sources of MEMS inertial sensors are mainly from mechanical noise, electronic noise,
environmental noise, and other random noise sources [29,31,32]. This kind of uncertain noise or
random error limits the accuracy of the sensor and its applicability in different fields. Therefore, this
paper mainly presents the existing algorithms that have been developed for processing random error
signals obtained from MEMS inertial sensors. As an important part of MEMS inertial sensors, random
error reduction algorithms can minimize the error uncertainty from the output signals, and as well,
they improve the accuracy and reliability of MEMS inertial sensors.

The purpose of this article is to systematically review the random error signal processing algorithm,
including some error reduction methods that have been developed for MEMS inertial sensor output
signal processing. The content can provide guidance for users to choose the most suitable MEMS
inertial sensor error signal processing algorithm to improve the precision of the MEMS inertial sensor.
The remainder of this paper is organized as follows. Section 2 presents the approach of inclusion
and exclusion criteria taken for searching and inclusion of the research papers. Section 3 presents the
principle of different algorithms used for classifying the signal processing methods. Section 4 discusses
all the choosing algorithms. The conclusion of this review paper is presented in Section 5 and also
suggests the development direction of MEMS inertial sensor technology.

2. Materials and Methods

The review was performed considering related studies published between 2010 and 2020 in
journals or conferences that were indexed in four global databases. The selection criteria were carefully
designed to consider error signal processing papers, with focus on MEMS accuracy improvement
and broad application prospects. For this purpose, a systematic search was conducted on Web of
Science, IEEE Xplore, Science Direct, and Association for Computing Machinery Digital Library (ACM).
The selected words were set as (MEMS gyroscope; MEMS accelerometer; MEMS inertial sensor; MEMS
inertial measurement unit), (noise; drift; error; signal processing), and (reduction, elimination, suppress
calibration, compensation, modeling).

A total of 486 articles were initially located and downloaded. Specifically, these included 226
articles from the Web of Science, 115 from IEEE Xplore, 93 from Science Direct, and 52 from ACM. After
downloading, articles that were out of the time-frame between 2010 and 2020 were removed (Step 1);
thus, 352 articles were retained. Additionally, a total of 96 duplicate articles and all non-English papers
were removed, leaving us with 256 articles (Step 2). Furthermore, we removed the papers following
step 3 (remove those focusing on MEMS inertial sensor application and non-random error processing
algorithms), and 112 articles were kept. Finally, 49 papers were selected as relevant to the topic based
on step 4 (remove non-MEMS inertial sensor accuracy improvement papers).

The inclusion criteria were observed by analyzing the title and abstract, focusing on random error
reduction algorithms for improving MEMS inertial sensor intrinsic accuracy, without considering the
prototype or product application filed. The main exclusion criteria after the steps highlighted above
were non-English articles and papers with non-applicable theme such as MEMS inertial sensor raw
signal processing. In particular, although the title of some papers were on error signal processing, we
found out that they were based on the use of MEMS inertial sensors, and do not pay attention to the
improvement of the performance of MEMS inertial sensors, thus such papers were also deleted.

The main authors read through the titles and abstracts of the search results, and conducted a
preliminary analysis to determine whether they match the inclusion criteria. Then, the full texts’ quality
was evaluated in detail by the main authors. According to the exclusion criteria, articles not fitting
were excluded. Therefore, the final 49 articles left were used for writing this review paper. A flow
chart of the search strategy adopted is presented in Figure 2.
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3. Results

From the 49 reviewed articles, 30 random error signal processing algorithms were summarized,
and they were divided into seven groups namely, simple filter algorithms, Kalman-based algorithms,
wavelet-based algorithms, sensor fusion algorithms, machine learning algorithms, deep learning
algorithms, and adaptive-based algorithms. Some details of these algorithms are presented below. First,
it is vital to state that all these algorithms were aimed at reducing raw signal error for MEMS inertial
sensor precision improvement. The proportions of the seven types of algorithms in the reviewed results
are shown in Figure 3. It can be observed from the pie chart that the review paper had considered a
well-balanced ratio of the seven categories of the random error signal processing algorithms.
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3.1. Simple Filter Algorithms

3.1.1. Fading Memory Filter (FMF)

A low pass filter based on the alpha-beta filter, which is called the fading memory filter (FMF),
was used for reducing the amount of noise from the MEMS gyroscope raw data [33]. This type of low
pass filter has better characteristics about the computational overhead, the rate of noise reduction, and
the phase-delay of the filter. The mathematical mode of this filter was described in [33,34], where Xsk is
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the smoothed signal, T is the sampling time, and Xok is the measured signal. Xpk is the predicted signal.
Vsk is the second derivative of the measured signal, and α and β are filter gains.

Xsk = Xpk + (1− β)(Xok −Xpk) (1)

Xsk = Xpk + α(Xok −Xpk) (2)

Vsk = Vsk−1 +
β

T
(Vok −Vsk−1) (3)

Xpk = Xsk−1 + TVsk−1 (4)

3.1.2. Morphological Filter (MF)

MF is a simple low pass filter and a nonlinear time-frequency analysis method capable of extracting
local features and eliminating instantaneous impulses [35]. In MF analysis, four basic operators are
often used. These include dilation, erosion, opening, and closing operations [36]. The opening and
closing operators are established based on the dilation and erosion operators. Opening operation
can suppress the positive impulse noise in the raw signal, while closing operation can suppress the
negative impulse noise in the signal [36]. If the mixed signal of positive and negative impulse noise
need to be filtered out, the MF needs to cascade a combination of opening and closing operations [37].
To overcome the limitation of the MF in handling MEMS gyroscope measurement noise, an improved
MF based on variational mode decomposition was proposed for denoising of the raw output signal
from the MEMS gyroscope [36,37]. The basic principle of MF is commonly showed in Figure 4 [37].
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3.1.3. Moving Average Filter (MAF)

A simple moving average filter (MAF) algorithm is used to suppress the signal noise in the
unstable period, and the reason is the sample variance of the current sample can be quite large and
exceed a predefined threshold [38]. It is predominantly used to keep steep edge features of the signal.
For noise reduction, the MAF is commonly adopted to process the signal unstable periods, hence it can
be used in the MEMS gyroscope’s dynamic signal output [38]. Generally, the MAF can be modeled
according to equation (Equation (5)), where 2p is the data length of MAF calculation, x(k + i) is the
input time series involving 2p sample steps, and k is the sampling time.

∧
x(k) = mean(

p∑
i = −p
i , 0

x(k + i)) (5)

3.1.4. Variable Bandwidth Filter (VBF)

A variable bandwidth filtering (VBF) method was proposed to suppress the effects of vibration and
sensor noise [39]. In this method, the sinusoidal estimation is used to continuously adjust the filtering
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bandwidth of accelerometer output data to restrain the influence of vibration and noise before attitude
estimation is treated [39]. The flow chart of the VBF process is depicted in Figure 5. The proposed
filtering process is adaptive because the bandwidth of the entire filtering process can vary with the
frequency content of the signal, and it can be divided into two main stages [39]. In the first stage, a
variable bandwidth Kaiser windowed filter with a coefficient of [b1b2 · · · · · · bN−1bN] was used to filter
the signal, while the second stage adopted a low pass filter (LP) with a variable decomposition, which
is called an LP wavelet filter [39]. In addition, the coefficients of the Kaiser windowed LP filter can be
calculated with a mathematical formula, which was discussed in reference [39].
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3.2. Kalman-Based Algorithms

3.2.1. Kalman Filter (KF)

The Kalman filter (KF) is a recursive filter proposed by Kalman for time-varying linear systems [40].
It is an optimal estimation theory and algorithm that can be applied to dynamic systems subject to
random interference, such as MEMS gyroscope random drift compensation and temperature drift
compensation [41,42]. KF is a common approach, in which recursive algorithms are implemented
by a computer program for the purpose of signal state estimation. Each recursive process includes
two processes—time update and status update. From the perspective of the calculation process, it
includes two loops—a filter computation loop and a gain computation loop. The main structure of KF
is presented in Figure 6.
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Where
∧

X is the posteriori estimated state,
∧

X
_

k is the priori state, µ is the control vector, z is the
measurement signal, k is a discrete point in time, A is the state transition model, B is the control input
model, P is the error covariance, Q is the process noise covariance, K is the Kalman gain, H is the
measurement matrix, R is the measured noise covariance, and I is the identity matrix.

3.2.2. Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) is derived from the basic KF, and it is one of the most common
algorithms for bias drift and noise suppression from the outputs signal of the MEMS gyroscope [43].
The basic idea of EKF is to linearize the nonlinear system and then, carry out KF, while Taylor
series is often used to linearize the nonlinear system, so EKF is a kind of pseudo nonlinear KF [43].
The non-linear and linear relations used in EKF are given in Equations (6)–(9), where f and h are all
non-linear function, f is posttest of the motion model position, h is the posttest of measurement data,
W is the process noise, and V is measurement noise.

Nonlinear:
Xk+1 = f (Xk) + Wk (6)

Yk = h(Xk) + Vk (7)

Linear:

F(k + 1|k) =
∂ f (Xk)

∂X
|X = X(k|k) (8)

H(k) =
∂h(Xk)

∂X
|X = X(k|k− 1) (9)

3.2.3. Incremental Kalman Filter (IKF)

The KF can estimate the system and measurement noise. However, in the inertial navigation
system field, the system error of the measurement equation is commonly unknown, and the model
parameters are also uncertain, which may cause the error to become larger and the convergence of
the KF to deteriorate [44]. To resolve this problem, an improved IKF algorithms is proposed [44].
The idea of this algorithm is to choose the increment of two continuous measurement values as the
measurement value to reduce the system error [44]. Thus, the state equation and the measurement
equation of IKF are obtained.

Xk = Φk,k−1Xk−1 + Wk−1 (10)

∆Zk = HkXk −Hk−1Xk−1 + Vk (11)

where Xk is the n dimension state vector, Wk is the p-dimension state noise variance vector, and Φk,k−1
is the n× n state transfer matrix of the system. ∆Zk is the incremental of the m dimension measurement
vector, and ∆Zk = Zk −Zk−1, where Zk is the measurement vector. Hk is the system observation matrix
and Vk is the m dimension measurement noise variance vector.

3.2.4. Strong Tracking Kalman Filter (STKF)

The KF algorithm has poor ability to track the state of the MEMS gyroscope, but the STKF can
track the state change of the gyroscope very well [42,45]. The STKF introduces a fading factor λk to
adjust the KF gain K online, so that the filter residuals are satisfied with the orthogonality principle [45].
The STKF is as follows:

Xk+1 = φ(k+1,k)Xk + Γ(k+1,k)ωk (12)

Yk+1 = Hk+1Xk+1 + νk+1 (13)

P(k+1,k) = λkφ(k+1,k)Pkφ
T
(k+1,k) + Qk (14)
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where Xk+1 is the state series of system, Yk+1 is the measurement series of system, P(k+1,k) is the state
prediction variance, φ(k+1,k) is the state transition matrix, Γ(k+1,k) is the noise input matrix, ωk is the
processing noise, Hk+1 is the measurement matrix, νk+1 is the measurement noise, and Qk is the error
variance matrix.

3.2.5. Discrete Time Kalman Filter (DTKF)

A Discrete Time Kalman filter (DTKF) was designed by a steady-state filter gain obtained from
the analysis of KF observability [46]. In the design of DTKF [46], a system state vector based on true
angular velocity ω and offset drift b is used. The steady-state filtering gain Ks is analyzed offline by
using the basic discrete iterative KF method. I is the identity matrix. Z is the measured angular rate
vector as input. The extract vector for ω and b are defined as e1 = [1, 0] and e2 = [0, 1], respectively.
Depending on the eigenvector matrix S and eigenvalues λ1 and λ2, parameters A and B can be
calculated. According to these parameters, the DTKF is achieved as showed in Figure 7 [46].
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3.3. Wavelet-Based Algorithms

3.3.1. Wavelet Threshold (WT)

The wavelet threshold (WT) is commonly used for denoising signals generated in MEMS gyroscope
output [47]. Its basic idea is setting a critical threshold value λ for denoising the gyroscope’s output
signals. If the wavelet coefficient is less than λ, the coefficient is considered to be mainly caused by
noise, and this part of the coefficient is removed. If the wavelet coefficient is greater than λ, it is
considered that the coefficient is mainly caused by the signal. This part of the coefficient is kept, and
then the inverse wavelet transform is carried out on the processed wavelet coefficient to obtain the
denoised signal. WT denoising has two key points: one is the selection of threshold value, the other
is the selection of threshold function [47]. The denoising process of wavelet threshold is shown in
Figure 8.
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3.3.2. Improved Wavelet Threshold (IWT)

The key to WT denoising is to choose a suitable wavelet threshold, commonly used in threshold
functions including the hard threshold and soft threshold. The hard threshold and soft threshold are
easily achieved in the practical application of engineering [48,49], where W j,k is the wavelet coefficient,
∧

W j,k is the wavelet coefficients after quantization; λ is the threshold.
Hard threshold function:
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W j,k − λ, W j,k ≥ λ
0,−λ ≤W j,k < λ
W j,k + λ, W j,k < λ
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However, both the soft and hard thresholds have certain disadvantages [48,49]. To overcome
the shortcoming of hard and soft threshold function, an IWT function is proposed as Equation (17),
where n is an adjustable factor, the real number is greater than 0, which can be set following actual
engineering requirements.

∧

W j,k = (1− e−|W j,k/λ|n)W j,k (17)

3.3.3. Adaptive Stationary Wavelet Threshold (ASWT)

The stationary wavelet threshold (SWT) is also called unsampled wavelet transform [50]. The main
feature of SWT is its redundancy and translation invariance, which gives a more approximate estimate.
However, it is not appropriate to use the same threshold at each decomposition scale, which will result
in the useful signal being eliminated at the low scale, while some noise is retained at the high scale [50].
Therefore, ASWT can be considered to solve this problem as depicted in Equations (18) and (19).

d(n) = x(n) + ζ(n), n = 1, · · · , N (18)

λ = σ
√
(2 ln N)/ ln( j + 2) (19)

where x(n) is the signal without noise, d(n) is the original signal, ζ(n) is the noise, σ is the original signal
standard deviation, N is the length of signal, j is the decomposition scale, andλ is the adaptive threshold.

3.3.4. EMD-Based Wavelet Threshold (EMD-WT)

The empirical mode decomposition based wavelet threshold (EMD-WT) method, which is the
combination of wavelet thresholding and empirical mode decomposition (EMD), is introduced in
the paper [51] for MEMS accelerometer signal denoising. Firstly, the output signal is decomposed by
EMD to obtain its intrinsic mode function (IMF). Then, the wavelet threshold is used to denoise the
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high-frequency IMF components, and the low-frequency IMF components remain unchanged. Finally,
the denoised high-frequency IMF components is combined with the unprocessed low-frequency IMF
components and residuals to achieve signal denoising. The flow chart of this algorithm is shown in
Figure 9 [51].

Micromachines 2020, 20, x 10 of 35 

 

3.3.4. EMD-Based Wavelet Threshold (EMD-WT) 

The empirical mode decomposition based wavelet threshold (EMD-WT) method, which is the 
combination of wavelet thresholding and empirical mode decomposition (EMD), is introduced in 
the paper [51] for MEMS accelerometer signal denoising. Firstly, the output signal is decomposed 
by EMD to obtain its intrinsic mode function (IMF). Then, the wavelet threshold is used to denoise 
the high-frequency IMF components, and the low-frequency IMF components remain unchanged. 
Finally, the denoised high-frequency IMF components is combined with the unprocessed low-
frequency IMF components and residuals to achieve signal denoising. The flow chart of this algo-
rithm is shown in Figure 9 [51]. 

Original signal

EMD decomposition

Set the cut-off point 
according to continuous

 Mean Square error

Low frequency 
component

High frequency 
component

De-noised by 
wavelet threshold

Remains 
unchanged

Signal reconstruction

De-noised Signal

 
Figure 9. The empirical mode decomposition based wavelet threshold denoising process [51]. 

3.4. Sensor Fusion Algorithms 

3.4.1. Virtual Gyroscope (VG) 

The virtual gyroscope (VG) is composed of multiple gyroscopes of the same model and batch 
[52]. These gyroscopes have the same manufacturing process and materials, and the same data ac-
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sion measurement can be achieved. In [52,53], they used six gyroscopes’ data to optimize output 
measurement accuracy, and the principle of VG is as shown in Figure 10. 
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3.4. Sensor Fusion Algorithms

3.4.1. Virtual Gyroscope (VG)

The virtual gyroscope (VG) is composed of multiple gyroscopes of the same model and batch [52].
These gyroscopes have the same manufacturing process and materials, and the same data acquisition and
processing environment. By designing the appropriate filter algorithm, higher precision measurement
can be achieved. In [52,53], they used six gyroscopes’ data to optimize output measurement accuracy,
and the principle of VG is as shown in Figure 10.

Micromachines 2020, 20, x 10 of 35 

 

3.3.4. EMD-Based Wavelet Threshold (EMD-WT) 

The empirical mode decomposition based wavelet threshold (EMD-WT) method, which is the 
combination of wavelet thresholding and empirical mode decomposition (EMD), is introduced in 
the paper [51] for MEMS accelerometer signal denoising. Firstly, the output signal is decomposed 
by EMD to obtain its intrinsic mode function (IMF). Then, the wavelet threshold is used to denoise 
the high-frequency IMF components, and the low-frequency IMF components remain unchanged. 
Finally, the denoised high-frequency IMF components is combined with the unprocessed low-
frequency IMF components and residuals to achieve signal denoising. The flow chart of this algo-
rithm is shown in Figure 9 [51]. 

Original signal

EMD decomposition

Set the cut-off point 
according to continuous

 Mean Square error

Low frequency 
component

High frequency 
component

De-noised by 
wavelet threshold

Remains 
unchanged

Signal reconstruction

De-noised Signal

 
Figure 9. The empirical mode decomposition based wavelet threshold denoising process [51]. 

3.4. Sensor Fusion Algorithms 

3.4.1. Virtual Gyroscope (VG) 

The virtual gyroscope (VG) is composed of multiple gyroscopes of the same model and batch 
[52]. These gyroscopes have the same manufacturing process and materials, and the same data ac-
quisition and processing environment. By designing the appropriate filter algorithm, higher preci-
sion measurement can be achieved. In [52,53], they used six gyroscopes’ data to optimize output 
measurement accuracy, and the principle of VG is as shown in Figure 10. 

Gyro1

Gyro2

Gyro N

Multi-Gyros 
Array

Filter 
algrithms

…
 Signal Output

 
Figure 10. The principle of virtual gyroscope. Figure 10. The principle of virtual gyroscope.

3.4.2. Heterogeneous Fusion (HF)

The heterogeneous fusion (HF) is a type of novel sensor fusion algorithm, which discusses an
innovative adaptive fusion algorithm based on the estimation of the mean square error of all variables
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used in real-time processing [54]. The scheme shown in Figure 11 describes the algorithm that can
be used for fusion of the Euler angles computed from gyroscope, accelerometer, and magnetometer
readings. The fusion algorithm is based on the concept of compensating the difference between
incrementally integrated Euler angles (α-gyro, β-gyro, and γ-gyro) and absolute but noisy Euler angles
(α-acc, β-acc, and γ-mag). This method eliminates the need for steady-state detection and offline
calibration. Because it can run all the time, the method can continuously compensate for long-term
drift when the sensor is in use [54].
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3.4.3. Combination Sensors (CS)

To avoid noise amplification when estimating angular rates from encoder sensor signals and the
drift from the angular velocity sensors—especially for a cheap MEMS gyroscope—a sensor fusion
algorithm to angle and angular rate estimation is proposed [55]. Actually, it is the combination of a
low-price MEMS gyroscope and low-resolution encoders. This method utilizes the encoder to eliminate
the drift of the angular rate signal and integrates the resulting signal to obtain estimates of the angle.
The basic concept is illustrated in Figure 12 [55].
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3.5. Machine Learning

3.5.1. Back Propagation Neural Network (BP)

Back propagation neural networks (BP) are common neural networks, and are composed of three
layers: an input layer, hidden layer, and output layer [56]. The classical structure is shown in Figure 13.
The input layer nodes are used to choose independent variables for estimation. The hidden layer
is an important part of the network, where the learning ability is tuned for better utilization and
performance of the network. The output layer is employed to estimate the results against independent
input variables.
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BP is successfully used in many applications, particularly for the MEMS gyroscope. For example,
in references [57,58], BP is employed for modeling random drift and temperature compensation
in a MEMS gyroscope, and the results obtained show that BP can yield better and accurate
temperature compensation.

3.5.2. Radial Basis Function Neural Network (RBF)

The RBF is an artificial neural network that uses radial basis functions as activation functions; this
makes it somewhat different from the BP neural networks. Although, both network approaches are
commonly designed as a three-layered architecture. While BP is a global approximation to nonlinear
mapping, RBF neural network is a local approximation. Therefore, the training speed and convergence
speed of the RBF neural network are faster than BP [48]. As shown in Figure 14, the RBF neural
network is a three-layer neural network, which includes an input layer, hidden layer, and output layer.
The transformation from input space to hidden space is nonlinear, while the transformation from
hidden space to output space is linear. Recently, this approach has been progressively stepping into
the MEMS inertial sensors field. For instance, in reference [59,60], RBF models were developed and
implemented for temperature compensation in the area of MEMS inertial sensors. The experimental
results from the studies proved the method would make big progress in compensating temperature
drift of MEMS gyroscopes and MEMS accelerometers.
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3.5.3. Support Vector Machine (SVM)

The SVM algorithm is a two-classification algorithm that classifies samples by constructing a
hyperplane function [61]. SVM is mainly divided into linear SVM and nonlinear SVM [62]. Linear SVM
is based on the Euclidean distance between samples to determine the structure of the division.
Nonlinear SVM replaces the inner product with the convolution kernel function, which is equivalent to
defining a generalized distance, and the generalized distance is used as the division basis [62]. The key
of SVM lies in the kernel function. As showed in Figure 15, as long as the appropriate kernel function
is selected, the classification function of the high-dimensional space can be obtained [63]. The SVM
can solve linear and nonlinear problems and is applicable to many practical problems. In the MEMS
inertial sensors field, the SVM can be used to establish error modeling and compensate the random
drift. In addition, some existing experimental results have proved that the SVM model has shown vast
improvement for error reduction, as well as high precision and good generalization ability [64,65].
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3.5.4. Relevance Vector Machine (RVM)

The relevance vector machine (RVM) was proposed by Tipping on the basis of the Bayesian
framework in 2001 [66]. It has the same function form as the SVM. Like SVM, it converts the nonlinear
problem of low-dimensional space into high-dimensional space based on the kernel function linear
problem. The principle of RVM can be simplified as the following steps [67]: Firstly, select the
appropriate kernel function, map the eigenvectors to the high-dimensional space, and use several
common kernel functions. Then, initialize the super parameters α and variance σ2. In RVM, α and σ2

are solved iteratively, so it needs to be initialized. After that, solve the optimal weight distribution
iteratively. Finally, anticipate new data. In recent years, the RVM has been used to compensate the
random drift of MEMS gyroscope, and its performance was validated by experiments [67].

3.6. Deep Learning

3.6.1. Wiener-Type Recurrent Neural Network (WRNN)

The whole Wiener-type recurrent neural network (WRNN) can be divided into two main parts:
a dynamic linear model and static nonlinear model. Figure 16 shows the principle of the recursive
structure [68,69]. The input layer transmits the input values to the neurons of the dynamic layer. To infer
the current state of the network, the dynamic layer integrates the current input information from the
input layer with the state history stored in the memory of the dynamic layer neurons. The neurons in
the output layer perform nonlinear transformations on state variables with different weights. To prove
the feasibility of the WRNN algorithm, these papers developed the drift modeling and compensation
algorithm, which is based on the WRNN to model the intrinsic drift of the gyroscopes [68,69].
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The neural architecture search recurrent neural network (NAS-RNN) was proposed by Barret
Zoph in 2016 with the main purpose of using reinforcement learning to find an optimal network,
while solving a problem [70]. Indeed, NAS-RNN was invented to solve time series problems in the
data science community. Different from the conventional method, NAS-RNN was able to search a
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3.6.3. Long Short Term Memory (LSTM)

Long short term memory (LSTM) is a popular variant of the Recurrent Neural Network (RNN),
proposed in 1997 by Hochreiter [72], and also a kind of time cycle neural network, which is specially
designed to solve the long-term dependence problem of common RNN, especially for MEMS gyroscope
raw signal denoising [73,74]. The key idea of LSTM is the “three gates”, which are used to interact with
cellular states and change the information carried by cellular states. LSTM uses two gates to control
the contents of c in the unit state. One is the forgetting gate, which determines how much ct of the
unit state at the last moment is retained until the current moment. The other is the input gate, which
determines how much of the network’s input xt is saved to the cell state ct at the current moment.
Lastly, the output gate is used to control how much of the unit state ct is output to the current output
value ht of the LSTM. The basic structure of LSTM is showed as follows in Figure 18.
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expressed as in Figure 19. GRU was also used to model the raw signal and suppress noise by Jiang, 
and the results show that GRU can be effective for output signal denoising [74]. 
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3.6.5. Simple Recurrent Unit (SRU) 

Simple Recurrent Unit (SRU), which is a new variant of RNN based on LSTM and GRU re-
search, was proposed by Tao Lei in 2018, and the SRU has a more succinct structure for accelerating 
the training procedure. When compared with LSTM and GRU, the SRU has a faster training speed 
that is derived from its unique structure, and there is no loss of accuracy, under the premise of en-
suring training speed [76]. The basic structure of SRU is presented in Figure 20. Similarly, the SRU 
is adopted for MEMS gyroscope raw signals denoising and obtains good accuracy improvement 
[77]. 
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3.6.4. Gate Recurrent Unit (GRU)

Gated Recurrent Unit (GRU), which was proposed by Chung in 2014, is also a variance of
LSTM [75]. It combines the forget gate and the input gate into a single update gate, so it has only three
gates. It also mixes cell state and hidden state, and other changes. The final model is simpler than the
standard LSTM model, and it is also a very popular variant. The structure of GRU can be expressed as
in Figure 19. GRU was also used to model the raw signal and suppress noise by Jiang, and the results
show that GRU can be effective for output signal denoising [74].
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3.6.5. Simple Recurrent Unit (SRU)

Simple Recurrent Unit (SRU), which is a new variant of RNN based on LSTM and GRU research,
was proposed by Tao Lei in 2018, and the SRU has a more succinct structure for accelerating the training
procedure. When compared with LSTM and GRU, the SRU has a faster training speed that is derived
from its unique structure, and there is no loss of accuracy, under the premise of ensuring training
speed [76]. The basic structure of SRU is presented in Figure 20. Similarly, the SRU is adopted for
MEMS gyroscope raw signals denoising and obtains good accuracy improvement [77].
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3.7. Adaptive-Based Algorithms 

3.7.1. Recursive Least Squares (RLS) 

The recursive least squares (RLS) is an adaptive filter, and it uses an iterative algorithm instead 
of matrix inversion to reduce the amount of calculation [78]. The basic idea of RLS is that the new 
estimated value is modified based on the old estimated value. For simple analysis, Θ  is set as a vec-
tor, and Θ  is only related to the current observation value. Then, the recursive least square method 
can be expressed as follows. RLS is usually used for signal filtering; in the MEMS inertial sensor 
field, RLS is adopted for estimating the stochastic error model of MEMS inertial sensor [78,79]. ky  is 
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kφ  is input measurement. 
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3.7.2. Least Mean Squares (LMS) 

The least mean squares (LMS) algorithm is a widely used adaptive filtering algorithm. This al-
gorithm does not need to know the statistical characteristics of the input signal and the expected 
signal. It has the advantages of a simple principle, few parameters, fast convergence speed, and 
easy implementation. As showed in paper [80], the author designs an LMS filter in the MEMS gyro-
scope control system for improving the precision. LMS algorithm is based on Equations (24)–(27), 
where ( )x k  is the input signal, ( )y k  is the output of the filter, ( )d k  is the reference signal (desired 
signal), ( )e k  is the error signal, ( )w k  is the weight vector, µ  is the iteration step-size, and maxλ  is 
the maximum eigenvalue of auto correlation matrix of input signal. 
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3.7. Adaptive-Based Algorithms

3.7.1. Recursive Least Squares (RLS)

The recursive least squares (RLS) is an adaptive filter, and it uses an iterative algorithm instead
of matrix inversion to reduce the amount of calculation [78]. The basic idea of RLS is that the new
estimated value is modified based on the old estimated value. For simple analysis, Θ is set as a vector,
and Θ is only related to the current observation value. Then, the recursive least square method can
be expressed as follows. RLS is usually used for signal filtering; in the MEMS inertial sensor field,
RLS is adopted for estimating the stochastic error model of MEMS inertial sensor [78,79]. yk is output
measurement; φT

k is input measurement.

∧

Θk =
∧

Θk−1 + Ksεk (20)

Kk = Pkφk (21)

εk = yk −φ
T
k

∧

Θk−1 (22)

Pk = Pk−1 −
Pk−1φkφ

T
k Pk−1

1 + φT
k Pk−1φk
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3.7.2. Least Mean Squares (LMS)

The least mean squares (LMS) algorithm is a widely used adaptive filtering algorithm.
This algorithm does not need to know the statistical characteristics of the input signal and the
expected signal. It has the advantages of a simple principle, few parameters, fast convergence speed,
and easy implementation. As showed in paper [80], the author designs an LMS filter in the MEMS
gyroscope control system for improving the precision. LMS algorithm is based on Equations (24)–(27),
where x(k) is the input signal, y(k) is the output of the filter, d(k) is the reference signal (desired signal),
e(k) is the error signal, w(k) is the weight vector, µ is the iteration step-size, and λmax is the maximum
eigenvalue of auto correlation matrix of input signal.

w(0), 1 < µ < 1/λmax (24)

y(k) =
N∑

i=0

wi(k)xi(k− i) (25)

e(k) = d(k) − y(k) (26)
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w(k + 1) = w(k) + 2µe(k)x(k) (27)

3.7.3. Adaptive Sliding Mode Controller (ASMC)

The adaptive sliding mode controller (ASMC) for the MEMS vibration z-axis gyroscope is
employed in Fei’s research papers, which can estimate the angular velocity, damping coefficient, and
stiffness coefficient in real time. The ASMC error compensation process was described in a study by
Fei et al. [81]. The sliding mode compensator is used to reduce control chattering, while the adaptive
law is used to update the parameters of the adaptive sliding mode controller. The simple principle
diagram is shown in Figure 21, which presents an indirect adaptive sliding mode control for the MEMS
gyroscope [82].
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3.7.4. Adaptive Kalman filter (AKF) 

Adaptive Kalman filtering (AKF) is mostly used for filtering measured data while constantly 
judging whether the system dynamics changed during the operation to give a real-time estimation 
and correction of model parameters, in cases of changes; and to adapt noise’s statistical characteris-
tics to improve the filtering accuracy [78,83,84]. In reference [85], a model of AKF was developed 
and implemented for real-time estimation of the error covariance matrix. This technique can be 
used to improve the integrity of inertial measurement unit (IMU) and Global Positioning System 
(GPS) navigation for land vehicle applications, and attempts to design an AKF that performs better 
than traditional KF when GPS is interrupted. The system diagram is as shown in Figure 22 [85]. 
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3.7.4. Adaptive Kalman Filter (AKF)

Adaptive Kalman filtering (AKF) is mostly used for filtering measured data while constantly
judging whether the system dynamics changed during the operation to give a real-time estimation
and correction of model parameters, in cases of changes; and to adapt noise’s statistical characteristics
to improve the filtering accuracy [78,83,84]. In reference [85], a model of AKF was developed and
implemented for real-time estimation of the error covariance matrix. This technique can be used
to improve the integrity of inertial measurement unit (IMU) and Global Positioning System (GPS)
navigation for land vehicle applications, and attempts to design an AKF that performs better than
traditional KF when GPS is interrupted. The system diagram is as shown in Figure 22 [85].
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3.7.5. Adaptive Filtering Based on Dynamic Variance Model (AF-DVM)

An adaptive filtering method based on the dynamic variance model is introduced to compensate
MEMS gyroscope random errors at different angular rates [86]. The principle is illustrated in Figure 23,
which is derived from the original work in reference [86]. First, output data of different angular rate
MEMS gyroscopes were collected, and the statistical characteristics of random errors of different
angular rates were analyzed to establish the auto-regressive integrated moving average (ARIMA)
model and dynamic variance model. After that, a KF is based on the ARIMA model. According to
the dynamic model of data variance and angular rate, the method can adjust the KF noise coefficient
online. Finally, the model and filter are verified by using the constant angular velocity and continuous
variable angular velocity output data of the gyroscope, respectively.
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3.8. Comparative Analysis of Existing Algorithms

For extensive comparative analyses of the existing algorithms proposed for improving accuracy
in the MEMS inertial sensor, the corresponding algorithms in the reviewed articles were analyzed
with respect to the seven groups discussed earlier. The details of their task, status of application for
real-time and/or offline domains, working environment, and some observational remarks are presented
in Table 1. In addition, a comparative study was carried out based on the structural characteristics,
advantages/disadvantages of the algorithms, and strength of the methods in the application domains,
as presented in Table 2. For readers’ clarity, the different groups each algorithm falls into were also
compared in Table 3. For this purpose, algorithms in each group of the previous tables were combined,
while the main tasks each group was commonly used for in the existing literature were summarized
along with the advantages/disadvantages and the numbers of studies that the systematic comparison
was based.
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Table 1. Comparative analysis of existing algorithms with references status of task analysis and working approach.

Algorithm # of
Papers Task Analysis Real-Time and

Online/Offline
Working

Environment Remark

FMF 1 Raw data noise reduction [33] Online AMD-Quadcore
FX-8800pCPU platform

The results show that the proposed filter can
effectively reduce the sensor’s noise.

MF 2

Noise suppression in the MEMS
gyroscope [36];
MEMS gyroscope output signal
denoising [37]

Real time MATLAB

The simulation is better achieved in the static
state and dynamic state; the principle is
simple and has much less calculation in
real time.

MAF 1 Suppress the signal’s unstable
periods [38]

Collect data online and
process the data offline NA

Single and multiple rate dynamic
experiment analysis, and synthetic signal
denoising analysis.

VBF 1 Reduce the low frequency vibration
and sensor noise [39] Real time MATLAB

Adaptive bandwidth filter provides smooth
data in harsh environments and eliminates
the low frequency vibration effects (<10 Hz).

KF 3
Random drift compensation [41];
Temperature drift
compensation [42,44]

Offline MATLAB
The proposed method can effectively reduce
random drift and temperature drift not only
on the conditions but also at constant rates.

EKF 1 Damping and stiffness
imperfections compensation [43] Offline MATLAB and DSP Numeric simulation and experiment EKF

show consistent results.

IKF 1 To reduce large errors and improve
the convergence of the KF [44] Offline MATLAB Comparison of KF/AKF/AIKF

STKF 2

To compensate the temperature
drift [42];
Error compensation and accuracy
improvement [45]

Real time DSP

Static and dynamic experiments; the
algorithm is easily implemented; the
measurement noise of the MEMS gyroscope
in static and dynamic states can be reduced
by 93.6% and 63.9%, respectively.

DTKF 1 Bias drift and noise reduction [46] Real time DSP
The greatest feature is the direct modeling
for true angular rate to obtain an optimal
estimate.

WT 2
Large noise reduction for
low-precision MEMS
gyroscope [47,50]

Real time DSP A large number of the constant and dynamic
rates experiments were tested.
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Table 1. Cont.

Algorithm # of
Papers Task Analysis Real-Time and

Online/Offline
Working

Environment Remark

IWT 2
Error compensation [48];
High frequency noise reduction
and random drift suppression [49]

Offline NA Experimental results indicate that the
improved wavelet threshold is effective.

ASWT 1 High frequency noise restraint [50] Real time DSP

Experimental results show that the adaptive
stationary wavelet threshold is better than
traditional wavelet threshold denoising
methods.

EMD-WT 1 To improve the performance of the
high-G MEMS accelerometer [51] Offline NA

Experiment and verification in the
Hopkinson Bar calibration system, and it
decreases the noise of the original signal by
96%.

VG 2
To reduce the noise and improve
the accuracy of the individual
gyroscope [52,53]

Online MATLAB/Simulink Dynamic simulations and experiments with
a six-gyroscope array were carried out.

HF 1 Real time calibration and long-term
drift compensation [54] Real time/Online MATLAB Intelligent Real-Time MEMS Sensor

Fusion and Calibration.

CS 1 To eliminate the drift and offset [55] Real time DSP and FRGA
Various simulation and experimental results
are presented demonstrating its
effectiveness.

BP 2

Null drift, temperature
compensation [57];
Compensation of temperature and
acceleration effects [58]

Real time NA

Bias instability shows 57% improvement;
Temperature test from −40 to −80 ◦C;
BP NN yields accurate temperature
compensation.

RBF 3 Random error compensating [48];
Temperature compensation [60,63]

Real time [60]
Offline [48,63] NA

Good generalization ability, higher precision
prediction, and compensation ability;
A new fusion algorithm is proposed and
proved in temperature test equipment.
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Table 1. Cont.

Algorithm # of
Papers Task Analysis Real-Time and

Online/Offline
Working

Environment Remark

SVM 3
Modeling and
compensation [63,65];
Error modeling [64]

Offline MATLAB/LibSVM

SVM has high precision and good
generalization ability; thus, experimental
results proved that the SVM approach
reduced the noise standard deviation by
10–35% for gyroscopes and 61–76% for
accelerometers.

RVM 1 Random drift compensation [67] Offline NA Static and dynamic experiments were
conducted.

WRNN 2 Random drift modeling and
compensation [68,69] Real time MCU

The effectiveness of the proposed
WRNN-based random drift modeling and
compensation scheme for the MEMS-based
gyroscopes was successfully validated.

NAS-RNN 1 Noise suppressing [71] Offline NA The NAS-RNN was effective for MEMS
gyroscope noise suppressing.

GRU 1 Noise suppressing [74] Offline Python The mixed deep recurrent neural networks
outperformed GRU-GRU and LSTM-LSTM.

SRU 1 Signal denoising [77] Offline Python
The results surely demonstrated the
effectiveness of the employed SRU in this
application.

RLS 2
Random noise reduction [78];
Online dynamic estimation of
inertial sensor error model [79];

Online
STM32

microcontroller [78];
DSP [79]

The results show that RLS can effectively
reduce the prediction error compared with
non-recursive estimation.

LMS 1 Signal error processing [80] Online DSP Builder/FPGA The results show that it is reliable and has
high precision.

ASMC 2
Estimate the angular velocity and
the damping and stiffness
coefficients [81,82]

Offline MATLAB/Simulink
It has satisfactory performance and
robustness in the presence of model
uncertainty and external disturbance.
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Table 1. Cont.

Algorithm # of
Papers Task Analysis Real-Time and

Online/Offline
Working

Environment Remark

AKF 4

Noise reduction [78];
Static and dynamic noise
reduction [83];
The drift error and random noise
restraint [84];
Navigation precision
improvement [85]

Real time [78,84,85]
STM32

microcontroller [78];
DSP [84,85]

It is shown that AKF has a better
performance rather than conventional KF.

AF-DVM 1 Dynamic random error
compensation [86] Online DSP

The proposed method was verified through
a constant angular rate and continuous
variable angular rate turntable experiments.
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Table 2. Comparative analysis of individual algorithms and their merits.

Group Algorithms Structure
Characteristics Advantages Disadvantages Strength in Application Domain

Simple filter algorithms

FMF The FMF structure is very similar to KF
Very low computational
overhead and KF divergence
suppression

The optimal filter gain is not
easy to find

To reduce the sensor’s noise and track
moving objects in radar applications
and medical devices

MF Four basic operators as follows: dilation,
erosion, opening, and closing It is simple, fast, and real-time

MF generally suffers from
different output biases and the
scale selection problems of
structural elements

In order to filter out the noise of the
MEMS gyroscope in vehicle mobile
satellite communication

MAF MAF is the first choice of time domain
signal, and is the most common in DSP

Fast convergence rate and small
steady-state errors MAF shows certain lag It is applicable for signal denoising

under arbitrary motion state conditions

VBF VBF processes data by sinusoidal data
estimation It can be implemented real-time As the bandwidth decreases,

the time delay increases Real flight conditions

KF Filter computation loop and gain
computation loop Small amount of calculation It can only fit linear Gaussian

systems. Sensor data fusion

EKF EKF is a kind of pseudo nonlinear KF Small and fast calculations
Less effective for highly
nonlinear problems and poor
robustness

Unmanned aerial vehicles

Kalman-based
algorithms IKF IKF also is a nonlinear KF

Better estimation accuracy and
more robust to the unstable
system

It has a larger calculation
amount, but still can satisfy the
real-time requirement.

In the airborne strapdown inertial
navigation system application

STKF Nonlinear adaptive filter Strong robustness
The sequence of residuals
should be orthogonal at all
times

With potential to be used in adaptive
control of flexible robot

DTKF A type of optimal KF Direct modeling for angular
rate signal

The filtered rate signal has an
auto-correlation Aviation and aerospace navigation

WT Hard threshold and soft threshold

No need to establish accurate
error model;
Fast computation, and broad
adaptability

The Pseudo-Gibbs will appear
at the discontinuity of the signal

Primarily applicable in the case of
white noise in the signal processing

Wavelet-based
algorithms IWT

In addition to soft and hard threshold
function, a new threshold function is
added

Better adaptability It is very difficult to find an
ideal threshold Indoor inertial navigation systems

ASWT Redundancy, translation-invariance, and
more approximate estimation

Time invariance; simple and
more smoothing

The computation load will
increase

Application in the case of dynamic
signal with high frequency noise
restraining

EMD-WT Combination of two algorithms

Suitable for nonlinear and
non-stationary signals;
Faster, more reliable, and
efficient than single methods

It is quite difficult to remove
noise in real time

Monitoring natural disasters and
various navigation control
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Table 2. Cont.

Group Algorithms Structure
Characteristics Advantages Disadvantages Strength in Application Domain

Sensor fusion
algorithms

VG Gyroscope array Accuracy of virtual gyro is
higher than single gyro It still needs KF filter Navigation and guidance

HF Fusion of gyroscopes, accelerometers,
and magnetometers

Faster dynamic response;
Converges faster and take less
computational time

Higher CPU load Attitude and heading reference
systems

CS

Combines rotary encoders and
gyroscopes;
Low computational demands and
negligible parameter tuning effort

A viable alternative to
high-resolution encoders;

It still needs to further restrain
the disturbance Servo motors or robot joints

BP Input layer, hidden layer, and output
layer

Nonlinear function relationship
model

Time-consuming and its
denoising accuracy depends on
personal experience

To effectively improve the accuracy
and practicability of flight attitude
angle calculation

Machine
Learning RBF Input layer, hidden layer, and output

layer

The training speed and
convergence speed of the RBF
are faster than BP

Need to combine with other
algorithms for high accuracy

High-G MEMS accelerometer
temperature compensation;
Application in navigation, defense, and
impact measurement.

SVM
It is a two-classification algorithm that
classifies samples by constructing a
hyperplane function

Better generalization ability for
small samples

It is difficult to learn and
predict large samples

North-seeking, navigation, pedestrian
step estimation, pattern recognition,
and many other fields

RVM It is a sparse probability model The generalization ability of
RVM is better than SVM The training time is a little long Guidance, navigation, and control

systems for space vehicles

WRNN A dynamic linear model cascaded by a
static nonlinear model

The algorithm is integrated into
the real application

It still needs to integrate a
lowpass filter Handwriting Trajectory Reconstruction

Deep Learning

NAS-RNN Neural networks with reinforcement
learning

The NAS-RNN superiority
compared with the LSTM-RNN More heavy computation load Various vehicles, carriers, and smart

devices

LSTM A type of RNN LSTM performs better in longer
sequences

More parameters and more
difficult training

Image processing, nature language
processing, and sequential signal
processing

GRU A type of RNN
GRU is much easier to train
than LSTM and can greatly
improve training efficiency

GRU parameters are fewer and
therefore, easier to converge,
but LSTM expression
performance is better for large
datasets

Image processing, nature language
processing, and sequential signal
processing

SRU A new type of RNN based on LSTM and
GRU

The SRU has faster training
speed than LSTM and GRU It still needs further research

Image processing, nature language
processing and sequential signal
processing
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Table 2. Cont.

Group Algorithms Structure
Characteristics Advantages Disadvantages Strength in Application Domain

RLS A type of adaptive filter Convergence speed is very fast Different inertial sensors need
different forgetting factor

Automobile industry, flight vehicle,
and robotics

LMS A widely used type of adaptive filter
Simple principle, few
parameters, fast convergence
speed and easy implementation

Need to combine other
algorithms for good
performance

It can be integrated into the FPGA for
various real applications.

Adaptive-based algorithms ASMC Sliding mode controller More high robustness The simulations are only
performed

Environment variations and external
disturbances from the real system

AKF NA AKF performs better than
traditional KF NA Land vehicle applications

AF-DVM Algorithm combination Adaptive dynamic random
error compensation is validated NA Inertial measurement

and inertial stabilization
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Table 3. Comparative analysis of algorithms based on group classification and their merits.

Group Main Tasks Advantages Disadvantages Number of Studies

Simple filter algorithms

• Raw data noise reduction
• Noise suppression in

MEMS gyroscope
• Suppress the signal’s

unstable periods
• Reduce the low frequency

vibration and sensor noise

• It has a simpler construction
• Low computational overhead
• It is easy to be implemented in

real time

• Not easy to find the optimal
filter gain

• Has a statistical bias problem
• Not simple to choose an optimal

length for the SE
• Need to work together with other

algorithms for better
noise reduction

5

Kalman-based algorithms

• Random drift compensation
• Temperature drift compensation
• Damping and

stiffness imperfections
• Compensation
• Error compensation and

accuracy improvement
• Bias drift and noise reduction

• One of the most common signal
processing algorithms for MEMS
inertial sensors

• Can be easily implemented on
MATLAB and DSP

• Limited computation capacity
• Can effectively reduce the static

and dynamic error

• Sometimes, it needs to combine
other algorithms for
noise reduction

• Once, subsystem faults greatly
affect the compensation precision

• If the environment changes
drastically, the drift model is
difficult to maintain high accuracy

8

Wavelet-based algorithms

• Large noise reduction for
low-precision MEMS gyroscope

• Random error compensation
• High frequency noise reduction

and random drift suppression
• To improve the performance of

high-G MEMS accelerometer

• Can effectively reduce the static
and dynamic error

• Multi-resolution analysis in time
domain and frequency
domain simultaneously

• Simple algorithm and small
computational complexity

• No need to establish the system
error model

• Sometimes, it needs to work
together with other algorithms

• Poor adaptability
• Difficult to find ideal

wavelet threshold

6

Sensor fusion
algorithms

• To reduce the noise and improve
the accuracy of the
individual gyroscope

• Real time calibration and
long-term drift compensation

• To eliminate the drift and offset

• Can be implemented in real time
• Less computational time
• ·

• Large volume and integrated error
• It must combine other

filter algorithms
• Sometimes, it needs information

from other sensors, e.g., MEMS
accelerometer or magnetometer or
rotary encoders

4
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Table 3. Cont.

Group Main Tasks Advantages Disadvantages Number of Studies

Machine Learning

• Compensation of temperature and
acceleration effects

• Error compensation
• Temperature compensation
• Error Modeling and compensation

• One of the most common signal
processing algorithms for MEMS
inertial sensors

• It is easy for small training data
• The network structure is

relatively simple
• SVM needs less training time

• More computational time
• Not easy to implement for

large-scale training data
• NN is easily over-fitting
• Sometimes, it needs to work with

other algorithms

9

Deep
Learning

• Random drift modeling
and compensation

• Noise suppressing
• Signal denoising

• One of the most common signal
processing algorithms for MEMS
gyroscope in recent three years

• Focusing on time series signal
prediction processing

• More computational time
• It is relatively difficult for real

time signal processing
• The network structure is

relatively complexity
• Limited data were trained in

those papers

7

Adaptive-based algorithms

• Random noise reduction
• Dynamic estimation of inertial

sensor error mode
• Estimate the angular velocity and

the damping and
stiffness coefficients

• Static and dynamic
noise reduction

• Navigation
precision improvement

• The most common signal
processing algorithms

• Almost all can be implemented in
real time

• Easily be implemented
in hardware

• Sometimes, it needs to work
together with other algorithms

• Need to enhance the practicability
10
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4. Discussion

An extensive search about precision improvement in MEMS technology, such as the inertial sensors,
shows that despite the existing review papers for MEMS inertial sensors in domains like structure
optimization in MEMS inertial sensors [8,21], developments in inertial sensitive structures [87,88],
quality factor for tuning mechanisms [89], and corresponding interface circuits [8,90,91], there is no
single review and overview of studies that focuses on processing MEMS inertial sensor output using
signal-based algorithms to improve the sensor’s accuracy until now. Hence, this review article focuses
on random error signal processing algorithms for improving the accuracy of MEMS inertial sensors
and provides a detailed overview for users. Our main contribution in this review is the classification of
a total of 30 algorithms filtered from 256 methods into seven categories for ease of comparison and
evaluation. The proposed classes are simple filter algorithms, Kalman-based algorithms, wavelet-based
algorithms, sensor fusion, machine learning, deep learning, and adaptive-based algorithms. Amongst
the algorithms developed for improving the intrinsic accuracy of MEMS inertial sensors, Kalman-based
algorithms are the most commonly used method for error compensation and noise suppression.
Followed by these Kalman-based techniques are adaptive-based methods, which also showed some
great potential in recent times. Next is the artificial intelligence algorithms; these can be adapted
to solving error compensation and related problems in different application areas. Almost all the
algorithms have potential to be implemented in simulation mode and within a hardware setup;
furthermore, they can be used in their fundamental state, improved, and combined with other
algorithms to improve the precision of the MEMS inertial sensor.

Simple filter algorithms such as fading memory filter, morphological filter, moving average filter,
and variable bandwidth filters were applied to reduce raw data noise, static and dynamic noise,
unstable periods drift, and low frequency vibration. Their mathematical principles are simple and
easy to implement for real-time applications, whether in hardware or simulation. For preliminary
signal processing, they are used alone or in combination. However, better results can usually be
obtained if they are combined with other algorithms. Kalman-based algorithms are commonly applied
for random drift compensation, error compensation, temperature drift compensation, damping and
stiffness imperfections compensation, as well as improving the convergence of the KF. With a focus on
random error signal processing algorithms, related Kalman-based algorithms, including the Kalman
filter, extended Kalman filter, incremental Kalman filter, strong tracking Kalman filter, and discrete-time
Kalman filter algorithms, are shown in this article. They are all based on the Kalman filter and mainly
complete the signal denoising and random drift signal compensation for MEMS inertial sensors.
Wavelet-based algorithms include wavelet threshold, improved wavelet threshold, adaptive stationary
wavelet threshold, and EMD-based wavelet threshold. They can be applied for noise reduction,
high frequency noise reduction, random drift or error compensation, and performance improvement.
The wavelet-based algorithms provide a good solution when used to compensate random error or
noise in inertial sensors under static and dynamic conditions. It usually provides good and reliable
results, but sometimes, it needs to be combined with other algorithms to have a huge advantage.

Sensor fusion algorithms are the combination of data generated by homogeneous or heterogeneous
sensors, so that the result information is more accurate and reliable when used with separate sensors.
In this review, three methods, in which sensor fusion algorithms were used for noise suppression and
drift/offset elimination, were discussed. This includes application in virtual gyroscope or gyroscope
array, heterogeneous fusion, and combination sensors. In common cases, such sensors are all
implemented in real time on MATLAB or DSP or FPGA, but they all need to add filtering algorithms
in the last step to filter out unnecessary noise. Machine learning algorithms such as BP, RBF, SVM,
and RVM have also been employed in MEMS inertial sensor output signal processing. This approach
is commonly used for temperature compensation, random error modeling, and drift compensation.
Generally, the methods produce real signals on the temperature control turntable, and then, perform
signal processing offline. The results show that they can achieve good compensation effects and
accuracy improvements. Deep learning in MEMS inertial sensor signal processing mainly refers to the
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application of recurrent neural networks and its variants. In particular, GRU, SRU, and WRNN are some
other deep learning algorithms that were developed in the last five years but they have found a very
large prospect for time series signal processing. In the domain of MEMS inertial sensor signal processing,
recurrent neural network and its variants have shown good noise reduction effects; however, currently,
they are mostly implemented in the Python 3.6 environment. Adaptive-based algorithms, such as RLS,
LMS, ASMC, AKF, and AF-DVM, were used for dynamic estimation, random error compensation, the
damping and stiffness coefficients estimation, and navigation precision improvement. Basically, almost
all the mentioned adaptive algorithms are implemented for online processing of output (signal) from
the MEMS inertial sensor and tailored for precision improvement. In essence, they usually achieve
satisfactory performance and robustness. While a number of error compensation algorithms have been
studied, it is vital to perform an overview on how these methods are properly selected and applied.
Output signals from MEMS inertial sensors usually contain noise at varying frequency levels. As a
correction measure, simple filtering and wavelet-based approaches are better used to deal with high
frequency noise, while it is necessary to find other algorithms such as Neural Networks and SVM
that can be applied to process noises that are in low frequency. In respective contexts, the inertial
sensor output signal has high-dimensional and highly nonlinear characteristics; thus, learning-based
methods, including algorithms based on neural networks and SVM, have shown some comparative
advantages over the traditional filtering algorithms. While the algorithms based on SVM can overcome
over-fitting and better generalization ability for small samples, those based on neural networks are
prone to overfitting and limited generalization capabilities. The Deep Learning algorithms developed
quickly in recent years have the advantage of large sample learning and prediction in the field of
time series data processing, and further research is needed to realize the real-time high-precision
estimation and compensation of random errors of inertial sensors. Kalman usually needs to combine
the autoregressive moving average model (ARMA) to realize real-time suppression or compensation
of inertial sensor drift error and random noise. ARMA usually assumes that random errors are linear
combinations, and Kalman usually assumes that the state space and noise characteristics are Gaussian
distributions. In practical applications, these noise models are not time-invariant. Therefore, the fixed
variance of the process noise and measurement noise covariance matrix is not suitable for real-time
applications, because it can lead to filter divergence of estimation. In order to solve the divergence
problem, various adaptive algorithms or improved adaptive Kalman algorithms play an important role
in practical applications due to their lower computing cost and real-time advantages. In addition, the
sensor fusion algorithms are usually a combination of multiple sensors, but they also need to cooperate
with the filtering algorithm to achieve high accuracy.

5. Conclusions

This paper mainly introduces an algorithm focused on random error reduction and accuracy
improvement in MEMS inertial sensors. Forty-nine random error processing papers that focused on
improving the precision of MEMS inertial sensors and that were published in the last ten years were
selected and analyzed. The algorithms mainly include representative methods and related classification
algorithms in the domain. Thirty mainstream algorithms were filtered from the papers and categorized
into seven main groups. Each group was carefully investigated and summarized in terms of tasks
that they were used in, as well as analysis on if the applications were for online or offline in real-time
approaches, and the working environment where they were analyzed. Lastly, we made some vital
remarks and highlighted their advantages and disadvantages.

The algorithms studied in this review are of great significance to the refinement of MEMS inertial
sensors. This review aims to provide a guide for users studying random error reduction algorithms in
the MEMS inertial sensor, as well as according to science and technology developmental trends [92,93],
and some hotspots in the research field [59,63,94–96]. We also concluded on the following points
to better drive the prospects of the algorithms for processing and suppression of random error in
MEMS inertial sensors; viz., (1) choosing or improving the appropriate compensation algorithm would
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depend on accuracy requirements and application scenarios; (2) combination of common algorithms or
sensor fusion could improve performance; (3) Smart MEMS inertial sensors integrated with artificial
intelligence algorithms could provide better precision of the MEMS inertia sensor. At the same time,
we also summarize the development of other related technologies of MEMS inertial sensors.

In fact, the most fundamental error for MEMS inertial sensors is still derived from the sensitive
structure in micron scale, so it is necessary to explore the sensitive mechanism clearly, and then,
optimize the MEMS sensitive device. The MEMS inertial device is mainly composed of a basic beam,
spring, and mass block. The MEMS inertial device is easily influenced by temperature, rotation speed,
attached mass, instant temperature field, material distribution, geometry, and dimension size [97–102],
resulting in structure stress concentration, thermal stress, unstable resonant frequency, and other
adverse phenomena. Therefore, in order to better design the MEMS/NEMS device, it is necessary to
consider stress release, temperature insensitivity, geometric structure, scale effect, driving/detection
mode, appropriate non-classical parameters, and rod model [97–102].

Another error source of the MEMS inertial sensor is that it is vulnerable to external disturbance in
actual navigation application, as well as model uncertainties, orthogonal error, and mismatching of
driving and detection modes, which all will affect the navigation accuracy. In order to improve
the anti-interference and robustness of the MEMS, traditional methods such as proportional
integral derivative (PID), fuzzy control, and sliding mode control are not enough to achieve good
performance [103–105]. Therefore, it is necessary to consider some appropriate and advanced control
algorithms to improve the robustness and high-precision tracking performance of the MEMS. Some
scholars have proposed many advanced hybrid algorithms, such as adaptive fractional sliding mode
control [105], super twisting PID sliding mode controller algorithm [104], adaptive sliding mode
based algorithms [105], adaptive fuzzy sliding mode control [106–108], and neural learning based
algorithms [109], were used for the control of a MEMS gyroscope, which has achieved good simulation
results, and still need further optimization to be applied in the actual system.

For MEMS inertial sensor circuits, a high-precision, low-power, and low-noise capacitance
detection amplifier circuit is needed to convert the capacitance change into other more convenient
physical parameters for amplification and measurement. Therefore, the front-end detection and
amplification circuit is the key part to determine the performance of the whole sensor. The designer
needs to select the most appropriate topology according to the main design indicators, namely energy
consumption, floor area, measurement time, and resolution. AD/DA conversion circuits are also
important parts; especially, an analog to digital converter based on electromagnetism sigma delta
modulators is the best choice, which can improve bandwidth, linearity, dynamic range, and full-scale
range for MEMS internal sensors aiming at industrial grade and strategic grade applications [8,90].
In addition, the analog circuit has some shortcomings such as electronic noise, temperature drift, and
self-calibration difficulty. Compared with the analog circuit, the digital drive and detection circuit can
be implemented on one chip by DSP or FPGA, while the analog drive and detection circuit can only
be implemented on different devices [8,90]. With the interface circuit, sigma delta conversion circuit,
and digital chip technology design and implementation becoming more convenient and mature, the
precision of MEMS inertial sensors will be further improved. For MEMS packaging technology, with
the rapid development of MEMS packaging, wafer level and 3D integration are becoming more and
more important [91]. At the same time, according to the development characteristics of packaging
technology and the actual market application requirements, a variety of hybrid packaging forms will
emerge as the times require. In the case of controllable cost, the current single sample packaging will
gradually transition to the system in a package (SIP) level to achieve smaller volume, smaller power
consumption, and more integrated output of functional signals, so as to improve the cost performance
of products and meet the application requirements in special fields [91]. In short, the integration of
MEMS and IC and heterogeneous integration with other sensors will be inevitable trends.

In MEMS inertial sensor applications, the application of MEMS inertial sensors in the field of
consumer electronics is undoubtedly the largest market, but at present, inertial sensors have been
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applied in the fields of wheeled mobile platform navigation, mobile omniwheel robot trajectory tracking,
industrial robots, hexacopter navigation control, wearable devices motion monitoring, underwater
vehicle navigation, and torpedo and rocket navigation [110–122]. With the improvement of the
precision of MEMS inertial sensors and the increase in industrial market demand, the demand for
MEMS inertial sensors in the above fields will increase day by day. At the same time, it will be
expanded to some special fields, such as earthquake monitoring and housing health monitoring.
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