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Abstract: The shearer positioning method with an inertial measurement unit and the odometer is 
feasible in the longwall coal-mining process. However, the positioning accuracy will continue to 
decrease, especially for the micro-electromechanical inertial measurement unit (MIMU). In order to 
further improve the positioning accuracy of the shearer without adding other external sensors, the 
positioning method of the Rauch-Tung-Striebel (RTS) smoother-aided MIMU and odometer is pro-
posed. A Kalman filter (KF) with the velocity and position measurements, which are provided by 
the odometer and closing path optimal estimation model (CPOEM), respectively, is established. The 
observability analysis is discussed to study the possible conditions under which the error states of 
KF can be estimated. A RTS smoother with the above-mentioned KF as the forward filter is built. 
Finally, the experiments of simulating the movement of the shearer through a mobile carrier were 
carried out, with a longitudinal movement distance of 44.6 m and a lateral advance distance of 1.2 
m. The results show that the proposed method can effectively improve the positioning accuracy. In 
addition, the odometer scale factor and mounting angles can be estimated in real time. 

Keywords: shearer positioning; micro-electromechanical inertial measurement unit (MIMU);  
kalman filter; Rauch-Tung-Striebel (RTS) smoother; closing path optimal estimation model 
(CPOEM) 
 

1. Introduction 
Automated mining based on a longwall face has shown significant potential to im-

prove mining productivity, increase personnel safety, and secure environmental sustain-
ability [1]. As shown in Figure 1, the longwall face equipment include a shearer, some 
hydraulic supports, and an armored face conveyor (AFC). The shearer rides on the AFC 
to cut coal back and forth. The AFC provides the running track for the shearer while trans-
porting the coal. The hydraulic supports not only support the roof but also push the AFC 
towards the coal seam. The position of the shearer is directly related to the control of the 
AFC and hydraulic supports [2]. Hence, the positioning of the shearer is the key technol-
ogy to realize automated mining. The inertial measurement unit, which contains a 3D 
inertial sensor, is widely used to estimate the position of the shearer due to its high relia-
bility and autonomy [3]. The micro-electromechanical inertial measurement unit (MIMU) 
is especially favored by the mine engineers with the advantages of low cost and small 
size. However, the free inertial position error can grow quickly over time due to the drift-
ing of the inertial devices [1], which includes repeatability biases, the slow-varying drifts, 
and the fast-varying drifts [4,5], and thus the integrated navigation mode with MIMU as 
the core component becomes a better choice. The MIMU/Global Positioning System (GPS) 
integrated navigation system is widely used as a conventional and low-cost positioning 
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method. Unfortunately, GPS cannot be used in underground environments. The position-
ing system composed by ultra-wideband range measurements can be used in GPS-denied 
environments [6,7]. The susceptibility of the ultra-wideband system to occlusion will af-
fect the stability of the integrated system. The MIMU/Doppler radar sensor has been suc-
cessfully applied to the positioning of a continuous miner [8]. Unlike continuous coal min-
ing, the surrounding environment of a longwall shearer is more complicated, which is 
detrimental to the accuracy of the Doppler radar sensor. The above-mentioned auxiliary 
methods need to exchange information with the external environment, and the position-
ing accuracy is inevitably affected by the environment. Exploring autonomous and robust 
auxiliary technology has become the first problem to be solved. 

Hydraulic 
support

Shearer

AFC

 
Figure 1. Composition of a longwall face. 

Zero-velocity update (ZUPT)-aided MIMU is a simple and robust integrated strategy 
[9,10]. However, it requires short and frequent stops. The motion constraint-aided MIMU 
ZUPT method can reduce the number of stops for simple ZUPT correction [11,12], but its 
accuracy cannot meet the actual demand of shearer positioning. The odometer is regarded 
as one of the most potentially useful autonomous speed sensors for land vehicles, and the 
system with the MIMU and odometer has been proven to be autonomous, robust, and 
feasible for shearer positioning [13–15]. The dead reckoning (DR) with Euler angles pro-
vided by MIMU and velocity provided by the odometer is one of the methods to estimate 
the position of the shearer. The inertial navigation attitude error, especially the heading 
angle error, is the main error source precluding further improvement of DR [1]. The mo-
tion constraint [16] and closing path optimal estimation model (CPOEM) [1] are used to 
improve the accuracy of DR. However, these two methods can only slow down the diver-
gence of the position error. The reason is that DR, as an open-loop structure, cannot pre-
vent the divergence of inertial navigation attitude errors. Establishing a Kalman filter (KF) 
based on MIMU and the odometer is another information fusion method, which is widely 
used in the field of conventional land navigation [17–20]. The advantages of this method 
lie in the closed-loop correction of the MIMU attitude and the real-time estimation of the 
inertial device parameters. The effect of correction and estimation has a lot to do with the 
steering maneuver of the vehicle. In the case of only MIMU and the odometer, the small 
and slow steering maneuver of the longwall shearer is difficult to achieve the ideal posi-
tioning effect [20,21]. Therefore, we plan to build a KF based on MIMU, odometer, motion 
constraint, and CPOEM to achieve better positioning. 

The position error of the MIMU/odometer integrated system repeats “increase–de-
crease” changes along with the reciprocating operation of the shearer [22], which fits the 
typical case of the Rauch-Tung-Striebel (RTS) smoother. RTS smoothing is a technology 
that uses all observation information in a certain time interval to re-estimate the state 
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based on the KF algorithm [23]. The RTS smoothing algorithm is one of the core technol-
ogies of the position and orientation system, which can enhance the ability of the position 
and orientation system to be free from external disturbance [24–27]. Since the estimation 
accuracy of the RTS smoothing algorithm is superior to that of filtering, it is often used as 
a reference for post-analysis of the integrated navigation system [28,29]. In the above ap-
plications, RTS smoothing works in off-line mode, which not only requires a large storage 
space, but also limits its use in scenarios with real-time requirements. An on-line smooth-
ing method can overcome the above limitations and has been successfully used in the 
MIMU/GPS integrated navigation system [30] and pedestrian navigation system [31]. The 
core idea of on-line RTS smoothing can be summarized as smoothing is executed imme-
diately after a certain time window to achieve a near real-time application effect. Obvi-
ously, on-line RTS smoothing technology is more suitable for the needs of longwall min-
ing. Therefore, we propose a positioning method based on MIMU, odometer, motion con-
straint, CPOEM, and on-line RTS smoother, whose contributions and benefits can be sum-
marized as follows: 

(1) The RTS smoother is introduced into the MIMU and odometer integrated system, 
which can improve the shearer positioning accuracy without additional external sensors. 

(2) Observability analysis of position measurement is added to theoretically provide 
the estimation conditions of the main error states on the basis of the previous work on 
velocity measurement. 

(3) The mounting angles between the MIMU frame and the odometer frame can be 
estimated in real time, avoiding the tedious pre-calibration process. 

2. Mathematical Models of Velocity and Position 
The coordinate systems involved in this paper are shown in Figure 2, which are de-

fined as follows: b-frame, the MIMU frame, which originates at the sensitive center of the 
MIMU, with the axes pointing to the AFC advance direction (right), shearer moving di-
rection (forward), and upward; m-frame, the odometer frame, whose axes point right, for-
ward, and upward; n-frame, the local-level east–north–up coordinate. 

mx

my

mz

( )nx east

( )ny north( )nz up

bx

by

bz

(On)
Om

Shearer

MIMU

 
Figure 2. Schematic diagram of the coordinate systems. 

The aim of the strapdown inertial navigation system (SINS) alignment process is to 
determine the transition matrix from b-frame to n-frame, denoted by C n

b
. One of the pur-

poses of MIMU and odometer joint calibration is to determine the mounting angles be-
tween m-frame and b-frame, which can be expressed by a vector, α . The direction cosine 
matrix from b-frame to m-frame is denoted by C m

b
. 
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2.1. Measured Velocity Model 

The moving speed of the shearer is denoted by m
yv , which can be measured by the 

odometer. Taking into account the scale factor error, δ Dk , and measurement noise, 
ODw

, of the odometer, the actual output, m
yv , of the odometer can be expressed as [20,21,32]: 

δ= + + /OD OD(1 )m m
y D yv k v w  (1) 

According to the motion constraint, there is no sideslip along the AFC advance di-
rection and no motion normal to the AFC under ideal conditions, so the velocities along 
the 

mx axis and 
mz axis are regarded as zero [11]. The ideal velocity of the shearer in m-

frame can be expressed as: 

=v T[0  0]m m
yv  (2) 

Integrating (1) and (2), the measured velocity model in m-frame is: 
δ= + +v v wOD/MC OD/MC(1 )m m

Dk  (3) 

where wOD/MC
 is the noise vector, defined as: 

=w T
OD/MC MC, OD MC,[   ]x zw w w  (4) 

where 
MC,xw  and 

MC,zw  are the motion constraint noise along the 
mx axis and the 

mz

axis, respectively. 

2.2. Measured Position Model 
A typical shearer operation process is to repeat “straight cutting–oblique cutting–

reverse straight cutting” to form a closed path, which is shown in Figure 3 [1]. The shearer 
runs in the order of A–B–C–D–E–F–G–H–I–J. Assuming that the shearer moves from the 
right to the left of Figure 3 during the first cutting cycle, we define the end corresponding 
to A, F, and I as the near end of the longwall face, and the corresponding end of the B, E, 
and J as the far end of the longwall face. The lengths of j−1, j, and j+1 cutting cycles, corre-
sponding to the lengths of AB, EF, and IJ, respectively, are the same. The advance distance 
between two adjacent cutting cycles is also the same, denoted by d, which can be measured 
by the displacement sensor fixed in the push arm of the hydraulic support. Some points 
with Δ interval in each cutting cycle are selected as optimal points for information fusion 
of KF. The ideal advance displacement of an optimal point can be expressed as: 

− = T
, 1| [  0 0]m

i j j dD , (5) 

where −D , 1|
m
i j j  represents the advance displacement of point i from the j−1 cutting cycle to 

the j cutting cycle. 
According to the CPOEM principle and the longwall mining process [1], the positions 

of the optimal points during the next cutting cycle can be predicted through the positions 
of the current cutting cycle and the advance displacement. The position of point i in the 
j+1 cutting cycle is expressed as: 

+ += +p p CC C D, 1 , , | 1
n b m

i j i j b m i j j  (6) 

where p ,i j
 and 

+p , 1i j
 denote the positions of point i in the j and j+1 cutting cycles, respec-

tively, which are expressed in the form of longitude, λ , latitude, L , and height, h , and 
matrix C , whose function is to convert the position increment in n-frame into the form 
of longitude, latitude, and height, is: 



Micromachines 2021, 12, 1527 5 of 20 
 

 

 + 
 + 
  

C
sec / ( ) 0 0

= 0 1 / ( ) 0
0 0 1

N

M

L R h
R h  (7) 

where 
NR  and 

MR  denote the transverse and meridian radius of curvature, respectively, 
and they are the parameters used to describe the earth ellipsoid model, which are re-
garded as constant values in this paper. 

 
Figure 3. Closed path of shearer during the longwall mining. 

The initial positions of the optimal points are provided in the first cutting cycle. The 
specific process is as follows: 
 The two optimal points corresponding to both ends of the longwall face can be accu-

rately measured in advance, as mentioned in [16,33]. 
 To avoid additional surveying and mapping, the initial positions of the remaining 

optimal points can be obtained using the position estimates of the integrated system 
in the first cutting cycle. This initial value assignment method is mentioned in [1]. 
Taking into account the existence of measurement noise, the measured position, 

p /CPOEMi
, of point i predicted by CPOEM can be approximated as: 

≈ +p p w/CPOEM /CPOEMi i i
 (8) 

where w /CPOEMi
 is the CPOEM noise vector of point i. 

3. Integrated Navigation and RTS Smoother Models 
3.1. Error State Equation of Integrated Navigation System 

The mounting angles between m-frame and b-frame are inevitable, even if the pre-
calibration process is carried out. The residual installation errors after calibration can be 

regarded as random constants, denoted by δ δα δα δα= T[   ]x y zα . The scale factor error of 
the odometer can also be regarded as a random constant. Thus, the following equation 
can be obtained: 

δ
δ

× =
 =

0



3 1

0Dk
α  (9) 

where 
×a b0  is a ×a b  zero matrix. 

The direction cosine matrix, Cm
b

, with the residual error δα  satisfies: 

δ= + ×C C I[ ( )]m m
b b α  (10) 

where I  is a third-order unit matrix and δ ×( )α  denotes the skew symmetric matrix of 
δα  with 3 rows and 3 columns. 

When the mounting angles, α , are controlled within a small range by a precise me-
chanical installation, the equation =C Im

b
 can be obtained directly without the need to 

perform the pre-calibration process. 
Some related error state vectors of the SINS satisfy the following equation: 
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δ

δ

 = +


= + ×
 = +







v v v
C C I

p p p

SINS

SINS

[ ( )]

n n n

b b n
n n ϕ  (11) 

where vn , Cb
n

, and p  are the true velocity, attitude matrix, and position, respectively, 
and 

vSINS
n , Cb

n
, and 

pSINS
 are the error-contaminated velocity, attitude matrix, and posi-

tion, respectively, calculated by the SINS. δ δ δ δ=v T[   ]n
E N Uv v v  and δ p  are the veloc-

ity errors and position errors of the SINS, respectively, T[   ]n
E N Uϕ ϕ ϕ=ϕ  is the misalign-

ment angles of Cb
n

 in n-frame, and the subscripts E, N, and U are the east, north, and up 
directions in n-frame. 

A 19-dimensional error state vector is defined as: 

δ δ δ δ =  x v p
TT T T T T T( ) ( )  ( )  ( )  ( )  ( )  ( )  n n b b

Dt kϕ ε α∇  (12) 

where bε  and b∇  are the gyro and accelerometer biases, respectively. 
Taking into account the low-speed motion characteristics of the shearer, the velocity-

related terms in the SINS error equation can be ignored. Then, the SINS error equation 
can be simplified to: 

3 1

3 1

2n n n n n n b
ie b

n n n n b
ie b

n

b

b

δ δ

δ δ

×

×

 = − × + × + ∇


= − × −
 =
 =
 ∇ =

0
0











v v f C
C

p C v

ω ϕ
ϕ ω ϕ ε

ε

 (13) 

where n
ieω  denotes the rotation rate vector of the earth and =f C fn n b

b
, in which f b  is 

the specific force measured by the accelerometers. 
The error state equation of the integrated navigation system can be expressed as: 

×

× ×

 
= + 
 

0
0 0





F

F
x x wSINS 15 4

4 15 4 4

( )

( ) ( ) ( )

t

t t t  
(14) 

where w( )t  is the noise vector of the integrated system and the 15 × 15 transition matrix 
FSINS

 is denoted by: 

× ×

× × ×

× × × ×

× × × × ×

 − × ×
 

− × − =  
 
  

0 0
0 0 0

0 0 0 0
0 0 0 0 0

f C
C

F
C

3 3 3 3

3 3 3 3 3 3
SINS

3 3 3 3 3 3 3 3

6 3 6 3 6 3 6 3 6 3

2( ) ( )
( )

n n n
ie b

n n
ie b

ω
ω

 (15) 

The discretized error state equation corresponding to (14) is: 

− − −= +X X W, 1 1 1k k k k kΦ , (16) 

where X k
 and 

−X 1k
 are the discretized error state vectors at 

kt  and 
−1kt , respectively, 

−W 1k
 denotes the system noise matrix at 

−1kt , and 
−, 1k kΦ  is the discretized state transition 

matrix that satisfies the following equation: 
−

−
F 1( )

, 1 =e kT t
k kΦ  (17) 

where T  denotes the filtering period. 
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3.2. Measurement Equations of Velocity and Position 
The velocity, 

vSINS
m , in m-frame calculated by the SINS can be expressed as: 

δ
δ

=

≈ + − ×

− ×

 

 v C C v
v C C v C C v

C v

SINS SINS

       ( )
           ( )

m m b n
b n

m m b n m b n n
b n b n

m b
b

ϕ
α

 (18) 

where =v C vb b n
n

. 
We find the difference between (3) and (18) to obtain the velocity measurement equa-

tion as: 
= − = + SINS OD/MC OD/MC( )m m

v v tz v v H x w  (19) 

where the measurement matrix, Hv
, of velocity is expressed as: 

×
 − × − × − 0H C C C C v C v v3 9= ( ) ( )m b m b n m b m

v b n b n b  (20) 

Similarly, the position measurement equation can be expressed as: 
= − = + z p p H x wSINS CPOEM CPOEM( )p p t  (21) 

where the measurement matrix, Hp
, of the position is given by: 

× ×  0 0H I3 6 3 10=p  (22) 

The update of the position measurement depends on the mileage calculated by the 
odometer, which means that the update period of the position measurement is an integer 
multiple of that of the velocity measurement. Therefore, the overall measurement model 
includes two forms: simultaneous velocity and position measurement update and sepa-
rate velocity measurement update. The specific update conditions and model equations 
are as follows. 

If the shearer is not in the first cutting cycle and the position measurement is judged 
to be valid by the mileage calculated by the odometer, then: 

  
=  
   


  =     

z
z

z

H
H

H

v

p

v

p

 (23) 

where z  and H , respectively, represent the overall measurement vector and measure-
ment matrix. 

Otherwise: 
 =
 =

z z
H H

v

v

 (24) 

The discretized measurement equation is: 
= +Z H X Vk k k k

 (25) 

where Zk
, Hk

, and Vk
 are the discretized measurement vector, the discretized meas-

urement matrix, and the measurement noise sequence at 
kt , respectively. 

3.3. Observability Analysis of Integrated System 
The main purpose of observability analysis is to study the observability and estimat-

able conditions of the error state. An observability analysis method directly relies on the 
state and measurement equations to investigate the observability. 
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3.3.1. Observability Analysis Based on the Velocity Measurement 
The observability analysis based on the velocity measurement has been discussed in 

detail in our previous work [34], so here, we directly summarize the observability conclu-
sions about the velocity measurement with the motion characteristics of the longwall 
shearer. 
 The velocity errors, δvn , are observable, and the estimation accuracy is related to 

the estimation degree of other error states. 
 The position errors, δ p , are unobservable, but the estimation accuracy will still be 

improved with the effective estimation of the velocity errors. 
 The acceleration and deceleration process of the shearer is the premise of exciting the 

error states δαx
, δαz

, and δ Dk , which contribute to the positioning errors. The error 

δαy
 is unobservable. 

 The error ∇b
z
 is observable. The separation of ∇b

x
 and ∇b

y , and the distinction of 

ε b
x

 and ε b
y , improving the estimation accuracy of nϕ , depend on the turning mo-

tion of the shearer. The azimuth error, ϕU
, is directly related to the lateral position-

ing error, thus, restricting the estimation accuracy of error δαz
. 

It can be concluded that frequent turning of the shearer is necessary to improve the 
estimation accuracy of the error states. However, limited by working conditions, the 
longwall shearer has very few steering maneuvers. Therefore, it is difficult to achieve high 
shearer positioning accuracy using only the integrated system of MIMU and the odome-
ter. 
3.3.2. Observability Analysis Based on the Position Measurement 

In (21), the measurement values are constructed by the position errors. Therefore, the 
position errors, δ p , are observable. The estimation accuracy of δ p  depends on the posi-
tion accuracy of the optimal points predicted by CPOEM. The vectors that make up the 
measurement values have the same initial position errors, so the initial position errors 
cannot be estimated. 

Taking the time derivative of (21) obtains: 

δ≈z C vn
p  (26) 

Equation (26) indicates that the velocity errors, δvn , are observable, and the estima-
tion accuracy is determined by the position errors. 

The terms related to vn  in the mathematical models can be ignored due to the low-
speed characteristics of the shearer. Therefore, the time derivative of (26) can be simplified 
as: 

δ

ϕ ϕ ω δ ω δ
ϕ ϕ ω δ
ϕ ϕ ω δ

− ≈ × − × +

− + + − +∇ 
 − − +∇ 
 − + + +∇ 

C z f v1( ) ( ) 2( )

2 sin 2 cos
  = 2 sin

2 cos

n n n n n
p ie

U N N U ie N ie U E

U E E U ie E N

N E E N ie E U

f f L v L v
f f L v
f f L v

ϕ ω ∇

 (27) 

where =f T[   ]n
E N Uf f f , = ∇ ∇ ∇ T[   ]n

E N U∇ , and ωie
 is the rotation rate of the earth. 

The acceleration and deceleration process of the shearer makes at least one of 
Ef  

and 
Nf  non-zero, which means that the coefficient of ϕU

 will not be 0 in (27). That is to 
say, the acceleration and deceleration process can improve the observability of the azi-
muth error, ϕU

. 
Let us assume a high-precision position predicted by CPOEM is obtained. Then, the 

errors δ p δvn

ϕU
, depends on the separating degree from the errors ϕE

, ϕN
, ∇E

, and ∇N
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. Although the state errors δ Dk , δαx
, and δαz

 are not directly observable in (21), (26), 
and (27), their accuracy will be improved with the estimation of error states δ p  and nϕ

. Similarly, the estimation accuracy of bε  will also be improved with the estimation of 
other state errors. 

3.4. RTS Smoothing 
RTS smoothing uses all the measurement values obtained in a time interval to esti-

mate the error states at every epoch in this interval. A typical RTS smoothing process is 
divided into two steps: forward filtering and backward smoothing. 

The forward filtering is obtained through standard KF, whose basic equation for dis-
cretization can be expressed as: 

− − −

− − − − −
−

− −

−

 =
 = + =
 = + −

= −

X X
P P Q

K P H R
X X K Z H X

P I K H P

, 1 , 1 1
T

, 1 , 1 1 , 1 1
T 1

, 1 , 1

, 1

( )
( )

k k k k k

k k k k k k k k

k k k k

k k k k k k k k

k k k k k

Φ
Φ Φ

 (28) 

where 
−X , 1k k

 and 
−P , 1k k

 are the one-step predicted states and covariance at 
kt , calculated 

from the information at 
−1kt , 

−P 1k
 and Pk

 denote the state estimate covariance at 
−1kt  

and 
kt , respectively, and 

−Q 1k
 is the variance matrix of the system noise sequence 

−W 1k
 

at 
−1kt . Kk

 represents the filter gain matrix at 
kt , and Rk

 is the variance matrix of the 
measurement noise sequence Vk

 at 
kt . 

The forward filtering in this paper refers to the KF based on the velocity and position 
measurements mentioned above. In the forward filtering process, it is required to save 

−X , 1k k
, X k

, 
−, 1k kΦ , 

−P , 1k k
, and Pk

 at every epoch in the time interval. After completing 
the forward filtering in the time interval, the backward smoothing is performed. The pro-
cedure of the backward smoothing is broken down into the following steps: 
1. Backward Smoothing Initialization 

Define the time interval as [
jt ,

+j Nt ], then the initialization equation is given as: 

+ +

+ +

 =
 =

X X
P P

rts ,

rts ,

j N j N

j N j N

, (29) 

where 
+X j N

 and 
+Pj N

 are the error state vector and the mean square error matrix of the 

forward filtering process at 
+j Nt , and 

+X rts , j N
 and 

+Prts , j N
, which are the initial values re-

quired for backward smoothing, denote the error state vector and the mean square error 
matrix of the backward smoothing process at 

+j Nt . 

2. Backward Smoothing Update 
The recursive equations of the backward smoothing update are given by: 

+ +

+ +

 = + −
 = + −

X X A X X
P P A P P A

rts , , 1 1,
T

rts , , 1 1,

( )
( )

k k k rts k k k

k k k rts k k k k

, (30) 

where Ak
 is the smoother gain, determined as: 

−
+ +=A P PT 1

1, 1,k k k k k kΦ , (31) 

Sorting out the process of KF and the RTS smoother, the flowchart is shown in Figure 
4. If mod(S, Δ) = = 0, where S denotes the mileage of the shearer calculated by the odome-
ter, the optimal point from the CPOEM data is valid and the position measurement update 
of KF is performed. Backward smoothing is only executed when the shearer is at both 
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ends of the longwall face and not in the first cutting cycle. The positions of the optimal 
points of the next cycle will be updated immediately after the end of backward smoothing. 

 
Figure 4. Flowchart of KF and the RTS smoother. 

4. Experiments 
To evaluate the performance of the proposed positioning method, experiments were 

carried out, as shown in Figure 5. A mobile carrier equipped with the MIMU (Xsens MTi-
G-700) and the odometer simulated the movement of the shearer. The MIMU was installed 
on the mobile carrier through an adapter plate and the odometer was connected to its 
wheel. A GPS receiver with an antenna was also installed on the mobile carrier. The GPS 
receiver can output centimeter-level positioning results through the network differential 
technology. The positioning result of the GPS receiver only provides an evaluation basis 
for tests. The specifications of the MIMU and the initial errors are listed in Table 1, which 
are related to the initial parameter configuration of the Kalman filter. The specifications 
and the initial attitude error refers to the MTI user manual [35]. The initial position error 
refers to the network differential positioning accuracy [36]. The initial parameters of the 
filter are set as Appendix A. 

The mobile carrier simulated four cutting processes of the shearer with a reciprocat-
ing travel distance of 44.6 m and an advance distance of 1.2 m, as shown in Figure 6. Figure 
6 is drawn by the network differential results provided by the GPS receiver. The symbols 
“*” and “o” denote the start and end of the trajectory, respectively. 
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Figure 5. Experiment mobile carrier and the equipment. 

 
Figure 6. Trajectory of the mobile carrier during the experiment. 

Table 1. Specifications of the MIMU and initial errors. 

Initial errors 
Initial attitude errors ( ° ) [0.3;0.3;1] 

Initial velocity errors (m/s) [0.01;0.01;0.01] 
Initial position errors (m) [0.05;0.05;0.05] 

Gyroscope 
Bias repeatability ( / h° ) 720 
Random walk ( / h° ) 0.6 

Accelerometer 
Bias repeatability ( mg ) 3 

Random walk ( mg / Hz ) 0.08 

In order to study the influence of the selection of optimal points on the estimation of 
error states, we set the optimal points interval, Δ, as 2, 6, and 10 m, in turn. Figure 7 shows 
the positioning errors of the proposed integrated system without performing RTS smooth-
ing. A1–A4 corresponded to the time periods of the first to fourth cutting cycles, respec-
tively. The remaining time periods corresponded to the process of the shearer processing 
the end coal seam. It can be seen that during the first cutting cycle, the curves of different 
values of Δ overlapped in the east, north, and height directions, respectively, since posi-
tion measurement filtering was not performed. During the second to fourth cutting cycles, 
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the curves of the east and north errors were smoother as Δ decreased. Figure 8 shows the 
positioning errors of the proposed integrated system with performing RTS smoothing. It 
was straightforward to see that the positioning accuracy of all three axes with performing 
RTS smoothing was higher than that of not performing, regardless of the value of Δ. In 
addition, it can be seen that there were larger burrs in the east and north directions as Δ 
increased. Therefore, we can choose a smaller value of Δ to obtain smoother position esti-
mations. 

A1 A2 A3 A4

△ : optimal points interval

 
Figure 7. Positioning errors without performing RTS smoothing under different values of Δ. 

A1 A2 A3 A4

△ : optimal points interval

 
Figure 8. Positioning errors with performing RTS smoothing under different values of Δ. 

Figures 9 and 10, respectively, show the estimations of the accelerometer and gyro 
biases with and without performing RTS smoothing, while we set Δ as 2 m. It can be seen 
that the estimations of MIMU biases were equivalent with and without performing RTS 
smoothing when the estimators tended to be stable. Although the true values of MIMU 
biases cannot be accurately obtained, the results of the pure navigation before and after 
the bias compensation can reflect their estimation accuracy. We used the first 300 s of data 
to perform the pure navigation calculations before and after the bias compensation, and 
the results are shown in Figure 11. Compared with the results before compensation of the 
MIMU biases, the positioning accuracy was greatly improved after compensation. There-
fore, the MIMU biases can be effectively estimated. The RTS smoothing technology only 
reduced the error fluctuations in the estimation process, and did not affect the final esti-
mation accuracy. 



Micromachines 2021, 12, 1527 13 of 20 
 

 

 
Figure 9. Estimation results of the accelerometer biases with and without performing RTS smooth-
ing. 

 
Figure 10. Estimation results of the gyro biases with and without performing RTS smoothing. 

 
Figure 11. Positioning errors of pure navigation calculations before and after compensation of the 
MIMU biases. 
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The estimation results of the odometer scale factor and mounting angles are shown 
in Figure 12. We know that δαy

 is always unobservable from the observability analysis. 
Therefore, its estimation curve is not drawn in this paper. The estimated scale factor and 
mounting angles, whose record order was δ δ δα δα=k T[   ]D x zkα , with and without per-

forming RTS smoothing, were δ = ° − ° T
1 [0.017 0.333  0.307 ]kα  and 

δ = ° ° T
2 [0.029 0.352  0.093 ]kα , respectively. The positioning accuracy of the DR algorithm 

is restricted by δkα . In other words, the DR results can reflect the estimation effect of 
these three error states. The DR navigation calculations were performed after the compen-

sation of δ 1kα  and δ 2kα  using the data that has been compensated for the MIMU biases, 
and the results are shown in Figure 13. The horizontal positioning accuracy after compen-

sation of 1δkα  was better than that after compensation of 2δkα , which means that the 
estimation accuracy of the error states δ  Dk  and δαz

 with performing RTS smoothing 
was improved. According to the theory of observability analysis, the estimation accuracy 
of error states (such as δ  Dk and δαz

) can be improved by feedback when the position 
errors of the optimal points were reduced. Since the positioning accuracy with performing 
the RTS smoothing was better than that without performing (shown in Figures 7 and 8), 
the position errors of the corresponding optimal points were also smaller. Therefore, the 
results of Figure 13 are consistent with the observability analysis. 

 
Figure 12. Estimation results of the odometer scale factor and mounting angles with and without 
performing RTS smoothing. 
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Figure 13. Positioning errors of DR calculations after compensation of 1δkα  and 2δkα . 

The shearer is a long and narrow machine with limited space for the installation of 
external sensors. The small size of MEMS inertial sensors makes them a goal pursued by 
researchers. However, small-sized and low-cost inertial sensors often have low measure-
ment accuracy. Therefore, we studied the impact of MIMU, which has a lower accuracy 
than MTi-G-700, on positioning accuracy of the mobile carrier. The idea of MIMU data 
generation is to superimpose errors on the original gyroscope and accelerometer data cor-
responding to Figure 6 to simulate lower-precision MEMS inertial sensor data. The error 
components of the gyroscope and accelerometer include repeatability biases, slow-vary-
ing drifts, and fast-varying drifts [4,5]. The repeatability biases can be regarded as a ran-
dom constant. The slow-varying drift can be approximated as white noise due to the short 
correlation time of MIMU. The fast-varying drift is often abstracted as a white noise pro-
cess. The white noise process is usually evaluated by random walk. In summary, the error 
model of the gyroscope and accelerometer can be expressed as: 

b b b
s w
b b b
s w

 = +


= +

ε ε ε
∇ ∇ ∇

 (32) 

where b
sε  and b

s∇  represent the total gyroscope and accelerometer errors, respectively, 
bε  and b∇  denote the constant biases of the gyroscope and accelerometer, respectively, 

and b
wε  and b

w∇  are the random walk noises of the gyroscope and accelerometer, respec-
tively. 

A series of MIMU errors were designed, as listed in Table 2. The errors in Table 2 
were added to the original data corresponding to Figure 6. The position errors before and 
after RTS smoothing are shown in Figures 14 and 15, respectively. Similar to the phenom-
enon in Figures 7 and 8, even if the accuracy of the inertial sensors is reduced, the posi-
tioning accuracy can still be improved after performing RTS smoothing. It can be seen 
from Figure 15 that the east errors of Par 3 and Par 2 are much larger than those of other 
parameters, and the east error of Par 3 is greater than that of Par 2. This is because the 
constant biases of the gyroscope are not fully estimated, and the residual constant com-
ponent is larger as the constant biases increase. Correspondingly, the attitude and position 
errors are bound to be greater. In summary, it can be concluded that the proposed method 
can still improve the positioning accuracy even if the low-precision inertial sensors are 
used, and the positioning accuracy is closely related to the sensor parameters, especially 
the gyroscope. 
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Table 2. Error parameters to be accumulated. 

 Gyroscope Accelerometer 
 Constant bias ( / h° ) Random walk ( / h° ) Constant bias ( mg ) Random walk ( mg / Hz ) 

Par 1 100 0 0 0  
Par 2 200 0 0 0 
Par 3 300 0 0 0 
Par 4 0 1 0 0 
Par 5 0 2 0 0 
Par 6 0 3 0 0 
Par 7 0 0 1 0 
Par 8 0 0 2 0 
Par 9 0 0 3 0 
Par 10 0 0 0 1 
Par 11 0 0 0 2 
Par 12 0 0 0 3 

 
Figure 14. Positioning errors without performing RTS smoothing under different error parameters. 

 
Figure 15. Positioning errors with performing RTS smoothing under different error parameters. 

In order to further verify the performance of the method proposed in this paper, it is 
compared with the traditional method. The method mentioned in [1] is state-of-the-art 
based on the SINS and the odometer. However, this method does not have the ability to 
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autonomously estimate the biases of inertial sensors, mounting angles between MIMU 
and the odometer, and the scale factor error of the odometer. Considering that the above 
parameters have a great influence on the traditional method, it was compensated with the 
parameter values obtained by the proposed method. The positioning results of the tradi-
tional method before and after the estimated parameter compensation and the method 
proposed in this paper are shown in Figure 16. It can be seen from Figure 16 that after the 
parameters are compensated, the positioning errors of the traditional method are signifi-
cantly reduced. It can also be seen that the accuracy of the method proposed in this paper 
is better than the traditional method. In order to visually describe the accuracy improve-
ment range of the proposed method, the spherical error probable (SEP) is calculated. The 
SEP is a universal evaluation method of 3D positioning accuracy [37], which is listed in 
Table 3. A1–A4 correspond to the first to fourth cutting cycles, respectively. It can be seen 
from Table 3 that compared with the traditional method without compensation, the posi-
tioning accuracy of the proposed method increases by 71.43%, 83.92%, 94.30% and 92.64% 
in turn from A1 to A4. Since the position measurement is not performed in A1, and the 
optimal point position of A2 is related to that of A1, the SEP of the proposed method is 
larger in A1 and A2. It is significantly reduced after A3. Compared with the traditional 
method with compensation, the positioning accuracy of the proposed method increases 
by 60.61% in A3 and is equivalent in A4. The above phenomenon not only proves the 
superiority of the proposed method in positioning accuracy, but also further shows that 
the method proposed in this paper can effectively estimate some parameters, such as bi-
ases of the MIMU, odometer scale factor, etc. 

A1 A2 A3 A4

 
Figure 16. Comparison of positioning errors between the proposed method and the traditional 
method. 

Table 3. SEP in each cutting cycle. 

 Cutting Cycle SEP (m) 

Traditional method without compensation 

A1 1.75 
A2 1.99 
A3 2.28 
A4 2.31 

Traditional method with compensation 

A1 0.21 
A2 0.29 
A3 0.33 
A4 0.17 

Proposed method 

A1 0.50 
A2 0.32 
A3 0.13 
A4 0.17 
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5. Conclusions 
This paper proposed a positioning method of the shearer based on an integrated sys-

tem and RTS smoothing technology. Performing RTS smoothing on the basis of the Kal-
man filter is a major feature of this paper. An experiment was carried out to verify the 
performance of the proposed positioning method. The experimental results showed that 
the positioning accuracy after performing RTS smoothing was significantly improved, 
which was closely related to the sensor parameters, and the estimatable ability of some 
error states was improved. In addition, a comparison with traditional methods was also 
carried out. The result shows that the positioning accuracy of the proposed method can 
be improved by at least 60.61%. 

According to the existing theories and the experimental results in this paper, it can 
be seen that RTS smoothing technology has a significant improvement effect on the jump 
phenomenon of the error states. Therefore, not only the position measurement, but other 
excellent measurement information that can be captured may also cause the error state to 
jump. At this time, RTS smoothing can still play an important role, which can be further 
studied. 
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Appendix A 
The settings of the initial state, 

0x , initial covariance matrix, 
0P , and system noise 

variance matrix, 
kQ , are the key to Kalman filter recursion. Referring to Table 1, these can 

be set as: 

0 19 1×= 0x  (A1) 

2

0

[0.01 m/s;0.01 m/s;0.01 m/s;0.3 ; 0.3 ;1 ; 0.05 m;0.05 m;0.05 m;
diag

720 /h;720 /h;720 /h; 3 mg; 3 mg; 3 mg; 3 ; 3 ; 3 ; 0.05] 3
 ° ° °

=  ° ° ° ° ° ° × 
P  (A2) 

2

13 1

[0.08 mg/ Hz;0.08 mg/ Hz;0.08 mg/ Hz;
diag

0.6 / h;0.6 / h;0.6 / h; ] 5
k st

×

 
 =
 ° ° ° × 0

Q  (A3) 

where 
st  is equal to the SINS solution cycle and set as 0.01 s. The units presented above 

are for easy interpretation, and should be changed to SI in practical application. 
Note: After a period of use, MIMU is affected by many factors, and its system noise 

may not meet the specifications in the manual. At this time, the value of 
kQ  can be ap-

propriately amplified. 
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