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Abstract: Inflatable soft microactuators typically consist of an elastic material with an internal void
that can be inflated to generate a deformation. A crucial feature of these actuators is the shape of ther
inflatable void as it determines the bending motion. Due to fabrication limitations, low complex void
geometries are the de facto standard, severely restricting attainable motions. This paper introduces
wire electrical discharge grinding (WEDG) for shaping the inflatable void, increasing their complexity.
This approach enables the creation of new deformation patterns and functionalities. The WEDG
process is used to create various moulds to cast rubber microactuators. These microactuators are
fabricated through a bonding-free micromoulding process, which is highly sensitive to the accuracy of
the mould. The mould cavity (outside of the actuator) is defined by micromilling, whereas the mould
insert (inner cavity of the actuator) is defined by WEDG. The deformation patterns are evaluated
with a multi-segment linear bending model. The produced microactuators are also characterised and
compared with respect to the morphology of the inner cavity. All microactuators have a cylindrical
shape with a length of 8 mm and a diameter of 0.8 mm. Actuation tests at a maximum pressure of
50 kPa indicate that complex deformation patterns such as curling, differential bending or multi-points
bending can be achieved.

Keywords: wire electrical discharge grinding (WEDG); micromoulding; soft microrobotics; electrical
discharge machining (EDM)

1. Introduction

Soft robotic systems are capturing the interests of scientists and engineers with characteristics that
are breaking with conventional robot traditions. Softness, compliancy and cost-effective manufacturing
make soft robots preferable in applications where gentle manipulation and human interaction occur [1].
Thanks to their low mechanical stiffness, soft robots can safely operate in unstructured environments
by adapting to unforeseen collisions and reduce the risk of harmful events [2]. For those reasons,
soft robotic technology is extensively utilised to make universal grippers [3], some of which have been
commercialised [4]. Other promising soft robotic applications include robots for search and rescue
operations [5,6] as well as innovative techniques to make untethered and entirely soft machines [7].
There is an increasing interest in downscaling soft robotic technology to micrometre scales to drive
advances in applications where the operational environment is unpredictable or extremely delicate,
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such as minimally invasive surgery and drug delivery [8–10]. Further, soft microrobotics has already
been applied in microfluidics for making flexible active valves [11] and artificial cilia for biomimetic
micromixing and micropumping [12].

Soft robots necessitate actuators that display large deformations as a response to a generalised
force input. Typically, soft actuators are designed such that their deformation corresponds to a desired
kinematic trajectory, behaving as a compliant mechanism with one degree of freedom. Many types of
soft actuators can be distinguished according to the nature of the applied forces [8], which can vary
from electrical (dielectric or ionic polymers) to magnetic fields (magnetic polymers), from solvent
concentrations (hydrogels) to pressurised fluids (inflatable structures), etc.

Elastic inflatable actuators (EIAs) are one of the most widespread soft actuators, that rely for their
motions on the morphology of the actuators [13]. Such actuators at small-scale were first introduced
by Suzumori [14,15] and Konishi [9,16] for biomedical applications. For a comprehensive review of the
different types of EIAs we referred to previous studies (see [13,17]). Current miniaturised EIAs are
made with a single inflatable elastomeric cavity which leads to a simple motion that can be bending [18],
twisting [19], contracting [20] or extending [21]. Large-scale actuators, on the other hand, have been
presented with richer deformations, originating from a more complex design. However, these complex
designs are challenging to copy at smaller scales due to manufacturing limitations. At a larger scale,
inflatable actuators are typically made out of different elastomeric parts, which are subsequently
bonded or glued together. This approach makes it possible to create intricate actuator geometries that
drastically modify the actuator performance as shown by Mosadegh et al. [22] for pneumatic networks
(PneuNets) bending actuators. However, at smaller scales, creating similar actuators by combining
parts and bonding them is an uphill task, due to more stringent requirements on the tolerances of the
parts to be assembled, possible misalignments and handling problems. A commonly used bonding
process for sub-centimetre soft actuators in polydimethylsiloxane (PDMS) consists of oxygen plasma
treatment to activate the PDMS surfaces before bonding [23]. However, these bonds are often the
weakest part of the structure which eventually causes the actuator to rupture.

In order to circumvent these issues, we propose a bonding-free technique to fabricate
millimetre-scaled soft bending microactuators, using out-of-plane moulding [18]. These microactuators
consist of PDMS cylindrical structures with a simple cylindrical inflatable cavity, which is placed
eccentric to the axis of the outer cylinder of the actuator. This eccentricity introduces an asymmetry
in the cross-section of the actuator that causes the actuator to bend. The mould is composed of two
micro-milled parts and a cylindrical microrod placed in between the two parts, where the shape of
the microrod is replicated as the inflatable cavity. We used these devices for different applications
such as artificial cilia [24] and flexible endoscopes [25]. However, given the simple morphology of the
inflatable cavity, these microactuators have a limited operating range with a maximum bending angle
of up to 45◦ [25].

In this paper we introduce an additional manufacturing step to this bonding-free technique in
order to fabricate more complex microactuators. During this additional step, the cylindrical microrods
are machined using a wire electrical discharge grinding (WEDG) process. WEDG is a manufacturing
process in which material is removed from a rotating tool using a running wire through high-frequency
sequences of electric discharges. WEDG, which was early developed by Masuzawa et al. [26], has been
established over the past years as a proven technology for machining axisymmetric microrods down
to less than 10 µm in diameter [27]. Nowadays, WEDG is used for machining not only cylindrical,
but also tapered microrods [28] as well as microrods with a spherical tip [29]. WEDG’ed microrods find
a wide variety of applications in industry such as touch probes for contact measurement systems [30]
or microtools for drilling tapered microholes [31] and microhole arrays [32].

WEDG was already used for the fabrication of classic pneumatic microactuators [33], but not
for soft actuators. Here, WEDG is used for machining axisymmetric microrods with more complex
shapes to be placed in the internal cavity of inflatable soft robotic actuators in a micromoulding process.
Dimensional and surface metrology are used to check that the accuracy and surface quality of the
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fabricated microrods are compatible with the moulding requirements. Further, an analytical model
is used to predict the deformation of the moulded actuator. The model is validated by experimental
tests on prototypes. These tests clearly show the benefits in terms of deformation patterns of using
structured microrods over their unstructured counterparts. The paper is structured as follows: in the
first section we report on three different morphologies of inflatable cavities and the details about
the WEDG process to realise the respective internal shapes. Subsequently the manufacturing steps
involved in the moulding process are described. Finally, the microactuators are characterised and
compared to the state-of-the-art.

2. Materials and Methods

2.1. Inflatable Cavity Morphologies

All microactuators described in this work have the same general architecture and only differ in
the shape of the inflatable cavities. Nevertheless, the deformation changes significantly as further
reported. The microactuators are cylindrical pillars, 8 mm in length and 0.8 mm in outer diameter,
with inflatable cavities that are placed at an eccentricity, e, of 110 µm. We designed the inflatable cavities
to be compatible with the WEDG process as described in Section 2.2. Thus, all cavities are axisymmetric
with local variations of the radius across the length. We identified three different actuators with distinct
rod shapes that lead to different functional deformations. In the paper we refer to them as: (i) Saw
(Figure 1a); (ii) Totem (Figure 1b); (iii) Halter (Figure 1c).
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Figure 1. Inflatable cavity morphologies: (a) Saw, (b) Totem, (c) Halter. The cavities are axisymmetric,
and the colour code corresponds to the local diameter of each segment. The segment lengths are
reported in Table 1.

Table 1. Inflatable cavities segments lengths.

Morphology Segments Lengths (mm)

Saw 20 0.4–0.35 (×10)
Totem 5 1.8–0.7–2.5–0.7–1.8
Halter 3 3–1.5–3

The inflatable cavities of the three actuators can be divided into segments of different length
and diameter. The segment lengths are reported in Table 1, while the diameters can be found in
Figure 1, where the colour codes distinguish the different segments. In total, the combined length of
the inflatable cavities equals 7.5 mm.

Given the eccentricity of the cavity with respect to the axis of symmetry of the structure, all actuators
undergo a bending motion upon pressurisation, as explained in our previous paper [18]. Due to the
asymmetric placement of the central void (Figure 2a), the centroid of pressure is shifted with respect to
the neutral (bending) axis of the structure, resulting in a large bending deformation. In Figure 2b,c,
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the 3D representation and longitudinal cross-section of a microactuator of Totem type are shown as
an example. The eccentricity, e, corresponds to the distance between the axis of the inflatable cavity
and that of the rubber structure.
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Figure 2. (a) Cross section of the microactuators. The distance between the neutral axis and the centre
of the inflatable cavity (in white) is the moment arm d. (b) 3D representation of the microactuator with
a Totem morphology of the inflatable chamber. Section planes are displayed. (c) Longitudinal section of
the microactuator. The distance between the axis of the inflatable cavity and that of the rubber structure
corresponds to the eccentricity, e.

2.2. WEDG Process

WEDG is used for shaping the microrods to the desired shapes. In this research, we developed
a WEDG processing strategy using the WEDG unit of a SARIX® SX-100-HPM micro-EDM machine
(Figure 3a). This unit is equipped with a brass wire of 200 µm in diameter (Dwire), which is used for
machining the microrods. The brass wire runs continuously during the WEDG process. Cylindrical
microrods in tungsten carbide provided by SARIX® are used. The microrods, which have a nominal
diameter (Drod) of 500 µm, are clamped in the spindle of the micro-EDM machine tool. In Figure 3b,
a schematic illustration of the performed WEDG process is shown. During the WEDG process,
hydrocarbon oil of viscosity equal to 2.4 mm2/s at room temperature (HEDMA® 111) is applied as
a dielectric fluid.
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(WEDG) process. In the magnified view in (b), the wire diameter (Dwire) and the depth of cut (ap) are
indicated. The figure is adapted from [34].

In order to reduce machining time, WEDG processing is carried out using two machining regimes:
roughing and finishing. Table 2 lists the processing parameters applied in each machining regime.
In both cases, a positive polarity is applied to the microrod. In roughing, a relatively high amount of
energy per discharge (average discharge energy: 46.5 µJ) is applied in order to increase the machining
efficiency. The amount of energy per discharge is reduced during finishing (average discharge energy:
3.8 µJ). The average energy per discharge is computed from samples of the voltage and current signals
including roughly 2000 pulses following the same methodologies we applied in a previous study [35].
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Table 2. Wire electrical discharge grinding (WEDG) processing parameters.

Parameter Symbol Unit
Machining Regime

Roughing Finishing

Open voltage U0 V 120 85
Capacitance 1 C nF 5 1.5
Pulse-on time TON µs 5 4
Pulse-off time TOFF µs 3 2

Reference voltage Ue V 85 72
Spindle rotation R rev/min 850 700

1 Estimated value.

The WEDG process for shaping the microrods consists of multiple roughing steps and a single
finishing step. A radial depth of cut (ap) equal to 20 µm is applied during the roughing step. This value
is chosen based on the results of some preliminary experiments, which were carried out to maximise
the material removal rate (MRR) during roughing [34]. In the finishing step, a 10 µm radial depth of cut
is applied. The finishing step is meant to ensure a higher machining accuracy and improve the surface
quality of the microrods. In order to assess the accuracy and quality of the WEDG’ed sections on the
microrods, post-process metrology is carried out by optical microscopy (ZEISS® SteREO Discovery
V20), confocal microscopy (Sensofar® S lynx) and scanning electron microscopy (Phenom® Pro).

2.3. Moulding

The microactuators are fabricated through a bonding-free out-of-plane moulding process,
as sketched in Figure 4. The mould consists of two aluminium micromilled parts. The bottom
part contains the designated holes for the microrods (Figure 4a) as well as features for releasing
the microactuators, while the top part presents through-holes with a diameter equal to the external
diameter of the microactuators (0.8 mm). The holes in the two parts are drilled in such positions so
that when aligned and assembled they create an eccentricity of 110 µm of the inflatable cavity. Before
pouring the uncured rubber, the mould surfaces are coated with a layer of release agent (Devcon).
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Figure 4. Fabrication process steps. (a) WEDG’ed (wire electrical discharge grinding) microrod is
placed in the designated hole of the aluminium bottom half of the mould. (b) Uncured rubber is poured
on the bottom half. (c) The top half is aligned and tightened to the bottom half. (d) After curing, the top
part is removed. (e) Microactuator demoulding. (f) Microrod removal (figure adapted from [36]).

The two liquid prepolymers of the silicone rubber (Dragon Skin™ 30 by Smooth-On) are thoroughly
mixed in a 1:1 ratio for 2 min. The uncured rubber is subsequently placed in a vacuum chamber for
5 min to make sure no air is trapped inside. Indeed, this is a fundamental step as the presence of
microscopic air bubbles in the cured rubber dramatically affects the mechanical properties, and due to
the small size of the actuators also cause imperfections and unwanted voids.

After filling the bottom part of the mould (Figure 4b), we degas it again for 5 min in the vacuum
chamber. The top part of the mould is aligned with respect to the bottom part through alignment
pins and firmly tightened (Figure 4c). This tightening ensures that the uncured rubber flows in all
the features of the mould. The mould is subsequently placed in the oven at 60 ◦C for 1 h to let the
elastomer cure. After curing, the mould is opened, using ethanol as lubricant (Figure 4d). Given their
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intricate shape, the microrods are stuck in the microactuators after demoulding (Figure 4e). Removing
the microrods is the last and most delicate step, which requires the use of ethanol to slightly swell the
silicone and allow a safe removal of the rod (Figure 4f). Since the rubber cures around the microrod,
the absence of air generates a negative relative pressure that locks the microrod inside the microactuator.
The function of ethanol is to both lubricate and swell the rubber so that air can penetrate the cavity
and eliminate the negative relative pressure. This effect combined with the compliancy of the soft
material enables the removal of the microrod. After removing the microrod, the microactuators are
dried at room temperature to fully evaporate the ethanol. Then, they can be connected to pressure
supply tubing.

Microactuators of the Halter type require a different process to remove the microrod. Indeed,
due to the large diameter variation (from 500 µm to 100 µm), the swelling-induced removal of the
microrod is not effective. Alternatively, the microrod is broken at the thin section and the two parts are
extracted from the base and the tip of the microactuator. The tip is subsequently sealed with a drop of
uncured rubber.

2.4. Analytical Model

In order to evaluate the deformation patterns associated with the different inflatable cavity
morphologies of the actuators, we apply a multi-segment linear analytical model consisting of
Euler–Bernoulli beam segments that are each loaded with a constant bending moment. For one
segment, this model has already been applied to capture the overall bending deformation of a soft
bender [18,37,38], while here we introduce a segmented approach. The different actuator types that
we analyse in this work can be divided into n segments (Table 1), where each radial variation ri is
considered as the i-th segment (i = 1, . . . , n) of length li. In our model, each segment is subjected to a
constant moment Mi

Mi = pEπr2
i di, (1)

where di is the distance between the centre of the cavity section and the neutral bending axis, passing
through the centre of mass of the section (Figure 2 and Equation (2)), while pE is a non-dimensional
parameter corresponding to the normalised pressure with respect to the Young’s modulus of the
material (pE = p/E).

di = e +
er2

i

R2 − r2
i

(2)

Therefore, the curvature of the i-th segment is equal to

ki =
Mi
Ii

, (3)

where Ii is the second moment of area of the section:

Ii =
π
(
R4
− r4

i

)
4

+ πR2(di − e)2
−πr2

i d2
i (4)

The curved profiles of the n segments are numerically computed and assembled in MATLAB to
show the overall deformed configuration of the actuator.

2.5. Microactuators Experimental Setup

The experimental setup to characterise the microactuator response consists of a pressure regulator
valve (Festo LR-D-7-I-Mini) fed with compressed air coupled to a manometer (Festo FMAP-63-1-1/4-EN)
and connected to the tested microactuator. A 500 µm outer diameter (OD) tube is inserted in the
inflatable cavity of the microactuator and fixed with uncured silicone rubber. In the experiment,
the pressure input is manually increased by 10 kPa increments, while a camera (Nikon 1 V3) captures
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the actuator deformation in the bending plane once a static equilibrium is reached at each pressure
increment. As the actuators have different curvatures in accordance to their segmentation, the deformed
configurations are characterised using the tip trajectory as parameter.

3. Results and Discussions

3.1. WEDG Accuracy and Quality

In order to evaluate the accuracy of the WEDG process for the fabrication of soft robotic
microactuators, the WEDG’ed sections of the microrods are measured by means of a ZEISS® SteREO
Discovery V20 microscope. The measurement results for ten different sections, which were machined
on microrods with a Saw morphology, are shown in Figure 5. The target diameter for the measured
sections is 400 µm.
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sections are measured, and eight measurements are carried out per section. The data points refer to the
mean diameter of each measured section, while the error bars indicate the standard deviation of the
eight measurements.

From Figure 5, it can be observed that the WEDG’ed sections deviate less than ±3 µm from the
target diameter. In particular, the average diameter of the measured sections is 400.4 µm, while the
standard deviation is 2.59 µm. These results highlight the high precision and accuracy of the proposed
WEDG processing method. In order to study the effect of the processing accuracy on the performance
of soft robotic microactuators, the analytical model presented in Section 2.4 is used to analyse the
influence of variations to the diameter of the inflatable cavity of a segment on the curvature relative
error (CRE). Equation (5) is used to compute the CRE from the curvature k0 of a segment of nominal
diameter and the curvature ke of a segment of diameter affected by a machining error.

CRE =
|ke − k0|

k0
(5)

In Figure 6, the effect of the machining error on the CRE is shown. Segments of diameter equal
to 100 µm and 400 µm are considered, which are the diameters of the segments of the three types of
microactuators presented in this work. It can be seen that the CRE linearly increases with the machining
error. WEDG processing, which allows the machining of segments having a deviation of less than
±3 µm from the nominal diameter, results in maximum CREs of about 2.2% and 5.3% for segments of
diameter equal to respectively 400 µm and 100 µm. These maximum errors are relatively small and
confirm that WEDG processing can be considered as a viable technique for machining axisymmetric
microrods to be used in the bonding-free fabrication process of soft robotic microactuators. The trends
shown in Figure 6 also suggest that the finishing step is crucial and unavoidable for ensuring high
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performance of the soft robotic microactuators since deviations from the nominal diameter in the order
of 4–10 µm are observed after roughing. These deviations would result in an increase of the CRE up to
20% for a section diameter of 100 µm.Micromachines 2020, 11, x FOR PEER REVIEW 8 of 14 
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The main drawback of the proposed WEDG method is the relatively long processing time.
For instance, it takes approximately 5 min for machining a section of 400 µm diameter and 0.4 mm
length on a cylindrical microrod of 500 µm diameter. In this case, the two roughing steps take
approximately 3 min in total, while roughly 40% of the total machining time is spent in finishing.
However, long processing time are acceptable, taking into consideration that a microrod can be used for
moulding multiple soft robotic microactuators. A possible solution for reducing the WEDG processing
time could be to increase the discharge energy during the roughing steps. This can be accomplished,
for example, by increasing the capacitance or open voltage parameters [39]. Nevertheless, an increase
of the discharge energy is likely to result in a more aggressive and less repeatable removal of material
by electric discharges, thus decreasing the overall accuracy and precision of the WEDG process.

The surface roughness of the WEDG’ed sections of the microrods is analysed qualitatively by
means of scanning electron microscopy (SEM) and confocal microscopy. In order to study the effects of
finishing on the surface quality, the surface analysis is carried out on the same sections considered
in Figure 5 and on other sections, which were machined by interrupting the WEDG process before
performing the final finishing step. The benefits of the finishing step are clear when observing
the SEM micrographs of the microrods before and after the finishing step (Figure 7). In particular,
it can be seen that a less uneven surface morphology can be achieved once the single-step finishing
is performed after roughing. The observed difference corresponds to a decrease of the surface
roughness from Sa = 0.84 µm to Sa = 0.37 µm. These values refer to the average values of the Sa

surface parameter, which are computed from 20 samples measured on 10 different grooves by a
Sensofar® S lynx microscope in confocal mode (magnification: ×50, field of view: 350 × 260 µm).
The Sa parameter represents the arithmetical mean height of a surface. It is the extension of the Ra

parameter (arithmetical mean height of a line) to the surface. In light of the bonding-free fabrication
process of the microactuators, a reduction in surface roughness is advantageous, since the demoulding
forces in microreplication processes depend on friction [40]. Despite the relatively long machining
time, it can be concluded that the finishing step is crucial not only to achieve the required processing
accuracy, but also to facilitate the removal of the microrod after moulding.
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Figure 7. Surface morphology of a microrod (a) before and (b) after the finishing step. The images are
taken by means of Phenom® Pro scanning electron microscope.

Figure 8 shows a microrod after WEDG processing. The enlarged views taken by SEM reveal
that a flat tip and straight edges can be achieved by WEDG. It can also be seen that the WEDG’ed
sections have round chamfers, of which the radius depends on the radius of the wire which is used in
the WEDG process. Round chamfers are crucial for demoulding the microactuators. Very sharp edges
should indeed be avoided as they can damage the microactuators.
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Figure 8. WEDG’ed microrod for moulding of soft pneumatic microactuators. The image of the
microrod is taken using a ZEISS® SteREO Discovery V20 optical microscope, while the enlarged views
are taken by means of Phenom® Pro scanning electron microscope.
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3.2. Microactuators Analytical Model

The analytical model described in Section 2.4 is solved for the three different inflatable cavities.
The normalised input pressure (pE) is equal for the three actuators, varying linearly from 0 to a
maximum of 0.2. Figure 9 displays the deformation of the three actuators for six equidistant pressure
values along the input ramp.
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Figure 9. Analytical model results. Six configurations are depicted for each actuator at the same
normalised pressure inputs (pE) varying from 0 (undeformed) to 0.2 (maximum deformation). Segments
are distinguished with the same colour code as used in Figure 1.

The different segments of each inflatable cavity are distinguished using the same colour code as
for Figure 1. The sections of the inflatable cavity with a reduced diameter (light blue) undergo a lower
curvature for two reasons. First of all, the bending stiffness is higher due to the increase of the second
moment of area as the cross-sectional void (Figure 2) is smaller. Secondly, the normal force driving the
bending moment scales linear with this cross-sectional area (Equation (1)).

The diverse responses of the segments along the microactuators determine the complex
deformation patterns that we aim to achieve. As such, each low-stiffness segment acts as a compliant
joint. For example, we expect Saw to achieve a full-curled configuration due to the higher distribution
of joints, whereas Totem has a discrete deformation, with only two low-stiffness segments working as
the main bending points. On the other hand, Halter bends only at the extremities of the microactuators
while the central part stays undeformed.

3.3. Microactuators’ Characterisation

The three microactuators are experimentally characterised using the setup described in Section 2.5.
Figure 10 shows the deformation of the three microactuators at a pressure of 20, 40 and 50 kPa.
The deformed shapes are in agreement with the results of the analytical model, showing the
predicted segmented curvatures according to the shape of the inflatable cavity, as discussed in
the previous paragraph.

However, the experimental displacement starts to deviate from the model at large displacements.
This is more significant for actuators Saw and Halter as they have a higher distribution of thinner
membranes that undergo large strains. Indeed, the assumptions of the linear model (such as linear
elasticity and undeformed cross-sections) hold at small deformations, but for large displacements
silicone rubbers follow hyperelastic models, where stress and strain are nonlinearly related, and cross
sections deform. Moreover, circumferential strains become important at large deformations, leading to
nonlinear phenomena that occur in rubber structures, such as ballooning and elastic instabilities [41].
This is one of the main reasons why soft bending actuators are manufactured with fibre-reinforcements
or bellows shapes to limit circumferential strains [22,38]. Given the asymmetric geometry of the
cross-section of our microactuators, the analytical formulation of the nonlinear problem is not trivial,
and finite element method (FEM) is commonly used to deal with these nonlinearities [42].
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Figure 10. Microactuator inflation tests. Deformed configuration at four different pressures is reported
for each microactuator. The white dash in the subfigures of the first column corresponds to a length of
0.8 mm. The experimental and modelled tip trajectory with respect to the initial position at 0 pressure
is reported in the graphs.

Thanks to the segmented shape of the inner chamber introduced with the WEDG process,
the ballooning effect is limited to the segments with lower stiffness and does not affect the whole
actuator. For example, the 400 µm segments in Saw work as circumferential strain limiters and prevent
the propagation of the ballooning from the 500 µm segments. This decreases the risk of bursting and
allows the microactuator to safely achieve a fully curled configuration.

Another interesting feature that we obtained with WEDG can be observed in the Totem deformation
(Figure 10, second row), where the low-stiffness segments balloon and bend while the rest of the cavity
is less deformed, resulting in a finger-like motion. Therefore, larger bending deformations can be
locally concentrated in the actuator.

4. Conclusions

In this paper we investigated a new production technology to improve the design of soft
inflatable bending microactuators and achieving more complex deformations. WEDG processing
was shown to accurately machine micromoulds whose shapes are replicated in the soft actuators
through a bonding-free micromoulding process. As demonstrators, we proposed three different
actuators that share the same global geometry and material except for the shape of the inflatable
cavity. The actuators showed very different kinematics. To predict the response, we applied a simple
analytical model based on a multi-segment approximation and linear beam theory. Experimental
results agreed with the model-based predictions, within the limits posed by the linear approximation.
We manufactured microactuators that exhibit application-relevant behaviours such as full curl, flexible
joint-like fingers and undeformed segments. Indeed, this type of actuator has been used to develop
flexible microgrippers [36], as well as biomedical devices [25]. In the future we envision a reverse
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kinematics approach in the form of an optimisation algorithm that, starting from a given trajectory of
the end effector, is able to deduce the right morphology of the inflatable cavity which is compatible
with WEDG manufacturing.
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