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Abstract: In this paper, we present a novel thermoresistive gas flow sensor with a high-yield and
low-cost volume production by using front-side microfabricated technology. To best improve the
thermal resistance, a micro-air-trench between the heater and the thermistors was opened to minimize
the heat loss from the heater to the silicon substrate. Two types of gas flow sensors were designed
with the optimal thermal-insulation configuration and fabricated by a single-wafer-based single-side
process in (111) wafers, where the type A sensor has two thermistors while the type B sensor has four.
Chip dimensions of both sensors are as small as 0.7 mm × 0.7 mm and the sensors achieve a short
response time of 1.5 ms. Furthermore, without using any amplification, the normalized sensitivity of
type A and type B sensors is 1.9 mV/(SLM)/mW and 3.9 mV/(SLM)/mW for nitrogen gas flow and
the minimum detectable flow rate is estimated at about 0.53 and 0.26 standard cubic centimeter per
minute (sccm), respectively.

Keywords: gas flow sensor; single-side bulk micromachining; ultrahigh sensitivity

1. Introduction

Gas flow is a necessary parameter in numerous industrial and laboratory on-chip applications [1–3].
Due to the development of microelectronic manufacturing processes, the miniaturization of instruments
has attracted considerable attention from researchers, which has led to the development of silicon-based
gas flow sensors along the direction of more miniaturization, lower cost and higher performance [4,5].
Silicon-based gas flow sensors are mainly divided into thermal and nonthermal types. It should be
noted that thermal flow sensors do not require any moving parts [6]. Thus, they could be implemented
in Complementary Metal-Oxide-Semiconductor (CMOS) processes as the easiest flow measurement
devices due to their structural simplicity. According to the working principle of the sensitive element,
thermal gas flow sensors can be divided into time-of-flight, calorimetric and hot-wire/hot-film types [7].
Among the sensors, a thermoresistive microcalorimetric flow sensor calibrates the gas flow by detecting
the temperature difference of the upstream and downstream thermistors, which difference is caused by
the flow transport of the gas [8]. Furthermore, the thermoresistive microcalorimetric flow sensor is
widely used for its low power consumption and high detection accuracy.

To satisfy the rapid development of automotive electronics, biomedical instruments, process
control systems and so on, easy miniaturization and low-cost volume production of the silicon-based
thermoresistive gas flow sensors are needed. However, conventional thermoresistive flow sensors are
generally fabricated using double-sided micromachining [9]. With the technical approaches, thermal
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insulation membrane is formed by potassium hydroxide (KOH) anisotropic etching from the wafer
backside. The anisotropic etching-induced inclined sidewalls cause the chip size to be quite large and
the back-sided KOH etching is time-consuming, which yield a higher batch-fabrication cost [10]. Thus,
developing a new strategy to minimize the chip size for realizing batch-fabrication with a lower cost is
an important issue. Recently, a commercial 0.35 µm 2P4M microelectromechanical systems (MEMS)
process was used in [11] to fabricate a sensor from the front-side of a (100) wafer. The approach
decreased the chip-size and fabrication cost. However, the insulation membrane was released through
XeF2 isotropic etching, Thus, a depth-limited insulation cavity was formed, which would increase the
heat loss, lower the thermal resistance and cause a relatively lower sensitivity of the sensor. Here,
this paper expands on preliminary research presented in [12] and explores a tiny-sized ultrasensitive
thermoresistive gas flow sensor that is single-side processed in an ordinary single-polished (111) silicon
wafer. By changing the number of thermoresistive sensors, we developed two types of differential
thermoresistive gas flow sensors, a half-bridge type and a full-bridge type.

2. Sensor Design

Two types of single-side processed micro gas flow sensors were fabricated in the (111) silicon
wafer. Type A and type B flow sensors have the same structure and configuration, except for the
number of the thermistors. Herein, the type A sensor has two thermistors while the type B sensor has
four thermistors. Figure 1 shows the three-dimensional schematic of our proposed type B gas flow
sensor. A Pt heater was positioned at the center of the Si3N4/SiO2 membrane and each of the two Pt
thermistors was deposited symmetrically on either side of the heater. Air-trench between them was
further opened to increase the thermal resistance, which is helpful to minimize the heat loss from the
heater to the substrate. Additionally, the thermistors establish a detection circuit to detect changes in
the flow rate of the gas. Moreover, enhanced insulation of the suspension film and silicon substrate was
realized by introducing a 50 µm-deep isolation cavity underneath the Si3N4/SiO2 membrane, leading
to facilitated heat exchange between gas flow and the sensor.
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Figure 1. Three-dimensional schematic of the type B gas flow sensor on a single (111) wafer.

A finite element model of gas flow sensors was developed by COMSOL Multiphysics (V5.3,
COMSOL Inc, Burlington, MA, USA), which was employed to analyze and optimize the structure
of the designed sensors for minimizing the heat loss. Figure 2a,b show the 3D models of the flow
sensor based on a 1:1 structure size, and Figure 2c shows the temperature distribution of the flow
sensor at a flow rate of 1.0 m/s and a heater power of 4 mW. The simulation coupled the heat transfer
effects between the laminar flow and the solid. The model included two physical fields: the laminar
flow field and the temperature field. For laminar flow field, the inlet and outlet of the flow channel
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were established and other boundary conditions defined as no-slip. For temperature field, the solid
heat transfer was coupled with flow heat transfer, and the domain of the two heat transfer modes
was configured in the flow sensor. The power of the heater was set with the heat consumption rate.
The temperature of the inlet was assigned to 293 K and other boundaries in the model were identified
using heat flux to describe the effects of heat convection.
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Figure 2. Three-dimensional simulation model of the gas flow sensor. (a) Top view of simulation model
(D1, the distance between the thermistors and the heater; W, the width of the air-trench; D2 or D3,
the distance between the air-trench and the heater). (b) Front view of simulation model (H, the depth
of the thermal isolation cavity). (c) Temperature distribution diagram of the flow sensor.

Figure 3a shows the COMSOL-simulated temperature distribution on the upper surface of the
dielectric composite membrane with a nitrogen gas flow rate of 1.0 m/s and a heater power of 4 mW.
Figure 3b shows the temperature distribution on the top surface of the dielectric film along the
straight-line a–a’ in Figure 3a. The temperature in the Pt heater area of the flow sensor with air-trench
is higher than that of the flow sensor without air-trench, while the temperature in the thermistor area is
lower under the same condition. It is mainly due to the fact that the thermal resistance of the air-trench
is larger than that of the dielectric composite film, resulting in a smaller heat loss of the sensor with
air-trench than that of the sensor without air-trench. Figure 3c exhibits the temperature distribution
upstream and downstream from the gas flow sensor. Obviously, the gas flow sensor with air-trench has
a higher temperature difference (∆T) between the upstream thermistor and the downstream thermistor
than the traditional flow sensor without air-trench. According to ∆R = α × R × ∆T (where ∆R is the
resistance difference between the upstream Pt thermistor and downstream Pt thermistor, R is the
resistance of the Pt thermistor at a zero-flow rate and α is the Pt temperature coefficient), the higher the
∆T, the bigger the ∆R. Therefore, the proposed gas flow sensor with air-trench has a higher sensitivity.

In addition, simulation analysis was used to optimize the structural parameters to obtain high
performance of the sensor. Figure 4 presents the simulation results of output voltage versus flow
velocity of the gas flow sensor with different structural parameters (since the above parameters have
similar influence on the temperature distribution of type A and type B gas flow sensors, only the
simulation results of type A are discussed). As shown in Figure 4a, the distance between the thermistors
and the heater (D1) was set to 30, 40 and 50 µm. It was observed that the output voltage decreased
along with increasing D1. From Figure 4b, it can be seen that the output voltage decreased when
the distance between the air-trench and the heater (D2) increased from 10 to 20 µm. Furthermore,
as shown in Figure 4c,d, the width of the air- trench (W) was set to 2, 4 and 6 µm, while the depth
of the thermal isolation cavity (H) was 10, 30 and 50 µm. It was found that the output voltage had a
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positive relationship with W and H. Thus, by comparing the simulation results, higher H and W with
lower D1 and D2 yielded higher output voltage, which indicates a higher sensitivity of the flow sensor.Micromachines 2020, 11, 205 4 of 10 
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Figure 3. Simulation result of the gas flow sensor with air-trench and without air-trench. (a) Temperature
distribution diagram of the composite thin film. (b) Composite thin film temperature distribution
diagram of simulation model. (c) Composite thin film temperature distribution at the upstream and
downstream symmetrical position.
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Figure 4. The simulation results of voltage and flow velocity with different structure parameters.
(a) Distance between the thermistors and the heater (D1). (b) Distance between the air-trench and the
heater (D2). (c) Width of the air-trench (W). (d) Depth of the thermal isolation cavity (H).

Combining this with the simulation results and MIS (micro-openings interetch and sealing)
micromachining processing [13], the detailed structural parameters are listed in Table 1.

Table 1. Detailed dimensions for the gas flow sensor.

Geometric Parameters Half-Bridge Full-Bridge

Depth of the thermal isolation cavity (H) 50 µm 50 µm
Width of the air-trench (W) 4 µm 4 µm

Distance between thermistors and heater (D1) 30 µm 30 µm
Distance between air-trench and heater (D2, D3) 20 µm, 80 µm 20 µm, 130 µm
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3. Fabrication

To fabricate the proposed gas flow sensors, only two mask layers were provided; this much simpler
process than previously reported promoted device yield and a remarkably lower cost. As displayed
in Figure 5, the whole process was always carried out at the front side of (111) silicon. Starting from
an n-type four inch (111) single-polished silicon wafer in the resistance of 3~10 Ω·cm, the detailed
fabrication steps are described as follows:
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(a) Firstly, a 0.2 µm-thick SiO2 layer was grown by thermal oxidiation, then low-pressure chemical
vapor deposition (LPCVD) was employed to form a 0.8 µm-thick low-stress SiN layer on top of the
silicon dioxide layer.

(b) The first photolithography was used to form the pattern of the thermistors and heaters after a
Ti–W/Pt layer (50 nm/500 nm in thickness) was sputtered on top of the low-stress Si3N4 layer. The type
A sensors pattern with two thermistors, type B sensors pattern with four thermistors. With the
photoresist as an etching mask, the Ti–W/Pt layer was etched by ion beam etching equipment.

(c) The second photolithography was conducted to pattern the four air trenches along
<211>-orientation. Reactive-ion etching (RIE) was used to etch off the Si3N4/SiO2 membrane to
expose bare silicon and deep-RIE was processed to deepen the trenches for defining the height of the
insulation cavity with the patterned photoresist layer as a mask.

(d) Finally, the wafer was dipped into 25% aqueous tetramethylammonium hydroxide (TMAH)
under 80 ◦C for about 1.0 h to complete the bottom release by lateral underetching and form the
suspension for the Si3N4/SiO2 membrane. Without protection of the passivation layer, the trench
undergoes etching along the <110> and <211> orientation. The hexagonal-shaped insulation cavity
was excavated with all the etching-stop boundaries as {111} planes.

Figure 6 presents the two types of as-fabricated gas flow sensors, where the suspended Si3N4/SiO2

membrane, Pt heater, thermistor and air-trench can be easily observed. Further, the top-view optical
micrograph (OM) images of the whole fabricated sensors presented in Figure 6c,d confirm the intact
composite membrane. In addition, the scanning electron microscope (SEM) images in Figure 6a,b
clarify that the size of sensor chips shrunk to 0.7 mm × 0.7 mm for both sensors.
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4. Device Characterization

To investigate the performance of the sensor, as shown in Figure 7a, the sensor was directly glued
on the surface of a PCB board and then encapsulated in a poly(methyl methacrylate) (PMMA) flow
channel with a 5.5 mm × 1.5 mm cross section. The packaged sensors were tested under nitrogen flow.
The schematic of the test flow is displayed in Figure 7b. The nitrogen tank was used as the gas source,
and a commercial flow sensor, Molecular Analysis Series 8000S (Molecular Analysis LLC, Wilmington,
DE, USA), was used as a reference flow meter.
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Figure 7. (a) Packaged gas flow sensor in a poly(methyl methacrylate) (PMMA) flow channel. (b) Flow
diagram illustrating the experimental setup for testing the sensor.

A constant temperature difference (CTD) circuit efficiently compensates for output drifting, which
is caused by the fluctuation of ambient temperature. As displayed in Figure 8, the circuit is formed
with the amplifier LM358 (Risym, Shenzhen, China), the heater Rh, the on-chip reference ambient
temperature sensor Rr, the compensation resistor Rc, resistor Ra and resistor Rb. The operating
principle of this CTD circuit is described in [14]. Our design incorporates the Wheatstone bridge
readout method [15], for the type A sensor, the circuit is constituted with upstream and downstream
resistors with the addition of two on-chip resistors. For the type B sensor, the Wheatstone bridge circuit
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is achieved only with upstream and downstream resistors. DC power (Agilent E3631A, Keysight
Technologies, Santa Rosa, CA, USA) is supplied on the CTD mode and Wheatstone bridge of the sensor.
Without any amplification, the output signals of the thermoresistive sensor are read out by a digital
multimeter (Agilent 34410A, Keysight Technologies).
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(2.59 mV/(m/s)/mW). The red symbols and green symbols indicate the results from the COMSOL
simulation. Obviously, the tested results are slightly lower than the theoretical results. The discrepancy
is mainly due to the fabrication imperfections. For example, the depth of the thermal isolation cavity
may be smaller than the design value after deep-RIE, causing more heat loss. Therefore, the output
voltage may be smaller at a given heating power.
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As listed in Table 2, the sensitivity of both sensors is one order of magnitude higher than the
reported thermoresistive microcalorimetric gas flow sensor.
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Table 2. Summary of the previous thermoresistive calorimetric flow sensors and our work.

Ref. Area
mm2 Thin Film Structure/Fabrication Style Sensitivity*

mV/(m/s)/mW

[9] 36 SiO2 Double-sided process 0.039
[11]/[14] 2.25 SiO2 Single-sided process 0.154

[16] 3.4 Si/SiO2
Silicon-On-Insulator

(SOI)-wafer/single-sided process 0.112

Our work 0.49 SiN/ SiO2
Single-polished single-wafer/

single-sided process 1.26/2.59

Because the thermistors of the two sensors have the same resistance value, the step response and
noise of the two sensors keep the same value. According to the definition of the response time of the
flow system [16], with a constant input nitrogen gas flow of 1.8 SLM, an electric impulse heating power
of 4.0 mW was applied to the heater directly to estimate the dynamical response of the type B flow
sensor. As shown in Figure 10, the sensor exhibits a response time of 1.5 ms.
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Figure 11 shows a time diagram of the output noise of the type B flow sensor measured over
intervals of 16 s in condition of zero-flow rate. The standard deviation of the noise voltage is estimated
at nearly 0.002 mV. Considering the sensitivity, the minimum detectable flow rate [17] of the type A
and type B sensors are 0.53 and 0.26 sccm, respectively.
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5. Conclusions

A thermoresistive gas flow sensor was fabricated with a single wafer-based single-side process
in (111) wafers. The simplified fabrication process facilitated an ultrasmall chip size of 0.7 × 0.7 mm
volume manufacturing. Additionally, the designed insulation membrane with air-trench effectively
reduced and minimized heat loss from the heater to the substrate. The type A and the type B gas flow
sensors achieved a remarkable normalized sensitivity of 1.9 mV/SLM/mW (1.26 mV/(m/s)/mW) and
3.9 mV/SLM/mW (2.59 mV/(m/s)/mW), respectively, within a nitrogen gas flow ranging from 0 to 3.4
SLM (from 0 to 5.0 m/s). Therefore, the high-performance, low-cost and high-yield volume production
gas flow sensors would satisfy practical applications.
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