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Abstract: In the last decades, the Robot Selection Problem (RSP) has been widely investigated, and the
importance of properly structuring the decision problem has been stated. Crucial aspect in this process
is the correct identification of the robot attributes, which should be limited in number as much as
possible, but should be also able to detect at best the peculiar requirements of specific applications.
Literature describes several attributes examples, but mainly dedicated to traditional industrial tasks,
and applied to the selection of conventional industrial robots. After a synthetic review of the robot
attributes depicted in the RSP literature, presented with a custom taxonomy, this paper proposes a set
of possible requirements for the selection problem of small scale parallel kinematic machines (PKMs).
The RSP is based on a task-driven approach: two mini-manipulators are compared as equivalent linear
actuators to be integrated within a more complex system, for the application in both an industrial
and a biomedical environment. The set of identified criteria for the two environments is proposed
in the results and investigated with respect to working conditions and context in the discussion,
emphasizing limits and strength points of this approach; finally, the conclusions synthesizes the
main results.

Keywords: robot selection criteria; parallel kinematic machines (PKM); task-driven design; robot
kinematics and dynamics; industrial robotics; biomedical devices; mini-manipulators

1. Introduction

Scientific research on the Robot Selection Problem (RSP) in industrial applications has widely
evolved in the last years. Since the first works in the end of the seventies, the number of robotic devices
available on the market for different purposes has grown, and the number of methods to support the
decision maker in the selection process among devices has increased accordingly [1–4]. Those methods
basically represent objective and repeatable strategies for ranking some attributes of the different
solutions, expression of robot performance characteristics or economic evaluations.

Khouja and Offodile [2] proposed an exhaustive taxonomy of the main RSP models, classifying
them into five categories: (i) Multi-Criteria Decision Making models (MCDM), (ii) production
system performance optimization models, (iii) computer-assisted models, (iv) statistical models
and (v) other approaches. Each category offers peculiar advantages and limits. MCDM models
can process large numbers of attributes, provided that data are conveniently collected, and that the
relationships between robot attributes and final objectives are clearly assessed. Production system
performance optimization models are particularly suitable for single product production systems,
like in assembly and machine loading applications, since they can handle robot engineering attributes
and product design specifications; as a drawback, these models are less flexible than those in MCDM.
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Computer-assisted models partially combine the advantages of the previous categories: data collected
by robot application are elaborated by an expert system, which generates a list of important attributes
and desired values, and a decision model allows then to select the best option within the available
set, generally according to a cost minimization rationale. In this way, the contribute of the expert
supports the method also in critical use cases and the automatic selection enables the analysis of many
attributes. Of course the efficiency of those models is necessarily related to amount and quality of
the gathered information. Statistical models are mainly focused on identifying the trade-off between
attributes, therefore are particularly suitable for applications like machine loading and assembly,
in which selection is often based on engineering attributes or cost parameters. Nevertheless, those data
are generally collected from technical datasheets and could partially differ from the ones occurring
in the actual working conditions, so that the selected robot could at worst not satisfy the expected
requirements. Finally, the last category collects approaches that cannot be classified in one of the
previous classes, like combinations of the presented methods one another, or with economic analyses.
Within this category, the approach introduced by Nof and Lechtman in 1982 [5] compares alternative
robot work strategies, evaluating the suitability of the device and of its work method with respect to
the job and considering how the robot will be operated.

In 2011, Athawale and Chakraborty stated that the selection of the most appropriate method is
not as important as properly structuring the decision problem, i.e., considering relevant criteria and
decision alternatives [6]. Actually, further works integrate the RSP analysis investigating in detail also
the attributes that different author consider within each model, listing them in itemized form [1,3,7]
or defining aggregation strategies to rearrange them into clusters [4,8]. Among these taxonomies,
Liang and Wang define two categories for the robot attributes, as subjective and objective ones [4,8],
whereas Koulouriotis and Ketipi identify more classes, isolating for instance technical, economical
and cost attributes, but also subjective, objective, qualitative and quantitative ones [4]. Since RSP
originated traditionally within the industrial field, scientific literature presents several examples of
methods in manufacturing environment, from design to selection of devices or components [1,9–20].
On the contrary, examples in more specific environments or applications are occasional [19,21,22],
or not investigated yet, like the robot selection for tasks in biomedical environment. Nevertheless,
literature states the importance of the context, since the environment introduces constraints in the
device working conditions, and in the selection criteria consequently [21,23,24]. These constraints
are even more critical for small scale systems, like mini- and micro-manipulators, where the reduced
dimensions of the systems tend to emphasize the effect of some undesired phenomena, like potential
geometric inaccuracies and their dangerous leverage effects [24–27].

Among the robotic systems, parallel architectures are of great interest, as privileged candidates
for the realization of flexible and modular devices. Parallel kinematic machines (PKMs) assure higher
precision in the end effector positioning and allow to achieve better dynamic performances than
serial manipulators can realize, although they offer smaller workspace, bigger overall dimensions,
and involve more complex kinematic equations than serial robots. For these reasons, they are adopted
where high acceleration and stiffness, with reduced inertial contributions, are strictly required.

Besides, no specific investigations on the RSP for PKMs and small-scale robotics have been
performed in literature yet, and the current paper starts filling this actual gap. To fulfill this
aim, two quite similar parallel mini-manipulators are exploited, as significant examples of devices
presenting the main challenges of both the conditions: a parallel kinematic architecture, and small-scale
dimensions. According to these considerations, after a synthesis of the selection criteria currently
proposed in literature, this paper compares the Spider and Tripod PKMs in a RSP rationale,
investigating potential attributes for a selection process with a task-driven approach. The robots
will be evaluated in a twofold illustrative task: the integration of the mini-manipulator, as equivalent
linear actuator that performs a pure translation of the mobile platform, in a more complex system,
in both an industrial and a biomedical environment.
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Kinematic and dynamic analyses of both the devices were already described in previous
literature [28,29]: in the following section, a synthesis of their significant characteristics will be briefly
presented, then a set of possible selection criteria for the two environments will be depicted in the results
and investigated in the discussion. Finally, the most relevant aspects will be collected in the conclusions.

2. Materials and Methods

2.1. Selection Criteria in RSP Literature

According to literature, selection factors should consider the specific requirements of manufacturing
process or, in our case, the desired task in the specific environment [8]. Once defined the relevant attributes,
the most suitable approach for the selection process can be detected.

In order to identify which attributes literature suggests for the selection of mini-manipulators
applied to translation tasks in industrial and biomedical environment, a thematic literature analysis
was performed. The attributes that emerged from the investigated papers were rearranged within
three custom-defined functional categories:

• Technical attributes, including all the factors that refer to robot performance and technical characteristics;
• Economic attributes, referring to cost evaluations;
• Management attributes, collecting all the factors related to further characteristics or services.

The use of separate categories for Technical and Economic attributes is likely the most popular
in literature; on the contrary, elements classified in the current work within the Management
attributes category were often labeled as independent characteristics or rearranged within other classes,
such as economic, objective/subjective or qualitative/quantitative attributes. Besides, the adopted
classification process did not consider the attribute name only for its assignment to one category,
but where needed paid attention also to the meaning of the specific attribute according to the authors
aim. For this reason, we can define the suggested categories as classes of a functional taxonomy.

For the Technical attributes category, the most common requirements are repeatability and
accuracy, maximum payload, velocity, number of DoFs and reach capacity, geometrical dexterity
and memory capacity, but also programming flexibility and man-machine interfaces. In the Economic
class, purchase and operational costs are the most used factors, although also financial indicators like the
return of investment index or the net present value were stated. Finally, the most common requirements
in the Management category include vendor’s service contract and quality, supporting channel partner’s
performance, training delivery period, maintainability, or compliance and inconsistency with infrastructure.

A complete list of the analyzed papers is presented in Table A1, which details to which attribute
classes each article contributes. Figure 1 synthesizes the same results depicting the evolution in time of the
attributes occurrences in literature, by category. Data are reported in aggregated form, within five-years
subsets. Even if the performed investigation does not represent a systematic literature review,
the evaluated papers allow appreciating the trend of the scientific interest towards different aspects of
the RSP. Analyzing the attributes as a whole, several papers propose a classification strategy devoted
to distinguish between measurable and not-measurable data or quantitative and qualitative attributes;
an alternative taxonomy focuses instead on the difference between objective and subjective data [8].
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Figure 1. Evolution in time of the number of attributes evaluated in RSP literature, arranged by
categorical areas. Data are aggregated in 5-year subsets.

2.2. PKM Mini-Manipulators

In the following, the two compared mini-PKMs are depicted. Both the devices are no-torsion
systems, and present 3 DoFs, although realized through different kinematic solutions.

2.2.1. Spider Mini-Manipulator

The first mini-manipulator, presented in Figure 2, is functionally equivalent to a 3-UPU system.
The kinematic architecture is characterized by a strong modularity: the structure of a unit leg is repeated
three times, evenly distributed around the mobile platform. The series of two four-bar mechanisms in
all the legs prevents the platform from rotating around any axis, so that the platform can only perform
pure translations. Besides the kinematic model, in the actual manipulator the presence of flexure
hinges compensates for possible residual micro-displacements, and thanks to those hinges, the device
can be also generated from a planar structure, by applying consecutive plastic deformations at the
hinges level. Figure 3 depicts the deformation stages required to obtain the final configuration.

Given the three DoFs of the PKM, various actuation strategies can be adopted. Figure 4 presents
in a synthetic way the four possible actuation solutions for each leg.

(a) (b) (c)
Figure 2. From the left, (a) a three-dimensional view of the mini-manipulator, (b) the corresponding upper
view, and (c) the basic nomenclature adopted in the kinematic analysis for the ith leg, with i = 1, . . . 3.
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Figure 3. From the left, the three steps of plastic deformations at the hinges level that allows obtaining
the final configuration of the mini-manipulator.

(a) (b) (c) (d)
Figure 4. From the left, four alternative actuation strategies: (a) a rotative actuation, and a linear
actuation between (b) radially aligned joints, (c) horizontally aligned joints, and (d) not aligned joints.

Considering the homogeneous matrix approach of Legnani et al. [30,31], the column vector S
describing the pose of the mobile platform and the column vector Q of the qi joint parameters can
be defined. Referring to the nomenclature introduced in Figure 2c, direct and inverse kinematic
analyses can be easily expressed with respect to the parameter ri. Though, different equations can
describe the relation between qi and ri, according to the implemented actuation strategy. For each
actuators configuration, Table 1 collects the relation of the geometrical transformation between the
joint parameter qi and ri, and the singularity conditions of the system, in which the determinant of the
Jacobian matrix vanishes.

Table 1. For each actuation strategy, geometrical relation between qi and ri, and singularity conditions
for qi.

Actuation Type Transmission Relation Singularity Events

(a) ri = 2 · b · cos(qi) qi =
{

0,
π

2

}
(b) ri = qi qi = {0}

(c) ri = 2 ·

√
b2 −

(
qi − c

2

)2
qi = {c}

(d) ri = 2 ·
√

q2
i − c2 qi = {0}

Independently from the actuators configuration, the system workspace can be evaluated as
the intersection of the volumes that each leg, properly unburdened by constant offsets, can reach.
Nevertheless, this workspace should be considered just a theoretical locus, since it grounds on an
ideal model; for instance, the actual workspace would be reduced whether considering the constraints
introduced by the physical limits of the flexure hinges to bending before yielding. Figure 5 presents a
comparison between the theoretical workspace and the workspace evaluated under the hypotheses of
hinges in homogeneous PTFE material (Young modulus equal to 500× 103 [MPa], σYield to 50 [MPa]),
and bending beam 0.2 [mm] thick and 3 [mm] wide.
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(a) (b)

(c) (d)
Figure 5. Workspace of the first mini-manipulator, with the feet of first, second and third leg in black,
red and green respectively. From the left, three-dimensional and upper vision of the workspace in the
ideal case for (a,b), and as evaluated according to hinges constraints for (c,d).

2.2.2. Tripod Mini-Manipulator

The second device, depicted in Figure 6, is a 3-PSP spatial parallel mechanisms.

(a) (b)
Figure 6. From the left, (a) a first prototype of the mini-manipulator in a three-dimensional view and
(b) the functional scheme with the basic nomenclature.

Actuation is provided by three piezoceramic systems, which assure by construction the
functionality of an equivalent piston, since the piezoactuator within each element is protected from
high pulling or shear forces by a dedicated decoupling system [32]. Although the manipulator
presents three actuators for three DoFs, its kinematic model could reveal an hyperstatic condition
at the connection level between each leg and mobile platform. In fact, if all the involved bodies are
considered rigid and not deformable, an uneven actuation on the legs would require an increment in
the distance among the mobile edges of the links (the L points of Figure 6b). The actual device presents
flexure hinges between each piston and the mobile platform, which allow for micro-displacements;
according to this, three fictitious slider constraints, coinciding with the spherical joints between each
piston and the platform, were added to the model, to solve the critical conditions.
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According to the Tilt and Torsion approach, the machine kinematics can be described thanks to
three independent parameters, here chosen as the mean value of the pistons quotes, representative
of the platform translation, and the two angles ψ and θ, defined as the corresponding Euler angles,
describing the platform orientation [33,34]. Actually, the main difference between Euler and Tilt and
Torsion approach lies in the definition of the third angle φ, which in the latter method is replaced by
σ− ψ. Since the translation is an independent parameter, the device kinematics can be totally defined
once the coordinates x and y of the platform center of gravity G are identified with respect to the
angles ψ and θ. Referring to Figure 6b, V represents the projection of G on the platform lower surface,
evaluated normally to the platform width; because of this geometrical relation, kinematics can be
equivalently described with respect to V. Table 2 describes the characteristic equations of the system
with respect to different assembly conditions of the device, whereas the horizontal offset allowed to the
point V of the platform (see Figure 6b) with respect to the central axis in terms of ψ and θ is described
in the Equation (1).

v =
1− cos θ

4 cos θ

√
cos 2θ cos 6φ− cos 6φ + cos 2θ + 3, v ∈

[
cos θ − 1

2
;

cos θ − 1
2 |cos θ|

]
(1)

Table 2. Kinematic equations of the Tripod mini-manipulator for possible working conditions; x and y
refer to the coordinates of the V point.

Angle Value Solutions

θ = ±π

2
no solutions for the characteristic equations system

θ = π

{
x = − cos (4φ− 2σ)
y = − sin (4φ− 2σ)

σ = 0
σ = π


x=

cos θ − 1
4 cos θ

[cos 4φ (cos θ − 1) + cos 2φ (cos θ + 1)]

y=
sin θ − 1
4 cos θ

[cos 4φ (cos θ − 1)− sin 2φ (cos θ + 1)]

3. Results

Comparing industrial and biomedical fields, several differences arise, such as in safety- and
security-related requirements for the final system and all its components. The expected characteristics
of the chosen device strictly depend on the analyzed task, like the possibility to perform a pure
translation in the current case. Nevertheless, this element is not sufficient to completely define the
RSP; as a matter of fact, the characteristics of the context, given by a proper description of the complex
mechanism and its final working condition, become fundamental as well. Indeed, a final mechanism
performing robotic rehabilitation of human subjects and a robot for telesurgery would provide different
constraints, although both the systems operate within a biomedical environment. Analogous situation
can be detected also in industrial environment, comparing for instance a robot for food manipulation
and a device for high loads handling in foundries. For this reason, a multi-purpose set of possible robot
attributes was identified for the RSP. Table 3 reports the proposed attributes; in the table, requirements
are arranged in the three previously introduced categories.

Among the listed attributes, besides traditional factors some dedicated items were introduced,
such as the kind of actuation of the system, defined as actuation type, or the compliance to
non-idealities, i.e., the ability of the robot to react to unexpected phenomena, like forces introducing
loads on the robot, along not allowed movement directions. A synthetic indicator for the evaluation of
the volume performance was also depicted as the ratio between the robot workspace and the overall
robot dimensions, but also the maximum acceptable temperature range was included as indicative
of the working conditions. Among the management attributes, the factor software and services was
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introduced, to collect additional elements such as the performance of the software for data acquisition,
storage and analysis, or further benefit services.

Table 3. Set of possible attributes of each category for the analyzed task in both the industrial and
biomedical environments.

Category Attributes for Industrial and Biomedical Environment

Technological DoFs, actuation type, repeatability, accuracy, acceleration,
attributes load (torques, forces) capacity, compliance to non-idealities,

materials, workspace/robot volume ratio, temperature range,
programming flexibility, man-machine interface, power supply

Economic Purchase costs, operation costs,
attributes return of investment

Management vendor’s service contract, vendor’s service quality,
attributes supporting channel partner’s performance, training delivery period,

software and services, consistency with infrastructure

4. Discussion

The analysis of the RSP literature suggests an interest of researchers towards different aspects
of the robot involved in the process selection. Referring to Figure 1, economic attributes appear in at
least one paper for all the 5-year subsets, although with an oscillatory trend. Management attributes
are described in scientific works of all the subsets too, and they gained particular attention in the last
decades. The data distribution for technical attributes revealed great research interest from the late
nineties of the last century. Within each subset, the disparity among occurrences numbers for the different
categories depicts that at least some of the analyzed papers did not include factors for all the three
classes. The proposed taxonomy does not detect differences between quantitative and qualitative factors,
measurable and not-measurable parameters, or objective and subjective attributes, but this classification
helps structuring the attributes definition problem according to a functional rationale. This strategy is
particularly suitable for the proposed illustrative task, since the need of flexibility required by different
application environments represents a crucial issue; in this sense, actually, a functional approach allows
overcoming the limits introduced by a pure task-oriented formulation.

According to this rationale, a wide set of attributes has been identified, and the factors have been
rearranged in the three proposed categories. Nonetheless, a large number of attributes can overwhelm
the decision maker, increasing the information processing burden [2]. For this reason, the decision
maker is expected to select among the attributes set the most relevant requirements to include in the
further analysis steps, according to personal preferences, company’s philosophy or other importance
ranking strategies.

Compared to the criteria traditionally adopted in literature, the proposed technical attributes well
fit micro- and mini-manipulators. As a matter of fact, the compliance of the system, as its ability to
compensate for non-ideal phenomena, is a precious characteristic for small-scale devices; for instance,
small geometric errors, as a not accurate location of a flexure-hinge rotation axis, could easily translate
into unevenly distributed loads or unexpected and not-negligible force contributes. In the same way,
dimensional variations due to temperature gradients could generate undesired effects; for this reason,
temperature range and material should be among the most relevant attributes for micro-manipulators
selection. The ability to decouple applied loads, maximum allowed accelerations and workspace/robot
volume ratio are on the other side fundamental factors for PKM manipulators, since their kinematic
architecture is particularly sensitive to this kind of criticalities.

Although all the proposed attributes can be adopted for tasks in both an industrial and a
biomedical environment, the application field influences the relevance of those factors. For instance,
the training delivery period stated among the management attributes hides the concept of final user and
expected technical skills of the operator. Besides, if the analyzed robot is expected to be integrated into a



Micromachines 2020, 11, 711 9 of 14

rehabilitation device, the usability of the machine becomes particularly relevant, since the final user could
be the trained clinician, but also the patient or the caregiver [35,36]. In this context, also maintenance and
vendor’s service quality assume a remarkable importance. In the same way, in a biomedical environment
the software performance for local data treatment, data safe storage and reporting assumes a crucial
role, as well as the compliance of robot materials, actuation type or power supply with dedicated
regulations [23]. On the contrary, applications in industrial environments are more likely attracted by
high accelerations, operation costs or consistency with already existent infrastructures.

Considering the two proposed mini-manipulators, both the systems allow the pure translation of
the mobile platform, although the Spider system prevents by construction the mobile platform from
any rotation. On the other side, the Tripod robot decouples shear loads along undesired directions
sheltering the piezoelectric actuators from potentially fatal damages. Both the systems present the
same number of DoFs and comparable workspace/robot volume ratios, but the Spider manipulator
allows higher flexibility in the actuation strategy and realization materials. Finally, since the devices
are prototypes and not industrialized products, no considerations can be taken at present about costs
and vendor’s policy.

The proposed approach describes a general procedure, which provides an interpretation strategy
suitable for the RSP, but that could be easily applied also to the selection problem of wider systems,
like a production cell, or detailed aspects and components [37], such as mini-actuators [24] or
grippers [1]. In the same way, other environments and applications [38] could be analyzed according
to the same functional rationale, although we expect that a focused investigation on critical issues and
peculiar characteristics of different tasks and working conditions could suggest some integration to
the attributes set.

5. Conclusions

This paper analyzed the RSP with a task-driven approach. A thematic review of the RSP literature
was performed and a functional taxonomy for the classification of the robot attributes was introduced,
identifying the three categories technical attributes, economic attributes and management attributes.
Two mini-manipulators were then compared, within an illustrative application: the adoption as equivalent
linear actuators in an industrial and a biomedical environment. A set of possible robot attributes was
presented, and investigated for the manipulators, considering final task and environments. Since the
considered mini-manipulators are not commercial devices, no evaluations were performed on related
economic and management attributes. The proposed approach aims providing the decision maker with
a wide set of attributes, defined according to the potential requirements imposed by a specific application.
In this sense, the decision maker can be considered a bias for the final result of the RSP, since his/her
experience, creativity and ability of interpret the application context can heavily influence the choice of the
attributes subset to evaluate. In conclusion, the selection process of the most relevant robot attributes
should be performed considering not only a set of factors, but also expected task, environment and
working conditions, or the final context.

Author Contributions: Conceptualization, methodology, formal analysis, C.A., N.P. and M.T.; software,
data curation C.A., N.P.; writing—original draft preparation, C.A. and M.T.; writing—review and editing, N.P.
and M.T. All authors have read and agreed to the published version of the manuscript.
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Appendix A. RSP Literature Review

Table A1 collects the evaluated RSP literature, and the classification assigned to the
investigated attributes.
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Table A1. List of the papers included in the review of the RSP literature, and classification assigned to
the investigated attributes.

Authors Year Selection Attributes

Technical Economic Management

Graves and Whitney [39] 1979 X X
Knott and Getto [40] 1982 X X

Nof and Lechtman [5] 1982 X
Huang and Ghandforoush [41] 1984 X X

Seidmann et al. [42] 1984 X
Nnaji [43] 1986 X

Offodile et al. [44] 1987 X
Booth et al. [45] 1993 X

Liang and Wang [8] 1993 X
Cook [12] 1994 X X

Khouja [46] 1995 X
Khouja and Booth [47] 1995 X

Pandey [14] 1995 X X X
Baker and Talluri [48] 1996 X

Goh et al. [49] 1996 X
Goh [50] 1997 X X

Braglia and Petroni [51] 1999 X X
Parkan and Wu [52] 1999 X X

Khouja et al. [53] 2000 X
Layek and Lars [54] 2000 X X X
Bhangale et al. [55] 2003 X
Chu and Lin [56] 2003 X X X

Bhangale et al. [57] 2004 X
Bhangale et al. [58] 2004 X

McCrea and Navon [59] 2004 X
Bhattacharya et al. [60] 2005 X X X

Kapoor and Tak [61] 2005 X X
Karsak [62] 2005 X

Rao and Padmanabhan [63] 2006 X
Yu et al. [20] 2007 X

Almannai et al. [64] 2008 X
Karsak [65] 2008 X

Chatterjee et al. [66] 2010 X X X
Kumar and Garg [67] 2010 X

Devi [68] 2011 X X X
Koulouriotis and Ketipi [69] 2011 X X

Rao et al. [70] 2011 X X
Samantra et al. [16] 2011 X X X
Vahdani et al. [71] 2011 X X

Athawale et al. [72] 2012 X
Karsak [73] 2012 X X

Tao et al. [74] 2012 X X
Bairagi et al. [10] 2014 X X X

Honarmande et al. [75] 2014 X X
Liu et al. [76] 2014 X X X

Vahdani et al. [77] 2014 X X X
Keshavarz [78] 2016 X X
Sen et al. [18] 2016 X
Xue et al. [79] 2016 X X

Wang et al. [80] 2018 X

References

1. Erdman, A.G.; Thompson, T.; Riley, D.R. Type Selection of Robot and Gripper Kinematic Topology Using
Expert Systems. Int. J. Robot. Res. 1986, 5, 183–189. [CrossRef]

2. Khouja, M.; Offodile, O.F. The industrial robots selection problem: Literature review and directions for
future research. IIE Trans. (Inst. Ind. Eng.) 1994, 26, 50–61. [CrossRef]

3. Tansel Iç, Y.; Yurdakul, M.; Dengiz, B. Development of a decision support system for robot selection.
Robot. Comput.-Integr. Manuf. 2013, 29, 142–157. [CrossRef]

http://dx.doi.org/10.1177/027836498600500217
http://dx.doi.org/10.1080/07408179408966618
http://dx.doi.org/10.1016/j.rcim.2012.11.008


Micromachines 2020, 11, 711 11 of 14

4. Koulouriotis, D.E.; Ketipi, M.K. Robot evaluation and selection Part A: An integrated review and annotated
taxonomy. Int. J. Adv. Manuf. Technol. 2014, 71, 1371–1394. [CrossRef]

5. Nof, S.Y.; Lechtman, H. Robot time and motion provides means for evaluating alternative work methods.
Ind. Eng. 1982, 14, 38–48.

6. Athawale, V.M.; Chakraborty, S. A comparative study on the ranking performance of some multi-criteria
decision-making methods for industrial robot selection. Int. J. Ind. Eng. Comput. 2011, 2, 831–850. [CrossRef]

7. Parameshwaran, R.; Praveen Kumar, S.; Saravanakumar, K. An integrated fuzzy MCDM based approach for
robot selection considering objective and subjective criteria. Appl. Soft Comput. J. 2015, 26, 31–41. [CrossRef]

8. Liang, G.S.; Wang, M.J.J. A fuzzy multi-criteria decision-making approach for robot selection. Robot. Comput.
Integr. Manuf. 1993, 10, 267–274. [CrossRef]

9. Chakraborty, S. Applications of the MOORA method for decision making in manufacturing environment.
Int. J. Adv. Manuf. Technol. 2011, 54, 1155–1166. [CrossRef]

10. Bairagi, B.; Dey, B.; Sarkar, B.; Sanyal, S. Selection of robot for automated foundry operations using fuzzy
multi-criteria decision making approaches. Int. J. Manag. Sci. Eng. Manag. 2014, 9, 221–232. [CrossRef]

11. Bhattacharjee, A.; Bepari, B.; Bhaumik, S. Selection of robotic grippers under MCDM environment:
An optimized trade Off technique. Stud. Comput. Intell. 2014, 543, 141–158. [CrossRef]

12. Cook, J.S.; Han, B.T. Optimal Robot Selection and Work Station Assignment for a CIM System. IEEE Trans.
Robot. Autom. 1994, 10, 210–219. [CrossRef]

13. Karsak, E.E.; Ahiska, S.S. Practical common weight multi-criteria decision-making approach with an
improved discriminating power for technology selection. Int. J. Prod. Res. 2005, 43, 1537–1554. [CrossRef]

14. Pandey, P.C.; Kengpol, A. Selection of an automated inspection system using multiattribute decision analysis.
Int. J. Prod. Econ. 1995, 39, 289–298. [CrossRef]

15. Rodamilans, G.B.; Villani, E.; Trabasso, L.G.; De Oliveira, W.R.; Suterio, R. A comparison of industrial robots
interface: Force guidance system and teach pendant operation. Ind. Robot. 2016, 43, 552–562. [CrossRef]

16. Samantra, C.; Datta, S.; Mahapatra, S.S. Selection of industrial robot using interval-valued trapezoidal fuzzy
numbers set combined with VIKOR method. Int. J. Technol. Intell. Plan. 2011, 7, 344–360. [CrossRef]

17. Sen, D.K.; Datta, S.; Patel, S.K.; Mahapatra, S.S. Multi-criteria decision making towards selection of industrial
robot: Exploration of PROMETHEE II method. Benchmarking 2015, 22, 465–487. [CrossRef]

18. Sen, D.K.; Datta, S.; Mahapatra, S.S. Application of TODIM (Tomada de Decisión Inerativa Multicritero) for
industrial robot selection. Benchmarking 2016, 23, 1818–1833. [CrossRef]

19. Zhao, Y.; Chen, G.; Wang, H.; Lin, Z. Optimum selection of mechanism type for heavy manipulators based
on particle swarm optimization method. Chin. J. Mech. Eng. 2013, 26, 763–770. [CrossRef]

20. Yu, S.N.; Lee, S.Y.; Han, C.S. Methodology for the kinematical selection of a manipulator for a specified task.
Auton. Robot. 2007, 22, 243–253. [CrossRef]

21. Singh, S.; Singla, A.; Singla, E. Modular manipulators for cluttered environments: A task-based configuration
design approach. J. Mech. Robot. 2018, 10. [CrossRef]

22. Xu, H.; Zhang, Z.; Alipour, K.; Xue, K.; Gao, X.Z. Prototypes selection by multi-objective optimal design: Application
to a reconfigurable robot in sandy terrain. Ind. Robot. 2011, 38, 599–613. [CrossRef]

23. Borboni, A.; Serpelloni, M.; Borghetti, M.; Amici, C.; Aggogeri, F.; Fausti, D.; Antonini, M.; Mor, M.;
Sardini, E.; Faglia, R. Hand robotic rehabilitation: From hospital to home. In Mechanisms and Machine Science;
Springer: Dordrecht, The Netherlands, 2018; Volume 49, pp. 877–884. [CrossRef]

24. Cairone, F.; Gagliano, S.; Bucolo, M. Experimental study on the slug flow in a serpentine microchannel.
Exp. Therm. Fluid Sci. 2016, 76, 34–44. [CrossRef]

25. Sher, E.; Sher, I. Theoretical limits of scaling-down internal combustion engines. Chem. Eng. Sci. 2011,
66, 260–267. [CrossRef]

26. Barros, A.d.O.; Yang, J. A review of magnetically actuated milli/micro-scale robots locomotion and features.
Crit. Rev. Biomed. Eng. 2019, 47, 379–394. [CrossRef]

27. Thoesen, A.; McBryan, T.; Green, M.; Mick, D.; Martia, J.; Marvi, H. Revisiting Scaling Laws for Robotic
Mobility in Granular Media. IEEE Robot. Autom. Lett. 2020, 5, 1319–1325. [CrossRef]

28. Amici, C.; Borboni, A.; Faglia, R. A compliant PKM mesomanipulator: Kinematic and dynamic analyses.
Adv. Mech. Eng. 2010, 2010, 706023. [CrossRef]

http://dx.doi.org/10.1007/s00170-013-5525-5
http://dx.doi.org/10.5267/j.ijiec.2011.05.002
http://dx.doi.org/10.1016/j.asoc.2014.09.025
http://dx.doi.org/10.1016/0736-5845(93)90040-Q
http://dx.doi.org/10.1007/s00170-010-2972-0
http://dx.doi.org/10.1080/17509653.2014.880076
http://dx.doi.org/10.1007/978-3-319-04693-8_10
http://dx.doi.org/10.1109/70.282545
http://dx.doi.org/10.1080/13528160412331326478
http://dx.doi.org/10.1016/0925-5273(94)00087-Q
http://dx.doi.org/10.1108/IR-02-2016-0074
http://dx.doi.org/10.1504/IJTIP.2011.045094
http://dx.doi.org/10.1108/BIJ-05-2014-0046
http://dx.doi.org/10.1108/BIJ-07-2015-0078
http://dx.doi.org/10.3901/CJME.2013.04.763
http://dx.doi.org/10.1007/s10514-006-9004-9
http://dx.doi.org/10.1115/1.4040633
http://dx.doi.org/10.1108/01439911111179110
http://dx.doi.org/10.1007/978-3-319-61276-8_93
http://dx.doi.org/10.1016/j.expthermflusci.2016.02.011
http://dx.doi.org/10.1016/j.ces.2010.10.005
http://dx.doi.org/10.1615/CritRevBiomedEng.2019030299
http://dx.doi.org/10.1109/LRA.2020.2968031
http://dx.doi.org/10.1155/2010/706023


Micromachines 2020, 11, 711 12 of 14

29. Borboni, A.; Aggogeri, F.; Merlo, A.; Pellegrini, N.; Amici, C. PKM mechatronic clamping adaptive device.
Int. J. Adv. Robot. Syst. 2015, 12. [CrossRef]

30. Legnani, G.; Casolo, F.; Righettini, P.; Zappa, B. A homogeneous matrix approach to 3D kinematics and
dynamics—I. Theory. Mech. Mach. Theory 1996. [CrossRef]

31. Legnani, G.; Casolo, F.; Righettini, P.; Zappa, B. A homogeneous matrix approach to 3D kinematics and
dynamics—II. Applications to chains of rigid bodies and serial manipulators. Mech. Mach. Theory 1996.
[CrossRef]

32. Bernhard, B.; Angelo, M.; Klaus, O.; Donato, R.; Thomas, S. Arrangement for Active Vibration Damping.
EP1857220A1, 21 November 2007.

33. Monsarrat, B.; Gosselin, C.M. Workspace analysis and optimal design of a 3-Leg 6-DOF parallel platform
mechanism. IEEE Trans. Robot. Autom. 2003, 19, 954–966. [CrossRef]

34. Bonev, I.A.; Gosselin, C.M. Analytical determination of the workspace of symmetrical spherical parallel
mechanisms. IEEE Trans. Robot. 2006, 22, 1011–1017. [CrossRef]

35. Conti, A.; Azzalini, E.; Amici, C.; Cappellini, V.; Faglia, R.; Delbon, P. An ethical reflection on the application
of cyber technologies in the field of healthcare. Mech. Mach. Sci. 2018, 49, 870–876. [CrossRef]

36. Amici, C.; Tiboni, M.; Ghidoni, M.; Ceresoli, F.; Gaffurini, P.; Bissolotti, L.; Mor, M.; Fausti, D.; Antonini, M.;
Ragni, F. Preliminary Validation of a Device for the Upper and Lower Limb Robotic Rehabilitation; Institute of
Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019. [CrossRef]

37. Tiboni, M.; Borboni, A.; Mor, M.; Pomi, D. An innovative pneumatic mini-valve actuated by SMA Ni-Ti wires:
Design and analysis. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2011, 225, 443–451. [CrossRef]

38. Aggogeri, F.; Borboni, A.; Merlo, A.; Pellegrini, N.; Tiboni, M. Design of a 3-DOFs parallel robotic device for
miniaturized object machining. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube
Region, Patras, Greece, 6–8 June 2018; Springer: Cham, Switzerland, 2019. [CrossRef]

39. Graves, S.; Whitney, D. Mathematical programming procedure for equipment selection and system evaluation
in programmable assembly. In Proceedings of the 1979 18th IEEE Conference on Decision and Control including
the Symposium on Adaptive Processes, Fort Lauderdale, FL, USA, 12–14 December 1979; Volume 1, pp. 531–536.

40. Knott, K.; Getto, R.D., Jr. A model for evaluating alternative robot systems under uncertainty. Int. J. Prod.
Res. 1982, 20, 155–165. [CrossRef]

41. Huang, P.; Ghandforoush, P. Procedures given for evaluating, selecting robots. Ind. Eng. 1984, 16, 44–48.
42. Seidmann, A.; Arbel, A.; Shapira, R. A two-phase analytic approach to robotic system design. Robot. Comput.

Integr. Manuf. 1984, 1, 181–190. [CrossRef]
43. Nnaji, B. Computer-Aided Design, Selection and Evaluation of Robots; Elsevier: Amsterdam, The Netherlands, 1986.
44. Offodile, O.; Lambert, B.; Dudek, R. Development of a computer aided robot selection procedure (CARSP).

Int. J. Prod. Res. 1987, 25, 1109–1121.
45. Booth, D.; Khouja, M.; Hu, M. A robust multivariate statistical procedure for evaluation and selection of

industrial robots. Int. J. Oper. Prod. Manag. 1992, 12, 15–24. [CrossRef]
46. Khouja, M. The use of data envelopment analysis for technology selection. Comput. Ind. Eng. 1995, 28, 123–132.

[CrossRef]
47. Khouja, M.; Booth, D. Fuzzy clustering procedure for evaluation and selection of industrial robots. J. Manuf. Syst.

1995, 14, 244–251. [CrossRef]
48. Baker, R.; Talluri, S. A closer look at the use of data envelopment analysis for technology selection.

Comput. Ind. Eng. 1997, 32, 101–108. [CrossRef]
49. Goh, C.H.; Tung, Y.C.; Cheng, C.H. A revised weighted sum decision model for robot selection. Comput. Ind. Eng.

1996, 30, 193–199. [CrossRef]
50. Goh, C.H. Analytic Hierarchy Process for Robot Selection. J. Manuf. Syst. 1997, 16, 381–386. [CrossRef]
51. Braglia, M.; Petroni, A. Evaluating and selecting investments in industrial robots. Int. J. Prod. Res. 1999,

37, 4157–4178. [CrossRef]
52. Parkan, C.; Wu, M.L. Decision-making and performance measurement models with applications to robot

selection. Comput. Ind. Eng. 1999, 36, 503–523. [CrossRef]
53. Khouja, M.; Booth, D.; Suh, M.; Mahaney, J.K., Jr. Statistical procedures for task assignment and robot

selection in assembly cells. Int. J. Comput. Integr. Manuf. 2000, 13, 95–106. [CrossRef]

http://dx.doi.org/10.5772/60052
http://dx.doi.org/10.1016/0094-114X(95)00100-D
http://dx.doi.org/10.1016/0094-114X(95)00101-4
http://dx.doi.org/10.1109/TRA.2003.819603
http://dx.doi.org/10.1109/TRO.2006.878983
http://dx.doi.org/10.1007/978-3-319-61276-8_92
http://dx.doi.org/10.1109/ICMECT.2019.8932139
http://dx.doi.org/10.1177/2041304110394531
http://dx.doi.org/10.1007/978-3-030-00232-9_34
http://dx.doi.org/10.1080/00207548208947757
http://dx.doi.org/10.1016/0736-5845(84)90006-1
http://dx.doi.org/10.1108/01443579210009023
http://dx.doi.org/10.1016/0360-8352(94)00032-I
http://dx.doi.org/10.1016/0278-6125(95)98877-9
http://dx.doi.org/10.1016/S0360-8352(96)00199-4
http://dx.doi.org/10.1016/0360-8352(95)00167-0
http://dx.doi.org/10.1016/S0278-6125(97)88467-1
http://dx.doi.org/10.1080/002075499189718
http://dx.doi.org/10.1016/S0360-8352(99)00146-1
http://dx.doi.org/10.1080/095119200129957


Micromachines 2020, 11, 711 13 of 14

54. Layek, A.; Lars, J. Algorithm based decision support system for the concerted selection of equipment in
machining/assembly cells. Int. J. Prod. Res. 2000, 38, 323–339. [CrossRef]

55. Bhangale, P.; Saha, S.; Agrawal, V. Robot selection using DeNOC-based dynamics. In Proceedings of
the TENCON 2003 Conference on Convergent Technologies for Asia-Pacific Region, Bangalore, India,
15–17 October 2003; Volume 4, pp. 1544–1548.

56. Chu, T.C.; Lin, Y.C. A fuzzy TOPSIS method for robot selection. Int. J. Adv. Manuf. Technol. 2003, 21, 284–290.
[CrossRef]

57. Bhangale, P.; Saha, S.; Agrawal, V. A dynamic model based robot arm selection criterion. Multibody Syst. Dyn.
2004, 12, 95–115. [CrossRef]

58. Bhangale, P.; Agrawal, V.; Saha, S. Attribute based specification, comparison and selection of a robot.
Mech. Mach. Theory 2004, 39, 1345–1366. [CrossRef]

59. McCrea, A.; Navon, R. Application of GA in optimal robot selection for bridge restoration. Autom. Constr.
2004, 13, 803–819. [CrossRef]

60. Bhattacharya, A.; Sarkar, B.; Mukherjee, S. Integrating AHP with QFD for robot selection under requirement
perspective. Int. J. Prod. Res. 2005, 43, 3671–3685. [CrossRef]

61. Kapoor, V.; Tak, S. Fuzzy application to the analytic hierarchy process for robot selection. Fuzzy Optim. Decis. Mak.
2005, 4, 209–234. [CrossRef]

62. Karsak, E. Choquet integral-based decision making approach for robot selection. Lect. Notes Comput. Sci.
2005, 3682 LNAI, 635–641.

63. Rao, R.; Padmanabhan, K. Selection, identification and comparison of industrial robots using digraph and
matrix methods. Robot. Comput.-Integr. Manuf. 2006, 22, 373–383. [CrossRef]

64. Almannai, B.; Greenough, R.; Kay, J. A decision support tool based on QFD and FMEA for the selection of
manufacturing automation technologies. Robot. Comput.-Integr. Manuf. 2008, 24, 501–507. [CrossRef]

65. Karsak, E. Robot selection using an integrated approach based on quality function deployment and fuzzy
regression. Int. J. Prod. Res. 2008, 46, 723–738. [CrossRef]

66. Chatterjee, P.; Athawale, V.M.; Chakraborty, S. Selection of industrial robots using compromise ranking and
outranking methods. Robot. Comput.-Integr. Manuf. 2010, 26, 483–489. [CrossRef]

67. Kumar, R.; Garg, R. Optimal selection of robots by using distance based approach method.
Robot. Comput.-Integr. Manuf. 2010, 26, 500–506. [CrossRef]

68. Devi, K. Extension of VIKOR method in intuitionistic fuzzy environment for robot selection. Expert Syst. Appl.
2011, 38, 14163–14168. [CrossRef]

69. Koulouriotis, D.; Ketipi, M. A fuzzy digraph method for robot evaluation and selection. Expert Syst. Appl.
2011, 38, 11901–11910. [CrossRef]

70. Rao, R.; Patel, B.; Parnichkun, M. Industrial robot selection using a novel decision making method considering
objective and subjective preferences. Robot. Auton. Syst. 2011, 59, 367–375, [CrossRef]

71. Vahdani, B.; Mousavi, S.; Tavakkoli-Moghaddam, R. Group decision making based on novel fuzzy modified
TOPSIS method. Appl. Math. Model. 2011, 35, 4257–4269. [CrossRef]

72. Athawale, V.M.; Chatterjee, P.; Chakraborty, S. Selection of industrial robots using compromise ranking
method. Int. J. Ind. Syst. Eng. 2012, 11, 3–15. [CrossRef]

73. Karsak, E.; Sener, Z.; Dursun, M. Robot selection using a fuzzy regression-based decision-making approach.
Int. J. Prod. Res. 2012, 50, 6826–6834. [CrossRef]

74. Tao, L.; Chen, Y.; Liu, X.; Wang, X. An integrated multiple criteria decision making model applying axiomatic
fuzzy set theory. Appl. Math. Model. 2012, 36, 5046–5058. [CrossRef]

75. Honarmande Azimi, M.; Taghizadeh, H.; Farahmand, N.F.H.; Pourmahmoud, J. Selection of industrial
robots using the polygons area method. Int. J. Ind. Eng. Comput. 2014, 5, 631–646. [CrossRef]

76. Liu, H.C.; Ren, M.L.; Wu, J.; Lin, Q.L. An interval 2-tuple linguistic MCDM method for robot evaluation and
selection. Int. J. Prod. Res. 2014, 52, 2867–2880. [CrossRef]

77. Vahdani, B.; Mousavi, S.M.; Tavakkoli-Moghaddam, R.; Ghodratnama, A.; Mohammadi, M. Robot selection
by a multiple criteria complex proportional assessment method under an interval-valued fuzzy environment.
Int. J. Adv. Manuf. Technol. 2014, 73, 687–697. [CrossRef]

78. Keshavarz Ghorabaee, M. Developing an MCDM method for robot selection with interval type-2 fuzzy sets.
Robot. Comput.-Integr. Manuf. 2016, 37, 221–232. [CrossRef]

http://dx.doi.org/10.1080/002075400189437
http://dx.doi.org/10.1007/s001700300033
http://dx.doi.org/10.1023/B:MUBO.0000044363.57485.39
http://dx.doi.org/10.1016/j.mechmachtheory.2004.05.020
http://dx.doi.org/10.1016/j.autcon.2004.05.002
http://dx.doi.org/10.1080/00207540500137217
http://dx.doi.org/10.1007/s10700-005-1890-3
http://dx.doi.org/10.1016/j.rcim.2005.08.003
http://dx.doi.org/10.1016/j.rcim.2007.07.002
http://dx.doi.org/10.1080/00207540600919571
http://dx.doi.org/10.1016/j.rcim.2010.03.007
http://dx.doi.org/10.1016/j.rcim.2010.03.012
http://dx.doi.org/10.1016/j.eswa.2011.04.227
http://dx.doi.org/10.1016/j.eswa.2011.03.082
http://dx.doi.org/10.1016/j.robot.2011.01.005
http://dx.doi.org/10.1016/j.apm.2011.02.040
http://dx.doi.org/10.1504/IJISE.2012.046651
http://dx.doi.org/10.1080/00207543.2011.627886
http://dx.doi.org/10.1016/j.apm.2011.12.042
http://dx.doi.org/10.5267/j.ijiec.2014.6.001
http://dx.doi.org/10.1080/00207543.2013.854939
http://dx.doi.org/10.1007/s00170-014-5849-9
http://dx.doi.org/10.1016/j.rcim.2015.04.007


Micromachines 2020, 11, 711 14 of 14

79. Xue, Y.X.; You, J.X.; Zhao, X.; Liu, H.C. An integrated linguistic MCDM approach for robot evaluation and
selection with incomplete weight information. Int. J. Prod. Res. 2016, 54, 5452–5467. [CrossRef]

80. Wang, J.J.; Miao, Z.H.; Cui, F.B.; Liu, H.C. Robot Evaluation and Selection with Entropy-Based Combination
Weighting and Cloud TODIM Approach. Entropy 2018, 20, 349. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00207543.2016.1146418
http://dx.doi.org/10.3390/e20050349
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Selection Criteria in RSP Literature
	PKM Mini-Manipulators
	Spider Mini-Manipulator
	Tripod Mini-Manipulator


	Results
	Discussion
	Conclusions
	RSP Literature Review
	References

