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Abstract: The photoelectric hybrid network has been proposed to achieve the ultrahigh bandwidth,
lower delay, and less power consumption for chip multiprocessor (CMP) systems. However, a large
number of optical elements used in optical networks-on-chip (ONoCs) generate high transmission
loss which will influence network performance severely and increase power consumption. In this
paper, the Dijkstra algorithm is adopted to realize adaptive routing with minimum transmission loss
of link and reduce the output power of the link transmitter in mesh-based ONoCs. The numerical
simulation results demonstrate that the transmission loss of a link in optimized power control based
on the Dijkstra algorithm could be maximally reduced compared with traditional power control
based on the dimensional routing algorithm. Additionally, it has a greater advantage in saving the
average output power of optical transmitter compared to the adaptive power control in previous
studies, while the network size expands. With the aid of simulation software OPNET, the network
performance simulations in an optimized network revealed that the end-to-end (ETE) latency and
throughput are not vastly reduced in regard to a traditional network. Hence, the optimized power
control proposed in this paper can greatly reduce the power consumption of s network without
having a big impact on network performance.

Keywords: optical networks-on-chip; Dijkstra algorithm; transmission loss; optimized power control

1. Introduction

With constantly improving manufacturing and integration of on-chip technology
involving complementary metal oxide semiconductors (CMOS), the number of processing
cores on a die is increasing dramatically. Therefore, the traditional Networks cannot meet
the demands of larger bandwidth and lower latency. Optical networks-on-chip (ONoCs)
are being equipped with higher bandwidth, lower delay, and higher energy efficiency so
that they can become an effective solution to chip multiprocessor (CMP) systems [1–4]. The
optical router is the crucial component of the ONoC communication system. It consists
of basic optical switching elements, a waveguide crossings, and an optical terminal. The
switching elements, waveguide crossings, and propagation loss inside the optical router
will cause transmission loss. Unfortunately, larger transmission loss will lead to more
power consumption and greatly limit the expansion of ONoCs [5].

Undoubtedly, reducing power consumption attaches great significance to improving
network performance. Nowadays, the studies of reducing power consumption are divided
into three aspects: changing the nanophotonic architecture, optimizing the routing algo-
rithm, and optimizing the circuit. The nanophotonic architecture can be optimized in order
to minimize the laser power consumption. In previous studies, a novel fat-tree floorplan [6]
and a ring-based packet-switched optical network-on-chip (RPNoC) [7] were proposed
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to reduce the number of hops of routing path so as to yield lower energy consumption.
Recently, an optimized routing algorithm based on Gaussian-based ONoCs was proposed
to improve the optical signal-to-noise ratio (OSNR) [8]. The length-optimized-routing-
protocol (LORP) [1] was designed to select the preferred option with the smallest number
of hops in a virtual cluster in mesh. A new algorithm [9] to select the routing path with the
lowest power consumption was proposed to reduce the power loss and raise the OSNR.
It improves the transmission quality of the optical signal and lowers energy consumption.
The external laser power was reduced by optimizing the circuit in previous studies [10–12].
Runtime power management techniques have been proposed to reduce the magnitude
of laser power consumption by tuning the network in response to actual application
characteristics [13,14]. The traditional power control method is to compare the maximum
power of each node and select the maximum power value among them to allocate it to
each node. Based on this, a method based on time division multiplexing was proposed to
optimized it and save on total laser power in [15].

It is known that adaptive power control (APC) could save energy and reduce power
consumption. The APC was firstly proposed to decrease the total power consumption, and
then the APC was applied in [16–20]. In [20], the overall SNR was improved by the combi-
nation of APC and the new clustering design. The APC adjusts the transmission loss of each
link according to the ratio between the signal transmission loss and the maximum transmis-
sion loss. However, considering that only the link with the largest transmission loss makes
full use of the power in APC, there is still more power wasted in other links of the network.
Focusing on this issue, we used the Dijkstra algorithm to realize a new adaptive routing
method which achieves minimum transmission loss for every link in mesh-based ONoCs.
In this paper, the Dijkstra algorithm takes the port-to-port transmission loss of the router as
the weight value between neighboring routers and selects the next route by comparing the
weight values. Considering that the Dijkstra algorithm is globally optimal, it can select the
routing path with the minimum transmission loss of each link in a network. We evaluated
the power relationship between the optical transmitter and the optical receiver during the
transmission of an optical signal on a silicon photonic link. The output power of the optical
transmitter on a silicon photonic link depends on the transmission loss of the optical switch-
ing device, the transmission loss of the waveguides, and the sensitivity of the receiver.
On the premise of keeping the receiver’s sensitivity unchanged, the power consumption
can be decreased by reducing the link transmission loss. The implementation of optimized
power control based on the Dijkstra algorithm can achieve the minimum link transmission
loss and greatly reduce the power consumption of the whole network. By the transmission
loss analysis model and numerical simulations, we found when the network sizes are
5× 5, 6× 6, 7× 7, and 8× 8, the optimized average output power can reach −15.6376,
−15.3482, −15.1276, and −14.9548 dBm respectively. Regarding network performance, the
traditional and optimized networks reached saturation when the offered loads were 0.1
and 0.08, and 0.06 and 0.04, respectively. Compared with the traditional dimensional rout-
ing, the end-to-end (ETE) delay and throughput obtained by OPNET are not significantly
reduced, which indicates that the optimized power control is feasible.

2. Internal Insertion Loss Analysis of ONoCs

The traditional network uses an electrical signal to transmit information. It has small
bandwidth and needs a lot of energy so as to hardly meet the communication demand.
Compared with electronic interconnections, optical interconnects can not only meet the
future system bandwidth requirements, but also show the advantages of lower latency
and smaller power consumption. Electronic interconnections are fit for short distance
communication, whereas optical interconnections do well in long distance communication.
Therefore, in order to make full use of the advantages of optical interconnections and
electronic interconnections, the hybrid optical mesh NoC [21] was proposed. It consists of
an electrical connection layer, an optical connection layer, and a connection layer through-
silicon-vias (TSVs) between the two layers. TSVs are used to transmit the signals from the
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electronic layer to the optical layer. In this paper, we use the hybrid optical mesh NoC
shown in Figure 1. Besides, the electrical interconnection layer and the optical intercon-
nection layer work together. The former contributes to transmitting control information to
links and the later is mainly aimed at transmitting sensor data.

 

Figure 1. Hybrid optical mesh network-on-chip (NoC) construction.

2.1. Basic Optical Switching Elements (BOSEs)

An optical router consists of waveguide crossings, waveguides, optical terminators,
and BOSEs. BOSEs are composed of waveguides and microresonators [10]. There are two
basic 1× 2 optical switching elements which are the crossing switching element (CSE) and
the parallel switching element (PSE). Besides, the CSE consists of two crossing waveguides
and a microring resonator adjacently located between two crossing waveguides shown in
Figure 2a,b. The PSE is composed of two parallel waveguides and a microring resonator
locating between two parallel waveguides shown in Figure 2c,d.

As shown in Figure 2, PSE and CSE have two states, namely on state and off state. If
the wavelength of the optical signal is different from the resonant wavelength, the optical
signal will be output to the through port rather than being coupled into the ring. This
state is called off state, which is shown in Figure 2a,c. The on states of PSE and CSE are
shown in Figure 2b,d. When the wavelength of the optical signal is equal to the resonant
wavelength, the optical signal is transmitted from the input port to be coupled with the
ring and directed to the drop port. We ignore the crosstalk noise on the add port of the PSE
in this analysis according to a previous study [10]. In order to understand the notations in
the formula, Table 1 lists the meanings of the relevant notation. The parameters in Table 1
are used for performance evaluation. In addition, the insertion loss is the output power
coefficient of optical switching elements, while the transmission loss is the loss coefficient
of the optical switching elements in this paper.
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Figure 2. Basic 1 × 2 switching elements using microresonators.

Table 1. Power loss factors of a basic optical device.

Parameter Notation Value Reference

Crossing loss Lc −0.04 dB [22]

Power loss per PSE in ON state Lp,on −0.5 dB [23]

Power loss per PSE in ON state Lp,o f f −0.005 dB [23]

Crosstalk coe f f icient per PSE in OFF state kp,o f f −45 dB [10]

Crosstalk coe f f icient per PSE in ON state kp,o f f −25 dB [10]

Power loss per CSE in OFF state Lc,o f f −0.04 dB/90◦ [10]

Power loss per CSE in ON state Lc,on −0.5 dB/90◦ [10]

Crossing crosstalk coe f f icient kc −38.5 dB/90◦ [10]

The output powers of the through port and drop port as functions of input optical
power could be calculated based on (1) and (2) for the off state and (3) and (4) for the
on state.

PT,o f f = PinLp,o f f (1)

PD,o f f = PinKp,o f f (2)

PT,on = PinLp,on (3)

PD,on = PinKp,on (4)

When two optical signals pass through the crossing at the same time in CSE, the
optical signals interfere with each other and crosstalk occurs. At the same time, a portion
of the light will be reflected back to the input port. When CSE is in the on state, the output
power values of different ports are calculated as (5)–(8) according to previous studies [10].
When the CSE is in the off state, the optical signal enters from the input port and is coupled
to the ring, and then is directed to the drop port. The formulae for calculating the output
power at different ports are shown in (9)–(12).

PD,on = PinLc,on (5)

PT,on = PinKp,on(Lc(1 + KcLp,on) + KrLp,onKc) (6)

PA,on = PinKp,on(Kc(1 + KcLp,on) + KrLp,onLc) (7)
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PR,on = PinKp,onKc (8)

PT,o f f = PinLc,o f f (9)

PD,o f f = Pin(Kp,o f f + L2
p,o f f Kc) (10)

PA,o f f = PinKpL2
p,o f f (11)

PR,o f f = PinKrL2
p,o f f (12)

2.2. Five-Port Non-Blocking Router Model

The optical router plays an important role in ONoCs. The five-port non-blocking
router [24] has fewer microring resonators (MRRs) and crossings, which means less trans-
mission loss to some extent. The five-port non-blocking router used in this paper is shown
in Figure 3; I j

i = I0
i is the input port of the ith port and I j

i = I1
i is the output port of the ith

port. Meanwhile, when i = 0, 1, 2, 3, and 4, they represent ejection, north, east, south, and
west ports.

I I

I

I I

I

I

I

I I

Inj

Figure 3. Five-port non-blocking router model.

When an optical signal is transmitted from the ith port to the jth port in the router,
the transmission loss can be defined as Li,j(x, y) in (13). The propagation loss is integrated
at the network level into our general optical router model [25]. The CSE, PSE, waveguide
crossings, and propagation loss LP will cause switching loss SLi,j(x, y). Wli,j(x, y) represents
the waveguide length from the ith input port to the jth output port inside the router. When
j = 0, the output port is ejection. When j 6= 0, the calculation of Li,j(x, y) also needs to
take the waveguide transmission loss between the current router and the next router into
account. In (14), hop length D can be attained based on chip size S and network size M×N.
If the input optical power P0

i (x, y) is determined, then the output power Pi,j(x,y) from the
ith port to the jth port of the router can be calculated as the formula shown in (15).

Li,j(x, y) =

1− SLi,j(x, y)L
Wli,j

(x,y)

P j = 0

1− SLi,j(x, y)L
Wli,j

(x,y)+D

P j 6= 0
(13)

D ≈
√

S
M× N

(14)

Pi,j(x, y) = P0
i (x, y)(1− Li,j(x, y)) (15)
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2.3. Adaptive Power Control Model

The output power of the optical transmitter on the link is determined on the trans-
mission loss of the optical switching device, the transmission loss of the waveguide, and
the sensitivity of the receiver. According to [26], the optical signal power received from
the receiver should not be less than the sensitivity of the receiver. As is shown in (16),
PTX is the output power of the link transmitter, LSW is the optical transmission loss of
the optical switching device, LWG is the optical transmission loss of the waveguides, and
SRX is the sensitivity of the receiver. In [27], the high-speed optical receiver used was
manufactured via Ge waveguide optical detector integrated into a CMOS process. It could
achieve the receiver sensitivity of −14.2 dBm operating at 1550 nm and 10 Gbps. In (17),
PTX can be obtained by derivation of (16). In this paper, we optimize the selection of
routing path based on the Dijkstra algorithm from the source node to destination node so
as to achieve the minimum of the sum of LSW and LWG. Therefore, on the basis that the
receiver sensitivity remains the same, the output power PTX of the link transmitter should
be the minimum.

PTX − LSW − LWG ≥ SRX (16)

PTX ≥ LSW + LWG + SRX (17)

The power of s node is allocated in terms of the maximum link transmission loss which
is obtained from node s to all destination nodes [16]. The maximum transmission loss of
node s can be calculated as (18), where ILs

max represents the maximum transmission loss of
node s; the link transmission loss from source node s to destination node d is denoted by
ILsd. In traditional power control, the power of each node is equally distributed, which is
composed of the largest value among the maximum transmission loss ILs

max of all nodes.
The maximum transmission loss MaxIL among all of the ILs

max is shown in (19).

ILs
max = max(ILsd) f or(d 6= s), d ∈ (0, N) (18)

MaxIL = max(ILs
max), s ∈ (0, N) (19)

In traditional power control [16], each link is allocated the maximum transmission loss.
Thus, the transmission losses of many links will be redundant when the actual transmission
loss is less than the maximum transmission loss. To solve this problem, the APC technology
is applied for link power distribution [20]. For example, in terms of links A, B, and C, we
treat LA, LB, and LC as the maximum transmission losses of the three links respectively.
After comparison, we can obtain the maximum transmission loss (i.e., LA) of the three
links. The input power of link B and link C can be adjusted according to link A, and the
calculations are shown in (20)–(24).

Poutput−A = PInput−A(1− LA) (20)

Poutput−B = PInput−B(1− LB) (21)

Poutput−C = PInput−C(1− LC) (22)

PInput−B =
1− LA
1− LB

PInput−A (23)

PInput−C =
1− LA
1− LC

PInput−A (24)

PInput−A, PInput−B, and PInput−C are the input power of links A, B, and C respectively,
while Poutput−A, Poutput−B, and Poutput−C are the output power of links A, B, and C re-
spectively. According to the above equations, if the link transmission loss is closer to the
maximum link transmission loss, the input power of the corresponding link needs to be
larger. Considering that the transmission losses of link B and C are always less than LA,
the input power of link B and C will always less than link A, which has the maximum
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transmission loss. In spite of APC being able to reduce power consumption to some extent,
it still can not solve the problem of the global minimum of network power usage. The
Dijkstra algorithm is adopted to select the routing path with minimal transmission loss
on account that it has the characteristics of global optimization. Therefore, the output
power of the link transmitter can be the minimal on the basis that the receiver sensitivity
remains constant.

3. Adaptive Power Control of ONoCs Based on the Dijkstra Algorithm
3.1. The Dijkstra Algorithm’s Principles

The Dijkstra algorithm is the shortest path algorithm from one vertice to the other
vertices. Considering that it is suitable for undirected and directed graphs with positive
weights, we take the port-to-port transmission loss of router in ONoCs as weights of the
Dijkstra algorithm. The principles of the Dijkstra algorithm are as follows: Firstly, set S
contains only the source nodes and set U contains all the remaining nodes. The distances
in set U represent the distances between the starting vertice and other vertices. Secondly, it
compares the stored distances and finds the node which is the closest to the source node,
and then adds it to set S. At the same time, it removes this node from set U and updates the
distance from each vertex in U to the current vertex. Thirdly, it traverses again to compare
whether the distances thanks to choosing the shortest point as a transit point are more
closer or not. If so, it just updates the distance; otherwise, it does not update. Ultimately, it
repeats the previous second and third steps until all the vertices are traversed in U.

In a previous study [28], the shortest path first (SPF) algorithm was applied to select the
path with the lowest bit error rate among all shortest available paths. The shortest distance
from the starting node to all the nodes could be stored after traversing. The shortest
spanning tree algorithm can choose the path with the least sum of weights which is from
the starting vertice to other vertices. The Dijkstra algorithm could attain the shortest path
of weights from the fixed starting vertice to the fixed ending vertice. Therefore, the Dijkstra
algorithm is more suitable to optimized routing paths for network architectures when the
source and destination nodes are known. The Dijkstra algorithm is described in detail
in Algorithm 1. In this paper, the port-to-port transmission loss of a router serves as the
weight of the selection of routing path; the path with minimum transmission loss from the
source node to the destination node will be determined by the Dijkstra algorithm.

3.2. Network Architecture

Based on the 5 × 5 mesh-based ONoCs shown in Figure 4, we analyze how to
select the routing path using the Dijkstra algorithm as follows. The 5× 5 mesh model
based ONoCs is shown in Figure 4a, and the internal structure of the router is shown
in Figure 4b. We use a two-dimensional coordinate system to denote the position of the
router in the 5× 5 mesh-based ONoCs shown in Figure 4a. For example, the coordinate of
router connected to core IP−1 is expressed as (1, 1). Li,j(x, y) represents the transmission
loss from the ith output port to the jth input port in router (x, y). In the Dijkstra algorithm,
it is used as the weight value between the current router and the next-hop router which
the jth port of the current router will be connected to. In multiple pairs of source nodes in
concurrent communication with mesh-based ONoCs, the coordinates of source node and
destination node can be divided into four types. The destination node is in the upper left,
upper right, lower left, or lower right of the source node. We use a two-dimensional matrix
to store all possible port transmission losses of the router in Figure 4b. After obtaining the
packet with the coordinate information of the destination node, the corresponding weights
of router will be updated according to the transmission loss stored in the two-dimensional
matrix. Moreover, the Dijkstra algorithm is used to compare the port-to-port transmission
loss of the current router and determine the next hop router. For example, when processor
core IP−1 communicates with processor core IP−8, the optical signal will be transmitted
from IP−1 to router (1, 1) through the 0th input port of router (1, 1). We choose L0,2(1, 1)
as the transmission loss between router (1, 1) and router (1, 2), then treat L0,3(1, 1) as the
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transmission loss between router (1, 1) and router (2, 1). Firstly, compare L0,2(1, 1) and
L0,3(1, 1). In terms of the internal structure of router used in this paper, L0,2(1, 1) is smaller;
the optical signal will be transmitted from the 2nd output port of router (1, 1) to the 4th
input port of router (1, 2). Secondly, compare the transmission loss L4,3(1, 2) between the
processor core router (1, 2) and router (2, 2) and the transmission loss L4,2(1, 2) between
processor core router (1, 2) and router (1, 3). As L4,3(1, 2) is smaller, the optical signal will
be transmitted from the 3rd output port of router (1, 2) to the 1st input port of router (2, 2).
More importantly, the Dijkstra algorithm will calculate and compare between L0,2(1, 1)
+ L4,3(1, 2) and L0,3(1, 1) + L1,2(2, 1) to determine whether the routing path achieves the
minimum transmission loss or not. Finally, the optical signal will be transmitted from the
2nd output port of router (2, 2) to the 4th input port of router (2, 3). The optical signal
passes from the 0th output port of the router (2, 3) to processor core IP−8 to complete
this communication.

Figure 4. (a) The 5× 5 mesh model based ONoCs ; (b) The internal structure of the router.

Ultimately, when processor core IP−1 communicates with processor core IP−8, the
routing path selected by the above algorithm is: IP−1-router (1, 1)-router (1, 2)-router
(2, 2)-router (2, 3)-IP−8.

The control information and data are transmitted through the electrical link in the tradi-
tional electronic interconnection network, whose packet switching
mechanisms are circuit switching, packet switching, wormhole switching, etc. The opto-
electronic interconnection network on the chip is composed of the combination between
the electronic interconnection layer and the optical interconnection layer. Considering that
there is no effective buffering technique for optical signal in ONocs so far, the circuit has
great difficulty in reserving the routing path. Alleviating this intractable problem, most of
the existing active ONoCs depend on the optical circuit switching (OCS) mechanism [1], as
shown in Figure 5.
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Figure 5. Mechanism diagram of optical circuit switching.

Algorithm 1: Routing algorithm based on the Dijkstra algorithm
Input: Source node s, Destination node d, the number of nodes n
Output: The routing path from the source node to the destination node

1 D[i] represents the array which stored transmission loss from the current node to
the source node in a network, and D[0]=0 represents the distance from the source
node to itself is 0; w[i][j] represents the transmission loss between node i to node
j, v[i] mark whether a node is used or not, and v[s]=0 means that the node is not
used, v[s]=1 means that the node is used. p is the node which has smallest
transmission loss from the previous node.

2 for int i = 1 to i < n do
3 D[i]=INF;
4 end
5 D[0]=0;
6 v[s]=0;
7 for int i = 0 to i < n do
8 int p=−1
9 for int j = 0 to j < n do

10 if (!v[i] && (p==−1 || D[j] < D[p])) then
11 p=j;
12 end
13 end
14 end
15 v[p]=1;
16 for int i = 0 to i < n do
17 if (!v[i] && d[i] > (d[p]+w[p][i])) then
18 d[i]=d[p] + w[p][i];
19 end
20 end

The optical layer and the electrical layer work coordinately in the OCS mechanism.
The electrical layer transmits link controlling information and the optical network layer
transmits data. Before transmitting the optical signal, it is necessary to establish the
reserved path between the source node and destination node, which is achieved by the
path-setup, ACK, and path-teardown packets from the electrical control layer. In the setup
stage of optical path, if there are other communication requests in the occupied phase of
the router port in a node, the path-setup packet will be set to cache on this node only if
the port is released. The transmission latency of optical signal depends only on the group
velocity of light in the silicon based waveguide [29,30] so that it is very short. Therefore,
the latency of the setup path with electronic singal is crucial for the communication latency.



Micromachines 2021, 12, 54 10 of 14

4. Evaluation and Discussion

On the premise of not sacrificing the network’s performance, optimized power control
based on the Dijkstra algorithm in ONoCs has obvious advantages in saving power over
adaptive power control in previous studies. Section 4.1 indicates the reduction of the
transmission loss in the optimized mesh-based ONoCs is larger than that in the traditional
mesh-based ONoCs. The average output power of the transmitter of optimized power
control by using the Dijkstra Algorithm is better than that in the adaptive power control
and traditional power control. Section 4.2 shows the comparison of network performance
between an optimized network based on the Dijkstra algorithm and a traditional network
based on the dimensional routing algorithm under different network sizes.

4.1. Transmission Loss and Average Output Power of Transmitter

In mesh-based ONoCs, transmission loss based on the Dijkstra algorithm is compared
with that based on traditional dimensional routing with the aid of MATLAB software.
The average transmission loss L(s,d) of all links from the source node to the other nodes
is considered as the transmission loss evaluation value of network; the formula is shown
in (25). Source node, destination node, and total number of nodes in the network are respec-
tively represented by s, d, and n. L(s,d) represents the link transmission loss from source
node s to destination node d. Here we select node (1,1) as the source node for analysis.

L(s,d) =
∑n

s=1 ∑n
d=1 L(s,d)

n
(25)

Under the condition that the network size is 8 × 8, the transmission losses of the
optimized link and traditional link from the source node (1,1) to other nodes are shown in
Figure 6. It is clearly visible that the optimized link has less link transmission loss than the
traditional link.

Figure 6. The transmission loss in M× N mesh-based ONoCs.

As shown in Figure 7, when network sizes are 5 × 5, 6 × 6, 7 × 7, and 8 × 8, the
optimized average link transmission losses are 0.193, 0.194, 0.183, and 0.161 dB,
respectively—lower than the traditional average link transmission loss.
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Figure 7. The average reduction of link transmission loss in M× N mesh-based ONoCs.

The average output power of the transmitter in network links is PT(x,y) and the
formula is shown in (26). M and N represent network sizes, and (x, y) represents the
location of source node in network link. PT(x,y) represents the output power required by
the optical transmitter of the source node in a network link.

PT(x,y) =
∑M

y=1 ∑N
x=1 PT(x,y)

M× N
(26)

Figure 8 shows the average output power of the optical transmitter under traditional
power control, adaptive power control, and optimized power control when the network
sizes are 5 × 5, 6 × 6, 7 × 7, and 8 × 8. The transmission losses caused by increasing
the numbers of optical switch devices and waveguides constitute the main reason that
the output power of the transmitter increases with the expansion of the network. From
Figure 8, it can be concluded that the average output power of the transmitter under the
traditional power control is the highest, followed by the adaptive power control, and the
optimized power control has the lowest output power. Hence, the optimized power control
could realize the minimum output power of transmitter of links.

End-to-end (ETE) delay and throughput are important indicators for evaluating
network performance. We constructed a simulation of an optimized network and a tra-
ditional network with the aid of OPNET simulation software, which is based on discrete
event scheduling works. In order to better analyze the network performance under differ-
ent network sizes, we implemented four network sizes for analysis: 5× 5, 6× 6, 7× 7, and
8× 8.



Micromachines 2021, 12, 54 12 of 14

Figure 8. The average output power of the optical transmitter in M× N mesh-based ONoCs.

Figure 9 demonstrates that when the packet size is 1024 bits, the ETE-delay of the
traditional network is a bit lower than that in the optimized network. What is more, with
the expansion of network sizes, network congestion is serious, resulting in the vastly
increasing ETE-delay. When the network size is 5× 5, 6× 6, 7× 7, or 8× 8, the offered
loads for the traditional network and optimized network reach saturation—0.1, 0.08, 0.06,
and 0.04 respectively.

 

Figure 9. The ETE-delay in M× N mesh-based ONoCs.

4.2. Network Performance Evaluation

It is shown for the network throughput in Figure 10. Under the same load, the
network based on the Dijkstra algorithm has almost the same throughput compared with
the network based on the dimensional-order routing algorithm with the increasing of the
network size. Furthermore, as the load is increasing, the throughput of the traditional
network and the optimized network gradually increase to saturation.
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Figure 10. The network throughput in M× N mesh-based ONoCs.

5. Conclusions

In conclusion, a new adaptive routing algorithm based on the Dijkstra algorithm
realizes the selection of routing path with minimum transmission loss in the paper. Taking
mesh-based ONoCs as an example, the optimized path based on the Dijkatra algorithm
can achieve the minimum link transmission loss, and the average link transmission loss
is significantly reduced compared with the traditional dimensional routing path under
different network sizes. At the same time, compared with the traditional power control
and adaptive power control, the optimized power-control-based Dijkstra algorithm has a
significant advantage in reducing power consumption. In terms of network performance,
we verified the feasibility of this adaptive routing algorithm to realize the selection of
minimum transmission loss routing path with the aid of simulation software. According
to the simulation results, the ETE-delay of the optimized network is a little larger than
that in the traditional network. Moreover, with the expansion of the network scale, the
throughput was almost the same as that in the traditional network based on dimensional
routing algorithm. Therefore, optimized power control could reduce power consumption
without greatly reducing network performance. In the future, the performance of minimum
transmission loss routing path selection based on the Dijkstra algorithm in different network
structures needs to be studied.
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