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Abstract: This is the first demonstration of sidewall slope control of InP via holes with an etch depth
of more than 10 µm for 3D integration. The process for the InP via holes utilizes a common SiO2

layer as an InP etch mask and conventional inductively coupled plasma (ICP) etcher operated at
room temperature and simple gas mixtures of Cl2/Ar for InP dry etch. Sidewall slope of InP via
holes is controlled within the range of 80 to 90 degrees by changing the ICP power in the ICP etcher
and adopting a dry-etched SiO2 layer with a sidewall slope of 70 degrees. Furthermore, the sidewall
slope control of the InP via holes in a wide range of 36 to 69 degrees is possible by changing the RF
power in the etcher and introducing a wet-etched SiO2 layer with a small sidewall slope of 2 degrees;
this wide slope control is due to the change of InP-to-SiO2 selectivity with RF power.

Keywords: InP; via hole; 3D integration; through substrate via (TSV)

1. Introduction

Owing to the excellent electron mobility characteristic of InAs, InGaAs, and InAlAs
materials monolithically grown on InP substrate, InP-based electrical semiconductor device
technologies such as high electron mobility transistors (HEMT), heterojunction bipolar
transistors (HBT), and resonant tunneling diodes (RTD) have been demonstrated with
maximum oscillation frequencies exceeding one terahertz [1–3]. To optimally exploit these
high-frequency InP devices in system applications for millimeter-imaging and wideband
communication, InP technologies have been integrated with Si or GaN technologies, which
play a role of peripheral ICs or high-power ICs, respectively. Of various integration
technologies, three-dimensional (3D) integration technologies have recently been demon-
strated; compared to two-dimensional (2D) technologies, these 3D technologies minimize
the resistance of interconnect-lines and improve chip density [4–6].

InP-based 3D integration technology has a core process called through-substrate-via
(TSV), which forms via holes in the InP substrate and fills them with low-resistivity met-
als [6]. Similar to the Si TSV process, the InP TSV process has been realized by performing
metal deposition on InP via holes followed by chemical-mechanical-polishing (CMP) [6].
However, the InP CMP process has to be handled carefully due to the fragile nature of
InP substrates and equipment for InP CMP is uncommon and difficult for researchers to
access. Instead of the CMP-based TSV process, an electro-plating (EP)-based TSV process,
which performs seed metal deposition on InP via holes followed by EP, can be utilized.
While the CMP-based TSV process completely fills via holes with metals, the EP-based
process deposits thin metals with a thickness of only a few micrometers (µm) on the edges
of the InP via holes. Because a few-µm-thick edge-deposited metal layers based on Cu or
Au do not degrade the interconnect resistance of InP TSV because the skin depth, given
by 1/(πfµσ)2 [7], where f is the operating frequency, µ is the relative permeability and
σ is the conductivity, of low resistivity metals such as Cu or Au is calculated to be less
than 0.5 micrometer (µm) in millimeter-wave frequency range of more than 30 GHz, the
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EP-based TSV process has recently been utilized as a useful hole filling method for InP
TSV [8].

Because sputter equipment has better step coverage than that of evaporator equip-
ment, seed metals in the EP-based InP TSV process have mainly been deposited mainly
by sputtering. However, sputter-based seed metal deposition is known to suffer from
shadowing effects when the aspect ratio (AR) of via holes, defined as the ratio of the height
to the width of the structures, is more than one, leading to poor step coverage on via hole
sidewalls [9]. As shown in our experimental results in Figure 1, it was revealed that Ti/Cu
EP and seed metals on a sidewall of InP via holes with vertical slope of 90 degrees were
not deposited. Accordingly, process methodology for controlling the sidewall slope of InP
via holes should be presented so that they InP via holes have gradual sidewall slope. To
date, most reports have focused only on implementing InP structures with vertical sidewall
slopes approaching 90 degrees [10–16].
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Figure 1. Scanning electron microscope (SEM) images of InP via holes with vertical sidewall slope
where electro-plating and seed metals were deposited. Sputtering process for seed metal deposition
was performed by using equipment of SRN-110 (SORONA, Anseong, Korea) with a substrate-rotation
function.

In this paper, we propose for the first time a process methodology for sidewall slope
control of InP via holes. The etch depth of InP via holes is targeted to exceed 10 µm,
because the depth of TSV for 3D integration has been decreased to about 10 µm, which
corresponds to the limit value of the CMP processes [6,7]. The process for InP via holes
with an etch depth of more than 10 µm utilizes a common SiO2 layer as an InP etch mask
and conventional inductively coupled plasma (ICP) etcher and simple gas mixtures of
Cl2/Ar for InP dry etch. By controlling input parameters for the ICP etcher, such as ICP
power, RF power and gas mixture ratio, and changing the sidewall slope of the SiO2 layer,
the sidewall slope of InP via holes is possible to adjust in a wide range of 36 to 90 degrees,
while retaining high InP etch rate of 1 µm/min.

2. Materials and Methods

Figure 2 shows a cross-sectional view of a process flow for InP via holes. An InP
substrate with S-doped, n-type and 100 orientation was used, provided by JX Nippon
Mining & Metal Corporation. As shown in Figure 2a, a 1 µm thick SiO2 layer on the InP
substrate was deposited by plasma-enhanced chemical vapor deposition (PECVD) at a
temperature of 300 ◦C to use as an etch mask for InP dry etching. As shown in Figure 2b, a
photoresist (PR) mask was formed by photolithography process with conditions of spinning
rate of 3000 RPM, soft bake of 90 ◦C and 90 s, exposure time of 6 s, developing time of 50 s
and hardbake of 150 ◦C and 15 min. The SiO2 layer was patterned by dry etching or wet



Micromachines 2021, 12, 89 3 of 12

etching process through the PR mask, as shown in Figure 2c. Dry etching process for the
SiO2 layer was performed using an ICP etcher (Oxford Instruments Plasma Technology
Plasmalab System 100) with conditions of CHF3/Ar of 20/10 sccm, ICP/RF power of
1500/300 W, operating pressure of 10 mTorr and operating time of total 15 min (5 times
at 3 min a time). Wet etching process for the SiO2 layer was carried out by dipping the
sample for 2.5 min in diluted HF (DHF) solution of HF:H2O = 1:3 with an SiO2 etch rate of
450 nm/min. The PR mask on the patterned SiO2 layer was removed using a DPSS-2200
solution, as shown in Figure 2d. The sidewall slope of the dry-etched or wet-etched SiO2
layers was defined as θ1, as can be seen in Figure 2d. Native oxide layer on the InP substrate
was eliminated using a diluted HCl solution of HCl:DI = 1:10. The InP dry etching process
was performed by using the ICP etcher, as shown in Figure 2e, and the SiO2 layer was
removed by the DHF solution, as shown in Figure 2f. The sidewall slope of InP via holes
was defined as θ2, as can be seen in Figure 2f.
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Figure 2. Cross-sectional view of a process flow for InP via holes: (a) SiO2 deposition on InP sub-
strate; (b) formation of photoresist (PR) mask; (c) SiO2 patterning through the PR mask; (d) PR 
removal; (e) dry etching of the InP substrate; (f) SiO2 removal. θ1 and θ2 are defined as sidewall 
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Figure 2. Cross-sectional view of a process flow for InP via holes: (a) SiO2 deposition on InP substrate; (b) formation of
photoresist (PR) mask; (c) SiO2 patterning through the PR mask; (d) PR removal; (e) dry etching of the InP substrate; (f)
SiO2 removal. θ1 and θ2 are defined as sidewall slopes of the SiO2 layer and InP substrate, respectively.

The operation pressure, the temperature, and the type of the gas mixture are important
input parameters of the ICP etcher for the InP dry etching process that determine the etch
morphology of the InP via holes. Because the plasma environment in the etcher did not
stably form at operating pressures of less than 4 mT, and because InP etch rate of InP
via holes decreased considerably at operating pressures of more than 7 mT, the operating
pressure in the ICP etcher for the InP dry etching was fixed at 5 mT. Because high operation
temperature is known not to be necessary to achieve high InP etch rate of InP via holes
when the reactive species densities are high [11,14], the operation temperature of the etcher
for InP dry etching was set at room temperature while maintaining ICP power higher than
1000 W. CH4-based gas mixtures demonstrated slow InP etch rate and polymer deposition
issues [11], and so chlorine (Cl2)-based gas mixtures of Cl2/Ar were used in this work to
achieve high InP etch rate of InP via holes.

Each fabrication run consisted of 14 samples with a size of 2 cm × 2 cm. Twenty InP
via holes with the same layout width of 10 µm were arranged in each sample. Different InP
etching conditions were applied to each sample, by varying the RF power, gas mixture ratio,
and ICP power of the ICP etcher for the InP dry etching process. A total of three fabrication
runs were carried out to identify parameter deviation caused by process variation. The
etching morphology of the fabricated InP via holes was observed using scanning electron
microscope (SEM) equipment of S-4800 (Hitachi, Ltd., Tokyo, Japan).
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3. Results and Discussion
3.1. InP via Holes with Steep Sidewall Slopes of 80 to 90 Degrees

To implement InP via holes with steep sidewall slope of more than 80 degrees, a
dry-etched SiO2 layer with an average θ1 of 70 degrees as an etch mask for InP dry etching
was utilized, as shown in Figure 3.
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An experiment to determine the appropriate value of RF power in the ICP etcher
for InP dry etching was performed. The fabrication results of InP via holes etched at
different levels of RF power of 275 W, 288 W, 294 W, and 300 W are shown in Figure 4,
where Figure 4a,b show SEM images of representative etch profiles and the InP etch rate
and sidewall surface roughness of the fabricated InP via holes, respectively. Error bars in
Figure 4b represent the deviation values incurred by the process variation for a total of
60 InP via holes with the same layout width in the three fabrication lots. ICP power and
Cl2/Ar gas mixture of the ICP etcher were fixed at 1200 W and 20/15 sccm, respectively.
An InP via hole with an RF power of 300 W showed a bad sidewall profile, as can be seen
in Figure 4a, exhibiting a high average sidewall surface roughness of 1.65 µm, as shown in
Figure 4b. This bad profile phenomenon is attributed to the strong Ar-ion bombardment
near the top of the InP via hole by the high electric field. As RF power decreased, InP etch
rate showed a decreasing tendency and, especially, average InP etch rate at RF power of
275 W decreased to 0.9 µm/min, as shown in Figure 4b. From our experimental results,
performing InP dry etching at once rather than carrying out it by dividing several times led
to much less polymer deposition on the surfaces of InP via holes. When InP dry etching
is performed at once, unintended abnormal behavior has occurred in case of processing
time of the ICP etcher exceeding 10 min; there was a problem of redeposition of various
polymers on the surface of the chamber due to the rise in temperature in the chamber.
Therefore, the processing time of the ICP etcher for the InP dry etching must be limited
to within 10 min; for this reason, to implement InP via holes with an etch depth of more
than 10 µm in 10 min, the InP etch rate had to exceed 1 µm/min. Consquently, the correct
value of RF power to form InP via holes with steep sidewall slope was in the range of
about 280 W to 294 W. The sidewall roughness of InP via holes formed with the RF power
values of 280–294 W was at most 310 nm. Because seed metals with thickness of more than
310 nm can be readily deposited using sputter equipment, the achieved roughness value
of 310 nm does not have a significant effect on the performance of the EP-based InP TSV
with metal thicknesses of a few-µm level. Regarding the roughness value of 310 nm, it was
analyzed that 210 nm of this value is generated from the InP dry etching process because
100 nm of that value is the sidewall roughness of the dry-etched SiO2 layer itself, as can be
seen in Figure 3.
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ICP power, Cl2/Ar gas mixture, operation pressure, and operation temperature of the ICP etcher were 1200 W, 20/15 sccm,
5 mT and room temperature, respectively.

The proper ratio for the gas mixture of Cl2/Ar was investigated. Figure 5 shows fabri-
cation results for InP via holes etched at mixtures of 10Cl2/25Ar, 15Cl2/20Ar, 20Cl2/15Ar,
and 30Cl2/5Ar, while fixing total gas flow rate at 35 sccm. Figure 5a,b show SEM images
of representative etch profiles and the InP etch rate and bottom surface roughness of the
fabricated InP via holes, respectively. Error bars in Figure 5b indicate the deviation values
for a total of 60 InP via holes with the identical layout width in the three fabrication lots.
ICP power and RF power of the ICP etcher were fixed at 1200 W and 294 W, respectively.
Fabricated InP via holes with Ar-rich gas mixtures of 10Cl2/25Ar and 15Cl2/20Ar exhib-
ited undercut profiles, as shown in Figure 5a, leading to seed metals not deposited on
InP via hole, and rough bottom surface morphology, showing an average bottom surface
roughness of 1.55 µm even at a slight Ar-rich mixture of 15Cl2/20Ar, as shown in Figure 5b.
These bad morphologies are attributed to P deficiency phenomena in InP near the top of the
sidewall and at the bottoms of InP via holes due to strong Ar-ion bombardment in the ICP
etcher [17]. Compared to the Ar-rich mixtures-based InP via holes, Cl2-rich mixture-based
InP via holes of 20Cl2/15Ar and 30Cl2/5Ar exhibited improved morphology without
undercut shape or rough bottom surface issues, as shown in Figure 5a. The average bottom
surface roughness of 0.65 µm for 30Cl2/5Ar is considered to result from the lack of physical
desorption of chlorine-based etch products due to the lack of Ar-ion bombardment. As a
result, gas mixture of 20Cl2/15Ar was selected to implement the InP via holes with steep
sidewall slope, leading to InP via holes with bottom surface roughness of maximum 170 nm
while maintaining an InP etch rate of more than 1 µm, as shown in Figure 5b.
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reference, the selectivity between the InP substrate and the SiO2 layer (InP-to-SiO2 
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Figure 5. Fabrication results of InP via holes etched at Cl2/Ar gas mixtures with different ratio of 10/25, 15/20, 20/15, and
30/5 sccm: (a) SEM images of representative etch profiles and (b) InP etch rate and bottom surface roughness of fabricated
InP via holes. Error bars in Figure 5b represent the deviation values for a total of 60 InP via holes with the identical layout
pattern in the three fabrication lots. Total gas flow rate, ICP power, RF power, operation pressure, and operation temperature
of the ICP etcher were 35 sccm, 1200 W, 294 W, 5 mT and room temperature, respectively.

With selected conditions of RF power of 294 W and gas mixture of 20Cl2/15Ar, various
sidewall slopes of InP via holes with steep sidewall slopes of more than 80 degrees were
achieved by careful control of the ICP power. Fabrication results for InP via holes etched at
different levels of ICP power is shown in Figure 6, where Figure 6a,b show SEM images of
representative etch profiles and the InP etch rate, sidewall surface roughness and sidewall
slope of the fabricated InP via holes, respectively. Error bars represent the deviation values
for a total of 60 InP via holes with the identical layout width in the three fabrication lots. ICP
power of more than 1000 W was required to obtain InP etch rate of more than 1 µm/min.
Average θ2 values of InP via holes changed almost linearly to 80, 84, 87, and 90 degrees at
ICP power values of 1000, 1200, 1300, and 1400 W, respectively. It is considered that this
change of the sidewall slope with ICP power originated from the increase of ion-assisted
desorption on the sidewall surface of InP via holes due to the increase of ICP power. As
the ICP power increased from 1000 W to 1400 W, the average sidewall surface roughness of
the InP via holes improved from 230 nm to 90 nm, while maintaining the average InP etch
rate of more than 1 µm/min, as shown in Figure 6b. For reference, the selectivity between
the InP substrate and the SiO2 layer (InP-to-SiO2 selectivity), defined as the InP etch rate
divided by SiO2 etch rate, showed average values of 12.5, 15.2, 15, and 13.3 at ICP power
values of 1000, 1200, 1300, and 1400 W, respectively.
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layers were optimized. At hard bake conditions of 120 °C and 5 min, there was a PR ad-
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of about 1 μm of the SiO2 layer was well maintained within ±2.7 % deviation by using a 

Figure 6. Fabrication results of InP via holes etched at different levels of ICP power: (a) SEM images of representative
etch profiles and (b) InP etch rate, sidewall surface roughness, and sidewall slope of fabricated InP via holes. Error bars
in Figure 6b represent the deviation values for a total of 60 InP via holes with the identical layout pattern in the three
fabrication lots. RF power, Cl2/Ar gas mixture, operation pressure and operation temperature of the ICP etcher were 294 W,
20/15 sccm, 5 mT and room temperature, respectively.

3.2. InP via Holes with Gradual Sidewall Slopes of 36 to 69 Degrees

InP-to-SiO2 selectivity was analyzed by re-visiting the experimental results of InP
via holes etched at different levels of RF power, mentioned in chapter 3.1. Figure 7 shows
InP-to-SiO2 selectivity as a function of RF power. As RF power increased from 275 W to
300 W, average InP-to-SiO2 selectivity increased from 9.3 to 22.6. This increase in selectivity
occurred because average InP etch rate increased from 0.9 to 2.54 µm/min, while the
average SiO2 etch rate remained constant in a range of 0.10 to 0.11 µm/min. We utilized
this characteristic of InP-to-SiO2 selectivity versus RF power for slope control of InP via
holes with gradual sidewall slopes.
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Figure 7. Selectivity between the InP substrate and the SiO2 layer (InP-to-SiO2 selectivity) of InP via
holes etched at different levels of RF power. Error bars represent the deviation values for a total of
60 InP via holes with the identical layout pattern in the three fabrication lots.

To realize InP via holes with gradual sidewall slopes, a SiO2 hard mask layer with
fairly small θ1 values of only a few degrees was required. Table 1 shows specific process
flow and measured results for the SiO2 layer with a small slope. Instead of dry etching, a
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wet-etching process was selected to implement the SiO2 layer with gradual sidewall slopes.
To identify an appropriate etchant for SiO2 wet etching, a 20:1 buffered oxide etch (BOE)
solution with a mixture ratio of NH4F:HF = 38.1:2.4% and a DHF solution with a mixture
ratio of HF:H2O = 1:3 were tested. Under the same hard bake process conditions of 120 ◦C
and 15 min, the SiO2 layers wet-etched using the DHF solution exhibited an average θ1 of
2.55 degrees, while the SiO2 layers wet-etched using the BOE solution showed an average
θ1 of 44.25 degrees. Because the θ1 value of 44.25 degrees of the BOE-based SiO2 layers
was too large to implement InP via holes with gradual sidewall slopes when considering
the above-mentioned values of InP-to-SiO2 selectivity, the DHF solution was chosen as an
appropriate etchant for SiO2 wet etching. This smaller sidewall slope characteristic of the
SiO2 layers based on the DHF solution compared to the BOE solution stems from the strong
lateral etching property of concentrated HF. In addition, the hard bake conditions of baking
temperature and baking time in the photo-lithography for the DHF-based SiO2 layers were
optimized. At hard bake conditions of 120 ◦C and 5 min, there was a PR adhesion problem,
where PR peeled from the SiO2 layers during the wet-etching process. By increasing the
baking temperature from 120 ◦C to 150 ◦C while keeping the baking time above 15 min, the
SiO2 layer wet-etched using the DHF exhibited a reproducible sidewall slope characteristic,
demonstrating an average θ1 value and θ1 deviation of 2 degrees and ±5%, respectively,
without a PR adhesion problem, as shown in Figure 8. The thickness of about 1 µm of the
SiO2 layer was well maintained within ±2.7% deviation by using a PECVD equipment
(SLR-730, UNAXIS, OC Oerlikon, Pfäffikon, Switzerland) operated at 300 degrees.

Table 1. Specific process flow and measured results for the SiO2 layer with small sidewall slopes.

Process Flow
/Measurement Description Process

Split #1
Process
Split #2

Process
Split #3

Process
Split #4

Process
Split #5

Process flow
for patterned SiO2 layer

SiO2 deposition 300 ◦C in PECVD (UNAXIS SLR-730)

Prebake 120 ◦C, 10 min.

HMDS 3000 RPM for 30 s

Photoresist (PR) 3000 RPM for 30 s with i-1549 PR

Soft bake 90 ◦C, 90 s

Exposure 90 mJ

Develop 50 s in MIF 300

Hard bake 120 ◦C,
5 min.

120 ◦C,
15 min.

120 ◦C,
15 min.

150 ◦C,
15 min.

150 ◦C,
30 min.

PR Descum O2 of 2500 sccm, pressure of 1 Torr, time of 20 s and room temp. in
ICP PR Asher (DAS-2000, PSK, Hwaseong, Korea)

Wet-etching 2.5 min.
in DHF 1

2.5 min.
in DHF 1

23 min.
in BOE 2

2.5 min.
in DHF 1

2.5 min.
in DHF 1

PR removal Acetone—Isopropyl alcohol—DI

Measurement
of patterned SiO2 layer

Average thickness (µm) - 1.02 1.03 1.02 1.02

Thickness deviation
(%) - ±2.6 ±2.7 ±2.7 ±2.6

Average sidewall slope (◦) - 2.55 44.25 2 2

Sidewall slope deviation (%) - ±5.9 ±2.8 ±5 ±5

Problem PR
adhesion - - - -

1 DHF: Dilute HF (hydrofluoric acid) solution with a mixture ratio of HF:H2O = 1:3; 2 BOE: Buffered oxide etch solution with a mixture
ratio of NH4F:HF = 38.1 %:2.4 %.
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Figure 8. SEM image near a sidewall of a wet-etched SiO2 layer patterned on InP substrate. Inset
indicates a floor plan image of the patterned wet-etched SiO2 layer by microscope. Dotted circle in
the inset marks the edge of the patterned SiO2 layer.

Figure 9 shows fabrication results for InP via holes etched at different levels of RF
power using the wet-etched SiO2 layer, while fixing Cl2/Ar gas mixture and ICP power
as 18/17 sccm and 1200 W, respectively. Figure 9a,b show SEM images of representative
etch profiles and the InP etch rate, sidewall surface roughness, InP-to-SiO2 selectivity
and sidewall slope of the fabricated InP via holes, respectively. Error bars represent the
deviation values for 60 InP via holes with the identical layout width in the three lots. At
values of RF power of 292, 296, 300, and 306 W, InP via holes exhibited average values of
sidewall slope of 36, 50, 59, and 69 degrees, respectively, while maintaining InP etch rates
of more than 1 µm/min. The two graphs of sidewall slope and InP-to-SiO2 selectivity as a
function of RF power showed similar tendency, as shown in Figure 9b, which proves that
this change of sidewall slope is attributed to the change of InP-to-SiO2 selectivity with RF
power. For reference, surface roughness in the InP via holes with gradual sidewall slopes
was at most 230 nm.

We should note that the proposed process method for obtaining gradual-sloped InP
via holes leads to a penalty in area as an opportunity cost in providing the slope control
technique. Table 2 shows a footprint comparison between the InP via holes with steep
sidewall slopes and the InP via holes with gradual sidewall slopes. The footprint width
(WFOOT) and footprint ratio (RFOOT) denote the average hole width of the top side of InP
via holes and the WFOOT ratio of InP via holes with gradual sidewall slopes over InP
via holes with steep sidewall slopes, respectively. The WFOOT value of the steep-sloped
InP via holes was measured to be 11.5 µm and the WFOOT values of the gradual-sloped
InP via holes with average θ2 values of 69, 59, 50, and 36 degrees were 36, 39.2, 62.4,
and 101.3 µm, respectively, resulting in corresponding RFOOT values of 3.1, 3.4, 5.4, and
8.8. From our experimental results, it was verified that sputter-based seed metals were
uniformly deposited on the sidewall of InP via holes with average θ2 values of less than
59 degrees, as shown in Figure 10, and thus the actual RFOOT value is regarded to be a
maximum of 3.4.
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mask for InP dry etch: (a) SEM images of representative etch profiles and (b) InP etch rate, sidewall surface roughness,
sidewall slope and InP-to-SiO2 selectivity of InP via holes. Error bars in Figure 9b represent the deviation value incurred by
process variation for a total of 60 InP via holes with the identical layout pattern in the three fabrication lots. ICP power,
Cl2/Ar gas mixture, operation pressure, and operation temperature of the ICP etcher were 1200 W, 18/17 sccm, 5 mT, and
room temperature, respectively.

Table 2. Footprint comparison of fabricated InP via holes with various sidewall slopes.

Type of Process
InP via Holes

with Steep Sidewall
Slopes

InP via Holes
with Gradual Sidewall Slopes

Average θ2
1 (◦) 80–90 69 59 50 36

WFOOT
2 (µm) 11.5 36 39.2 62.4 101.3

RFOOT
3 (µm/µm) - 3.1 3.4 5.4 8.8

1 θ2: The sidewall slope of InP via holes; 2 WFOOT: The average footprint width of InP via holes; 3 RFOOT: The
WFOOT ratio of InP via holes with gradual sidewall slopes over InP via holes with steep sidewall slopes.
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4. Conclusions

Process methodology for sidewall slope control of InP via holes with an etch depth of
more than 10 µm for 3D integration was proposed for the first time. The sidewall slope of
InP via holes was controlled within the range of 80 to 90 degrees by changing the ICP power
in the ICP etcher and utilizing a dry-etched SiO2 layer with a sidewall slope of 70 degrees.
Furthermore, the sidewall slope of InP via holes was found to be widely adjustable within
a range of 36 to 69 degrees, while maintaining high InP etch rate of 1 µm/min, by changing
the RF power from 292 W to 306 W and using a wet-etched SiO2 layer with a small sidewall
slope of 2 degrees; this wide slope control was due to the change of InP-to-SiO2 selectivity
with RF power. This process methodology for InP via holes is expected to be widely used
in implementing InP TSV for 3D integration because of utilization of a common SiO2 layer
and conventional ICP etcher operated at room temperature and simple gas mixtures of
Cl2/Ar for InP dry etch.
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