
micromachines

Article

A Survey of Software-Defined Networks-on-Chip: Motivations,
Challenges and Opportunities

Jose Ricardo Gomez-Rodriguez 1 , Remberto Sandoval-Arechiga 1,* , Salvador Ibarra-Delgado 1,2 ,
Viktor Ivan Rodriguez-Abdala 1 , Jose Luis Vazquez-Avila 3 and Ramon Parra-Michel 4

����������
�������

Citation: Gomez-Rodriguez, J.R.;

Sandoval-Arechiga, R.;

Ibarra-Delgado, S.; Rodriguez-

Abdala, V.I.; Vazquez-Avila, J.L.;

Parra-Michel, R. A Survey of

Software-Defined Networks-on-Chip:

Motivations, Challenges and

Opportunities. Micromachines 2021,

12, 183. https://doi.org/10.3390/

mi12020183

Academic Editor:Yi Yang

Received: 15 December 2020

Accepted: 9 February 2021

Published: 12 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Academic Unit of Electrical Engineering, Center of Research, Innovation and Development in
Telecommunications (CIDTE), Autonomous University of Zacatecas, Zacatecas 98000, Mexico;
jrgrodri@uaz.edu.mx (J.R.G.-R.); sibarra@uaz.edu.mx (S.I.-D.); abdala@uaz.edu.mx (V.I.R.-A.)

2 Department of Electronic and Computer Engineering, University of Cordoba, 14071 Córdoba, Spain
3 Facultad de Ingeniería, Universidad Autónoma del Carmen, Carmen 24180, Mexico;

jvazquez@pampano.unacar.mx
4 Department of Electrical Engineering, Communications Section, CINVESTAV-IPN, Guadalajara,

Jalisco 45019, Mexico; rparra@gdl.cinvestav.mx
* Correspondence: rsandoval@uaz.edu.mx; Tel.: +52-492-925-6690 (ext. 4009)

Abstract: Current computing platforms encourage the integration of thousands of processing cores,
and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops,
and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and
parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable
connectivity for diverse applications with distinct traffic patterns and data dependencies. However,
when the system executes various applications in traditional NoCs—optimized and fixed at synthesis
time—the interconnection nonconformity with the different applications’ requirements generates
limitations in the performance. In the literature, NoC designs embraced the Software-Defined
Networking (SDN) strategy to evolve into an adaptable interconnection solution for future chips.
However, the works surveyed implement a partial Software-Defined Network-on-Chip (SDNoC)
approach, leaving aside the SDN layered architecture that brings interoperability in conventional
networking. This paper explores the SDNoC literature and classifies it regarding the desired SDN
features that each work presents. Then, we described the challenges and opportunities detected
from the literature survey. Moreover, we explain the motivation for an SDNoC approach, and we
expose both SDN and SDNoC concepts and architectures. We observe that works in the literature
employed an uncomplete layered SDNoC approach. This fact creates various fertile areas in the
SDNoC architecture where researchers may contribute to Many-Core SoCs designs.

Keywords: Networks-on-Chip; challenges; opportunities; Software-Defined Networks-on-Chip; survey

1. Introduction

Current Many-Core System-on-Chip designs exploit the computation power and
parallelism available for dynamic workload systems such as mobile smartphones, IoT,
embedded devices, desktop, and data centers. A Many-Core System-on-Chip has a number
from tens to thousands of processing cores and memories interconnected by an on-Chip
network. The processing cores vary from CPU, GPU, Intellectual Property (IP), pro-
grammable hardware, and specialized neuromorphic hardware for artificial intelligence,
among many others.

NoCs attracted the attention of the most important companies in the Silicon Valley
industry. Several large companies purchased NoC companies, as shown in Table 1. This
trend indicates the importance of accelerating new chips’ design by using an NoC solution
from companies that have proven their products in the marketplace. Arteris is currently the
only significant player in the NoC scene; however, this leaves a fertile path for innovation
and creating solutions for recent market niches.

Micromachines 2021, 12, 183. https://doi.org/10.3390/mi12020183 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-2430-1484
https://orcid.org/0000-0002-2129-5667
https://orcid.org/0000-0003-4009-7145
https://orcid.org/0000-0001-7018-4982
https://orcid.org/0000-0002-9654-2431
https://orcid.org/0000-0003-2327-2482
https://doi.org/10.3390/mi12020183
https://doi.org/10.3390/mi12020183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12020183
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/12/2/183?type=check_update&version=1


Micromachines 2021, 12, 183 2 of 26

Table 1. Large Silicon Valley companies bought NoCs companies. Qualcomm made a partial purchase
on Arteris, which preserves its patents.

Company Buyer Date

Arteris (partial) Qualcomm 2013 [1]

Netspeed Intel 2016 [2]

Sonics Facebook 2019 [3]

An NoC provides the means to meet functional, power, and cost requirements; and
achieve operational safety and data reliability requirements when required. The develop-
ment of chips for current applications demands that the interconnection networks inside
and outside the chip have adequate bandwidths to avoid causing bottlenecks that degrade
the processing. Table 2 shows some chip developments by the most relevant electronics
industry companies. Some of these developments reach the tens of thousands of processing
cores that result in fundamental challenges to the interconnection on a chip [4,5]. It is
important to note that all companies employ an on-Chip network to connect the processing
cores. This fact highlights the importance of NoCs in the industry.

Table 2. Recent chips by relevant companies. We describe the type of cores and the on-Chip interconnection. All designs
have a Many-Core approach.

Chip Company Features(Cores) NoC References Year

Xeon Phi Intel 72 Xeon cores
Ring (Photonic)

[6] 2016Knight’s Ferry-Corner
/2D Mesh Knight’s landing

OpenPiton + Ariane - 65,536 2D Mesh crossbar [4] 2019

DaVinci Huawei 32 DaVinci cores Uses Arteris NoC Ring [7] 2019Ascend910 and Mesh bus

TrueNorth IBM 4096 Neurosynaptic cores 2D Mesh [8,9] 2019

Cloud A100 Qualcomm 16 Neural processors Arteris [1,10] 2020

Loihi Intel 128 Neuromorphic cores, A 2D Mesh NoC with [11] 2020up to 4096 on-Chip cores.

Epiphany-V Adapteva 1024 RISC-V cores Three NoCs [5] 2020

AI Processor - 16,384 (128 × 128) Nano cores 7 NoCs [12] 2020

Versal (ACAP) Xilinx - The NoC topology is not regular [13–15] 2020defined by the design

As the number of processing elements and memory in an SoC increases, the elements’
interconnection becomes the critical element in the design process. SoC architectures
evolved with more types and numbers of hardware accelerators added with each new
version of a chip. Current data processing techniques require hardware customization
for algorithm acceleration but also dataflow optimization. An NoC allows designers to
separate computational problems from communication problems in a Many-Core SoC.
Thus, an adaptable NoC is crucial for the system performance. Having a scalable network
of thousands of processing cores is not an easy task, and a layered approach is needed
to address different problems in a modular way. However, The NoC design complexity
increases with the adaptive requirements due to dynamic workload [16], which makes the
management of a network of thousands of elements a complex and interesting problem.

In the Many-Core arena, the NoC becomes the performance bottleneck and introduces
the need for network management. Network management problems also occur in tra-
ditional networks with hundreds of devices connected, for example, a data center or a
university campus. Software-Defined Networking (SDN) has been a paradigm shift that
elegantly solves computer networks’ management problems. By separating the control



Micromachines 2021, 12, 183 3 of 26

logic from the data transmission logic, it simplifies the network device implementation. It
logically centralizes decisions in a controller or Network Operating System with a global
vision of the network. It can perform decisions or make optimizations with more and better
information to achieve system performance goals. SDN’s main benefit is to consolidate
and simplify the network devices’ management of different vendors employing an SDN
controller [17].

The SDN concept copes with the management problem in Many-Core systems based
on NoCs. A Software-Defined Network-on-Chip (SDNoC) brings benefits such as higher
flexibility for runtime and self-adaptive network management, and a reduced hardware
complexity for routers. An external software entity, denominated SDNoC controller, carries
features such as Quality of Service (QoS), fault tolerance, and power management, yielding
simpler NoC routers. Therefore, the routers are configurable, and their primary function is
to redirect NoC packets according to the SDNoC controller policies and rules. The SDNoC
controller has a global view of the NoC and its resources. Thus, the SDNoC controller
globally optimizes the networks with different goals such as fault mitigation, load balance,
power consumption, and QoS for real-time flows. Furthermore, the controller can combine
several goals to achieve multi-objective management [17].

The SDNoC approach bears a simpler and configurable router architecture with an ex-
ternal software controller that changes the routing paths according to real-time constraints,
which differs from other software-based control proposed in the literature [17–19]. In 2015,
we introduced a layered SDN architecture in the NoCs, employing the SDNoC concept [20].
This architecture allowed to simplify the designs of the system’s interconnections. Several
works implemented the SDNoC approach, but they lack a clear layer definition. The lay-
ered architecture’s original vision thrives as an open platform for innovation where the
designer reuses SDNoC solutions, improves time to market, and reduce non-recurring
engineering cost. However, the proposal was not fully understood, and SDNoC research
took different ways.

This paper contributes with a survey of the literature related to SDNoC. We explain the
motivation for an SDNoC approach and clarify both SDN and SDNoC concepts. Moreover,
it shows how state-of-the-art has overlooked some details of an SDN architecture and
presents some research directions to correct the way to a complete architecture for SDNoC-
based systems.

We present the rest of this work as follows: Section 2 explains the motivation for
a SDNoC approach. We describe the SDN concept in Section 3 and clarify the SDNoC
architecture in Section 4. Section 5 surveys the works related to Software-Defined Networks-
on-Chip and classifies the literature regarding the SDN features. Finally, Section 6 presents
the challenges and the opportunities revealed in the literature survey, and Section 7 inte-
grates the conclusions and perspectives.

2. The Motivation for an SDNoC Approach

The most uncomprehended aspects of Software-Defined Networks-on-Chip are the
motivation and the management problems associated with Many-Core systems that it
solves. In this section, we present the NoC basics to understand the NoC management
issues. We also discuss network management optimization problems related to increasing
the number of processing elements in an NoC-based system.

2.1. NoC Basics

In the NoC-based design, several processes and techniques from the classic computer
networking approach are introduced into SoC design [21]. The NoC concept employs
a packet-switching fabric for on-chip communication. In this architecture, the SoC’s
computing power is divided into processing tiles, each tile formed by processing elements,
memories, Network Interfaces (NI), and routers, as Figure 1 shows. Network Interfaces
decouples computation and communication domains. At the source, NI converts the data
from the processing cores into packets. NI merges all the packets to gather the message



Micromachines 2021, 12, 183 4 of 26

and delivers it to the destination’s processing core. The central NoC elements are routers
and links. Routers move packets from source to destination nodes, and point-to-point links
connect two neighboring routers.

Figure 1. NoC architecture, application, and its mapping to the NoC. The micro-architecture of a node, which consists of an
on-chip router, buffers, and processing element (PE), is also shown on the right-hand side of the figure [22].

In the following section, we describe the design issues and goals related to an NoC-
based SoC design.

2.2. Design Goals

The NoC concept permits designers to decouple the communication fabric from
the processing and storage elements [23]. Thus, designers optimize the interconnection
infrastructure independently of the functionality. With the use of models and techniques
from networking and parallel processing, designers can view a complex SoC as a micro-
network of multiple blocks [21]. Furthermore, abstraction levels facilitate a modular design
and encourage innovation in every layer guaranteeing separation of concerns.

However, the design process has optimization goals with one or several metrics
involved, which may complicate the design space exploration. In the following, we present
the metrics most used in the literature.

2.2.1. Performance and QoS

It is crucial to evaluate NoC designs in terms of their performance metrics, regardless
of their implementation [23]. Although performance analysis can include several metrics
such as reliability and jitter, we focus on the most used metrics in the literature, throughput,
latency, and QoS.

Throughput is the rate at which packets are delivered by the network, with units of
bits per clock cycle, we avoid using packets/cycle or flits/cycle since the packet size or
flit size may change from one implementation to another. We measure the throughput



Micromachines 2021, 12, 183 5 of 26

by counting the packets that arrive at destinations over a time interval for each source-
destination pair and computing the rates [24]. Additionally, we can define the throughput
as the maximum load the network can physically handle [23].

Latency is the time in clock cycles that a packet needs to traverse the network from
source to destination [24]. We define transport latency as the time (in clock cycles) that
elapses between a message injection into the network at the source node, and the end of
packet reception at the destination node [23].

Quality of Service encloses a collection of design requirements in specific performance
metrics in a differentiated services scheme. Hence, the associated metrics to one application
or source-destination pair must fulfill a certain performance level, for example, a maximum
latency value [23].

2.2.2. Reliability and Fault Tolerance

Although current technology permits us to incorporate thousands of processing cores
due to the shrinking transistor geometries and rigorous voltage scaling, it brings some
reliability issues. The vulnerability of fabricated NoC components affect their reliability,
and it is due to transient and permanent faults, as shown in Table 3. Thus, a significant
challenge is to enhance the system reliability [25].

Reliable execution of applications even with one or more faults is a desirable capa-
bility on NoC-based systems. A network degrades gracefully if it gradually reduces its
performance with the number of faults. This ability is called fault tolerance [24], and we
can measure it as the number of faults it can withstand before breakdown.

Table 3. Chip faults exhibit different syndromes and have various causes that affect NoC reliability [18,25–27].

Type of Fault Syndrome Characteristics Cause Solution

Transient
One or more Random and Crosstalk effect or Error checking/
bit-errors in a short duration alpha or neutron correcting schemes or

transmitted packet particle strikes retransmissions

Permanent Faulty elements Non-recoverable

Due to manufacturing

Redundant resources

device defects

defects or device

available towear-out caused by

replace the faultyNegative Bias Temperature

componentsInstability (NBTI),
Hot Carrier Injection (HCI),
Time-Dependent Dielectric

Breakdown (TDDB)

2.2.3. Thermal Management

Many-core NoC-based designs need to cope with the high power density and tem-
perature effects in delay, leakages, and reliability [28]. Thermal hotspots cause timing
issues that force designers to opt for wider timing margins that degrade performance.
The rise in on-chip components’ temperature may lead to permanent failures and de-
grade system reliability [29]. These facts make the thermal problem a vital challenge for
Many-Core systems.

Throttling is one technique to reduce network temperature by lowering the clock
frequency of some network components [28]. Routed traffic is directly related to switching
frequency, power dissipation, and temperature increase. The less traffic the router processes,
the lower its temperature is. This method effectively decreases the power generation in
a network section. However, if we apply the throttling strategy until the router is off by
power gating, we disconnect the router from its neighbors. In consequence, we changed
the topology, affected the routing process, and degraded the NoC performance.



Micromachines 2021, 12, 183 6 of 26

2.2.4. Power Efficiency

Power efficiency is the ultimate challenge for chip designers, from battery-operated
embedded SoCs to datacenter-specialized processing chips. As we mentioned before,
thousands of cores and their interconnection must coexist in a single chip in the Many-core
era. Transistor power leakage thrives its power consumption. Consequently, we must
control the chip temperature to satisfy the manufactured maximum temperature, to avoid
permanent chip damage [30]. The NoC consumes a significant percentage of the chip’s
energy; then, energy efficiency is a crucial design goal in NoC-based systems.

Dark (power gating) silicon and dim (dynamic voltage/frequency scaling) silicon
are two techniques to achieve energy efficiency in Many-Core chips [30–32]. Since power
depends on voltage and frequency directly, the NoC must dynamically configure links
and nodes depending on the traffic demands to extend chip power and thermal budgets,
by scaling node-voltage and link-width, or power gating. Reza et al. affirm that 21%
and 50% of chip resources may have to be dark at 22 nm and 8 nm process technology,
respectively [30].

2.2.5. Security

The Internet of Things increases Internet connectivity from the data center to the
battery-powered NoC-based end devices. However, security vulnerabilities came with
connectivity, which conveys that IoT devices represent a risk to any system. These sys-
tems download software code and firmware updates through their Internet connection.
However, the downloaded software may be malicious and modify the system operation,
retrieve secret information, or disrupt their services. Since the NoC is a shared medium
is the preferred center of hackers’ attacks, it will affect computation and communication
services [33]. In the IoT context, NoC-based systems integrate cryptographic hardware
core for confidentiality and authentication security services. These components are prone
to side-channel attacks. The cryptographic core’s measurements of the execution time,
power consumption, and electromagnetic (EM) radiation are classical side channels attack.
Attackers optimize cache attacks by detecting NoC communication patterns of sensitive
traffic [34]. Thus, the attacker may compromise the complete embedded system’s security
by the collision of malicious and sensitive traffic in the NoC.

2.3. NoC Optimization Problems

In this work, we focus on NoC management problems, and we leave aside programming
and logic implementation issues to focus on the communication processes optimizations.
Therefore, we present the most used design strategies applied to NoC management.

The building process of a suitable topology is called topology design. Tasks constitute
applications, and the design process allocates every task into one processing element, see
Figure 1, this process is called application/task mapping. Then, we defined the time of
execution of every task, according to some criteria; this is called task scheduling. Tasks
have communication requirements expressed as data dependencies among pairs of pro-
cessing elements. According to some criteria, the path definition from a source-destination
communication pair is called routing. All the processes mentioned above are interrelated,
causing changes produced by one process to affect the others [35].

2.3.1. Topology Design

An NoC topology is a description of each router’s connection to its neighbors. Some
of the well-known topologies of NoC are Mesh, Ring, Torus, Star, Butterfly, and Fat Tree.
Topology affects latency, throughput, area, fault tolerance, and power consumption [35].
The suitable NoC topology should have the following features: large bisection bandwidth,
low node degree, small diameter, and low average distance [25]. Due to its large bisection
bandwidth, simple node connection, and low complexity routing algorithm, the mesh is
the most popular topology. However, it is important to design a topology that adapts



Micromachines 2021, 12, 183 7 of 26

to applications requirements, i.e., an application-specific topology [36,37]. Dynamically
reconfigurable hardware such as FPGA technology enables adaptable topology.

2.3.2. Scheduling

Another important strategy in NoC design is communication and task scheduling.
The NoC-specific issue to cope in scheduling is to take into consideration the complex
effects of the network (e.g., congestion), which may change dynamically during task
execution [22].

2.3.3. Mapping

The mapping process assigns the selected processing elements or cores into a topol-
ogy, i.e., the places described by the topology nodes [22]. Once we selected a particular
topology and application tasks assigned and scheduled into processing cores, the mapping
determines each processing element’s neighbors, impacting both performance and energy
consumption, and defines possible thermal hotspots [31].

2.3.4. Routing

The routing process defines the route(s) or path(s) that a message takes from every
source-destination pair of processing elements [22] and affects all the goals in the NoC
design. The hop count or latency is directly affected by the route taken. Throughput is
affected by congestion, which depends on the capacity of the routing to load balance. Each
hop translates into a router energy overhead increasing power dissipation. Finally, routing
influences reliability as it chooses routes that avoid faults [22].

2.3.5. Management

The increasing number of processing cores in the current NoC-based system imposes
new management and supervision requirements [18]. Some processing elements in the
network serve as controller cores, which keep track of the status of the system and provide
this information to the rest of the processing elements [18].

Some works described the concept of a cognitive network that can observe, act, learn,
and optimize its performance [38,39]. This concept imposes management and supervision
requirements on NoC-based systems. However, a modular and widespread management
framework for Many-Core NoCs is still missing from the literature.

2.4. Summary

We have several possible solutions, which form the design space, for each of the above
goals using different design strategies. To find the optimal solution for the design problems,
we must explore the design space. Exhaustively searching the solution space becomes
almost impossible since all the above optimization problems are NP-hard problems. Then,
the literature envisaged techniques based on heuristics, meta-heuristics, and evolutionary
approaches to explore the design space [25]. Table 4 shows some works in the literature
that solve some of the issues described above. However, these solutions are not reusable or
interchangeable, which increases the time to market and the non-recurring engineering cost.
We believe that an SDNoC approach will benefit developing a system with optimizations
engines based on the work classified in Table 4. In the sections below, we explain the details
of the systems architecture to achieve this goal.

As Grecu et al. state, the NoC paradigm success relies on the standardization of the
interfaces [23], here we focused on the management and control interfaces.



Micromachines 2021, 12, 183 8 of 26

Table 4. Recent literature classification of NoC optimization problems and goals. These works could benefit from an SDNoC
architecture. SDNoC will provide a reuse framework for the different solutions proposed in every paper into a single
SDNoC system.

Problem/Goal Thermal Latency Performance Power Fault Security
Aware (Throughput) Efficiency Tolerance

Mapping [29] [40,41] [40,42] [26,27,31,36,40,41] [25–27,29]

Topology [36,37,43]

Routing [44–46] [44,45,47,48] [48] [38] [34]

Scheduling [29] [49] [26,27] [27] [34]

Management [19,28,30] [32,50,51] [50] [30,32,50,52–54] [18,32,50,55] [17,33,50,56,57]

3. Software-Defined Networking Concept

In a conventional networking context, a simple network management architecture has
three planes: data forwarding, control, and management. (1) Data forwarding corresponds
to the network devices such as routers, switches, and hubs that transmit data from source
to destination. (2) The control plane corresponds to the forwarding decisions, traditionally
implemented in a distributed manner within the data plane elements, and protocols
associated with the information exchange for the decision process. (3) The management
plane includes the software services used to monitor and configure in situ or remotely the
control functionality.

3.1. SDN Motivation

Several problems push the industry to a new networking paradigm, in which admin-
istrators may create an open and programmable network [58]. In a traditional networking
environment, vendors bundled control and data plane inside of forwarding devices. Every
device has its low-level configuration procedure defined by its manufacturer [59]. Fur-
thermore, several instances of the same machine with different software versions may
coexist within a network. This fact complicates the (re)configuration process when the
administrator copes with faults or a load change in the network. Sometimes the configu-
ration process is manual labor in every forwarding device in the network. The larger the
network is, the more challenging it is to spread network policies on the entire network
devices simultaneously. Moreover, forwarding devices may have different features or
capabilities. Therefore, some configurations could leave out portions of the network with
old or limited devices. The managing and control of the network become severe problems
for the network administrators.

3.2. SDN Definition

Software-Defined Networking separates the network’s control logic from forwarding
devices. Then forwarding devices became more uncomplicated, and an external SDN
controller implements the control logic. SDN controllers have mechanisms to dissemi-
nate configurations through the network. SDN is a networking approach that defines a
layered architecture for control and management, similarly to the OSI or TCP/IP layered
architecture for data. As Figure 2 shows, an SDN network has three vertically integrated
parts: management, control, and data planes. Such layered network architecture through a
separation of concerns allows control and management solutions with a modular approach.
SDN is a popular solution to manage large and complex networks in the networking
industry [60] that changes the limitation of traditional network infrastructure [59].



Micromachines 2021, 12, 183 9 of 26

Figure 2. Software-Defined Network architecture presents three planes: data forwarding, control,
and management.

An SDN network behaves as follows. The applications use the services provided by
the management plane to establish network requirements. The management plane has
network orchestration functions such as load balancing or fault detection, which take these
requirements to generate policies. The control plane takes these policies and configures
every network device in the data plane, consisting of every forwarding device in the
network [60].

3.3. SDN Origins

Nick McKeown et al. initiated the SDN revolution at Stanford University in 2008
to satisfy the need for a better approach to managing networks on a campus [61]. They
set goals to experiment with new protocols, an open network architecture, and a pro-
grammable network. One of the factors that inspire the SDN initiative was the burden-
some network operation derived from every vendor’s configuration procedure. In [62],
Gude et al. proposed a Network Operating System (NOS) to control, configure, and man-
age network devices. The NOS generates a software abstraction for every networking
device in the network. The software abstraction builds a complete view of the network in
which optimization routines generate networking device configurations adapted to the
application requirements. In 2009, McKeown presented the Software-Defined Networking
approach formally to satisfy the programmable network requirement [58]. He defined a
programmable, reconfigurable, adaptable, and software-defined forwarding infrastructure
with standard, reusable, and well-defined programming and communication interfaces
that were hardware-independent and vendor-independent.

3.4. SDN Features

In computer networks, the term Software-Defined Networking (SDN) refers to a
network architecture where the control plane resides outside from the forwarding devices.
However, the network industry often has referred to anything that involves software as
being SDN. In this paper, we follow the approach taken by [59,63], where SDN comprehend
an architecture with the following features:

1. Network devices are simple forwarding elements (packet retransmission); SDN
separates control functionality (route computation) from forwarding.



Micromachines 2021, 12, 183 10 of 26

2. The network makes forwarding decisions based on flows instead of destination and
source addresses. We define flow as a set of packets in which field values match some
predefined criteria, such as a source-destination pair.

3. It generates a software abstraction of network logic and a global view of the network.
SDN moved the control logic to an external entity, an SDN controller, or a Network
Operating System (NOS). A NOS generates a consistent and centralized view of the
network in which network applications run.

4. Networks achieve their programmability through software applications running on
top of the NOS that interacts with the underlying data plane devices.

5. SDN has Software/Hardware interfaces to program the network, which permits
adaptation of forwarding devices to applications running above.

With the principles mentioned above, we propose a Software-Defined Network-on-
Chip (SDNoC) Architecture [20,47]. However, it is worth noting that on-Chip networks
have different requirements than computer networks, for example, power, throughput,
and delay. Nevertheless, they still share some basic principles as switching, routing,
arbitration, among others. This paper aims to improve this vision with a clearer and precise
explanation, which may accelerate the design, implementation, performance, management,
and reconfiguration of NoC-based systems through well-defined services and interfaces
between abstraction layers.

4. The SDNoC Layered Architecture

As we pointed before, an SDN architecture focus on the administration and operation
processes of the network. In a Many-Core NoC, these processes will become of great
importance as the power and performance requirements become more difficult as the
number of processing elements increase. The proposed SDNoC architecture presents three
segments, Applications, Network Operating System and Infrastructure; and five layers:
Applications, Network Management, Control, Data Forwarding and Data Processing,
as shown in Figure 3. The main difference between our architecture and computer SDN
is that we included a data processing plane. Every layer brings service to an upper layer
through a well-defined interface. In the following, we describe every domain and layer in
a bottom-up manner.

4.1. Infrastructure Segment

The infrastructure segment is responsible for the functions of forwarding and pro-
cessing data. It covers data forwarding and data processing layers (1 and 3, respectively
in Figure 3). Due to its operation, it is a mandatory hardware layer. The implementa-
tion can vary from manufacturer, designer, application, customer, or budget. The only
imperative requirement for this layer is the southbound interface to communicate with the
NOS segment.

4.1.1. Data Processing Layer

It consists of the NoC’s processing elements such as CPUs, IP cores, Memories, recon-
figurable hardware, or Direct Memory Access (DMA). These elements implement the basic
functions of the algorithms in the SoC’s applications. A Network Interface connects the
processing elements with the NoC. The services offered by this layer are:

1. General data processing (on CPUs);
2. Storage of data for further processing (Memories);
3. Specialized data processing (on IP cores or reconfigurable Hardware);
4. Improve data access latency (through DMAs).

This layer is present in every SoC design, whether it uses an NoC or not.



Micromachines 2021, 12, 183 11 of 26

4.1.2. Network Interface

The Network Interface generates data packets/transactions according to the NoC’s
protocol, shown as (2) in Figure 3. It adapts data from the processing elements to the
network and vice versa. Due to the data forwarding element’s buffers available, the pack-
ets/transactions size may have a maximum limit. The Network Interface split the mes-
sages into several packets/transactions and verifies that the messages arrive correctly at
the destination.

Figure 3. Software-Defined Network-on-Chip Architecture. Odd numbers represent the layers,
and even numbers represent the HW/SW interfaces. A different color represents each segment.

4.1.3. Data Forwarding Layer

It consists of routers, Network Interfaces (NI), switches, and buses that integrate the
on-Chip network’s interconnection. Its main function is the transmission of data from its
source to destination. In this plane, the upper layer interface is called the southbound
interface in the SDN argot. The services offered by this plane are:

1. Send data from source to destination in a packet-based way (normal mode);
2. Send data from source to destination in a flow-based way (SDN mode);
3. Execute re/configuration in the forwarding devices (for each link or router);
4. Collect the state and statistics of the forwarding devices (for each link or router).

The Data forwarding layer’s elements in an SDNoC architecture are programmable
components. A bus element could change its access priorities in a programmable manner;



Micromachines 2021, 12, 183 12 of 26

in a switch, we could program the output port selection; or a router’s next hop in a path
to the destination. Traditional NoC-based systems have the same network components
without the programmability or (re)configuration capabilities.

4.1.4. Southbound Interface

The Southbound Interface, shown as (4) in Figure 3, communicates the data plane in
the data forwarding layer in the infrastructure segment with the control layer’s control
plane at the Network Operating System segment. This interface uses a protocol such
as [17,64] to establish a secure channel. Both layers (Data Forwarding and Control layers)
must implement this protocol. Its purpose is to communicate the controllers’ configurations
to the forwarding devices’ statistics and states’ forwarding devices. In this way, a controller
can adapt the NoC to an application or a particular situation. For example, a fault or
an energy-saving state. Moreover, the controller can monitor the network elements and
generate a general condition of the network. As we will state in the following sections,
most of the SDNoC implementations reported in the literature missed this interface.

4.2. Network Operating Segment

The Network Operating System segment configures the infrastructure segment with
policies generated from the application segment’s requirements. Moreover, this segment
monitors the NoC’s elements and build a complete view of the NoC’s state. The Network
Operating System possesses two layers: Control and Network Management, showed as (5)
and (6), respectively in Figure 3.

4.2.1. Control Layer

The control layer determines the mechanisms which allow the (re)configuration of
the data forwarding devices. It comprises the SDN controllers, which establish a packet
or flow-based connection with the southbound interface’s data forwarding device. Once
they establish a secure connection, SDN controllers can send the configuration and collect
the state and statistics data from the forwarding devices. An NoC can have one or several
SDN controllers depending on the applications’ network size, traffic, and complexity.
Each SDN controller in the NoC can have a partial network view, but once combined,
the control layer can produce a global network view. We can categorize the SDN controllers
by the forwarding device they control—router or switch-based, the switching mode such
as circuits or packets, to mention a few. Then, we add a driver in the Network Operating
System implementations for each kind of SDN controller. The control layer communicates
with the upper layer using the Northbound interface. Also, the control layer offers the
following services:

1. Send the configuration to a specific set of nodes in the network;
2. Collect state and statistics’ data from a specific set of nodes in the network;
3. Generate a global or partial view (state) of the network.

This layer is present in most of the SDNoC works in the literature but with lim-
ited functionality.

4.2.2. Northbound Interface

The Northbound Interface, shown as (6) in Figure 3, communicates the Control layer
with the Management layer in the Network Operating System segment. Both layers (Con-
trol and Management layers) must implement this protocol. Its purpose is to communicate
the network optimization engine’s result’ to the controllers and the network’s state from
the controllers. In this way, a network optimization engine can (re)adapt the NoC to the
applications or particular situations. For example, fault detection, energy-saving states,
or new applications. As we will state in the following sections, most of the SDNoC imple-
mentations reported in the literature missed this interface.



Micromachines 2021, 12, 183 13 of 26

4.2.3. Network Management Layer

The network management layer consists of several optimization engines that modify
the network functions such as routing, scheduling, traffic management, access control
and security, Quality of Service, thermal and energy management, and recovery. Such
engines, called orchestration network functions, rely on a partial or global view of the
network, which is proportioned by the control layer. Such functions allow programming
of the NoC while maintaining several QoS requirements in throughput, delay, and power.
The network management layer orchestrates the required combination of the optimization
engines and organizes applications in the network. Moreover, the network management
layer generates policies and configurations passed to the control layer via the Northbound
interface to adapt the data forwarding plane to the applications. The optimization engines
are modular; then, if a feature is not present or has to be added/removed, the change has
no impact on the other engines. This layer interacts with the applications through the
network operating system’s calls that generate threads or flows in the network. This layer
offers the following services:

1. Optimization of an application’s mapping in terms of the engines available, e.g., en-
ergy or QoS;

2. Orchestration of the network functions to optimize the NoC globally;
3. Orchestration of the applications running in the NoC;
4. Mapping applications to the network (in conjunction with the NOS’s calls);
5. Dynamic or static resource allocation in the NoC and network abstraction generation.

4.2.4. NOS System Calls

The NOS system offers its services to applications through system functions, shown
as (8) or system calls in Figure 3. The applications call –in a software context– these system
functions to access these services. Both NOS and applications need to implement these
interfaces. Applications call the functions, and NOS’s implement the functions within their
code. As we add services in new versions of the NOS, system functions can be added and
called by applications.

4.3. Applications Segment

Finally, the application segment is where the applications reside, shown as (9) in
Figure 3. Traditionally designers implement this over an NoC-based SoC platform.

Applications Layer

This layer holds the different applications running in the NoC. Each application or
processing algorithm introduces a communication graph where the nodes are the functions
of the processing elements in the NoC, and the edges are the data dependencies among
them. The weights of the graph’s edges are the average Packet Injection Rates (PIRs) for the
traffic between two nodes. Then, every application generates its graph and requirements
and exhibits them to the Network Operating System. The Network Operating System
will orchestrate the network functions to guarantee the requirements of the application
requirements and the operational budget of the NoC, e.g., power and thermal restrictions.

The list of services presented here for all the layers is by no means complete; as the
architecture matures, more services can be added, replaced, or eliminated. It is important to
note that we present this architecture from the network management point of view, i.e., we
only considered the control and administration of the NoC. The data communications can
follow an OSI reference model, not exposed here to avoid confusing the reader and for
space issues.

4.4. SDNoC Implementations

New designers may find complicated to understand the implementation of the SD-
NoC architecture. Therefore, in this section, we describe four possible implementations:
Centralized and Distributed regarding the controller; and Integrated and Isolated regarding



Micromachines 2021, 12, 183 14 of 26

the data/control network. Before, we liked to present the software architecture for the
upper layers in the SDNoC architecture, shown in Figure 4. In this illustration, the bottom
layer is a central processing unit implemented in hardware with a specific instruction
set architecture (ISA), such as RISC-V. Above this ISA layer, we implement the software
architecture as follows: the SDNoC controller, the Network Operating System or NOS,
and the applications. Each one of these software layers depends on the lower layer.

Figure 4. Software architecture and components in a layered SDNoC appraoch.

4.4.1. Centralized

A single CPU executes all the software components in a centralized implementation,
such as the SDNoC controller, the NOS, and the applications. In Figure 5, we observe the
controller’s influence area is the complete NoC, and all software components are in a single
CPU (processing element at the center).

Figure 5. Centralized implementation of an SDNoC architecture. The illustration shows the SDNoC
controller’s influence area, all the NoC, in this case. A single CPU execute all the software components.



Micromachines 2021, 12, 183 15 of 26

4.4.2. Distributed

In the distributed SDNoC, designers spread the software components among several
processing elements as Figure 6. For example, the illustration shows three SDNoC controller,
each one has a different influence area, shown with different colors. The illustration present
the northbound interface, shown as white lines, that interchange information between the
NOS and the SDNoC controllers.

4.4.3. Integrated

In an Integrated SDNoC, data and control packets use the same network. This fact
generates collisions and congestion among packets, which can degrade the performance
and functionality of the SDNoC. We must introduce priority forwarding to control packets
to achieve a suitable latency for control packets that fulfills performance and functional-
ity requirements.

4.4.4. Isolated

In an Isolated SDNoC, data and control packets use different networks. Therefore,
more resources are needed to guarantee that the control packet arrives on time at the
forwarding devices to achieve its functionality and performance. The control network has
lower traffic than the data network. Thus, a bus-based interconnection is a suitable option.
In this type of SDNoC, we can reuse traditional interconnections to transport control
packets. However, we must perform traffic analysis to ensure a fit interconnection solution.

Figure 6. Distributed implementation of an SDNoC architecture. The illustration shows the SDNoC
controllers’ influence area. The distributed SDNoC implementation spreads the software components
among several processing elements in the NoC. The northbound interface, between NOS and SDNoC
controller, is shown as a white line.



Micromachines 2021, 12, 183 16 of 26

4.5. Advantages and Disadvantages

Table 5 depicts a feature comparison for NoC vs SDNoC. It can be resumed as fol-
lows: SDNoC brings reconfigurability, enhances performance in terms of delay, achieves
application, and traffic isolation improves security and provides network control; every-
thing concerning traditional NoCs. However, it requires additional hardware resources
in both router (table-based) and NI, and a Network Operating System is required. Then,
for some simple or single application systems, this architecture is unnecessary. However,
for Many-Core NoC-based systems running multiple applications, it is the right choice.
If we implement the NOS in a single CPU, the computation processing required is 1/100-th
of a system with 100 cores in a ten by ten 2D-mesh.

One clear disadvantage is the latency increment due to control packet transmission
delay and processing. The processing latency can limit the usability of the SDNoC if the
designer not considered it. Thus, an SDNoC architecture must consider control packet
latency as one of the design’s critical aspects. Latency issues complicate online processing.
Moreover, off-line processing is too rigid to the dynamic workloads presented by current
Many-Core systems. Therefore, a hybrid approach might be a proper solution. In this
approach, designers analyze several off-line use cases and obtain the fit configuration
parameters to achieve functionality and performance requirements and store them for
future use. Then, the SDNoC can monitor the metrics and observe if the current case
seems an analyzed case. If so, it uses the stored configuration. This procedure reduces
processing time for control packets but not transmission time. An Isolated network with
low latency and hybrid processing could improve an SDNoC performance. However,
thoughtful analysis to support these ideas is out of this paper’s scope, and we left it as
future work.

Table 5. Feature comparison for NoC versus SDNoC.

Feature NoC SDNoC

Reconfigurability None Routing, arbitration priorities

Routing Algorithm Fixed for all flows Flow adaptive

Hardware Simple Additional complexity

Delay Fair Lower

Applications Mixed Isolated by traffic routes

Security None Flow traffic pattern assurance

Traffic Mixed Flow or application isolated

NOS None Present

Router Routing algorithm Table-based

NI Simple shell Additional configuration hardware

Network Control None Centralized or distributed

5. Literature Review

It is essential to recall the SDN features translated into a Software-Defined Network-
on-Chip paradigm. Figure 7 shows the desired features in an SDNoC implementation.
However, after the review, we will classify every surveyed work regarding the SDNoC
features it has. This section presents a chronological review of SDNoC literature, group-
ing the works into four stages: foundations, exploration, extensions, and applications.
Then a summary emphasizes the work’s contributions, gaps, and opportunity areas in
SDNoC research.



Micromachines 2021, 12, 183 17 of 26

Figure 7. This graphic presents the NoC desired features adapted from SDN [59,63].

5.1. Foundations

In this first stage, researchers adopted SDN concepts and adapted them to NoCs.
Before SDN, the central controller idea was presented by Gossens et al. [65], which con-
junctly with SDN inspired the SDNoC architecture. In his work, Goossens et al. presented
a programmable resource reservation NoC, buffers and channels, which can embrace both
central and distributed programming models. The NoC’s routers use a slot reservation
table to avoid contention on a link, divide the bandwidth per link among connections,
and switch data to the correct output. This slot table inspired the routing tables in the
SDNoC approach. However, the paper lacks a layered architecture and a straightforward
interface definition.

However, it was not until Cong et al. [66] presented the first SDNoC model in 2014.
They use a simulation-based approach to test their ideas. Their proposal presented a clear
separation of data path and control in the routers; however, Cong et al. built both planes
within the router; a layered architecture was missing. This fact conveys that the router
hardware was complicated and extensive. However, they planted the vision of an SDN
paradigm into NoCs.

In the same year, Wang et al. explained a software-defined photonic NoC with a
central controller [67]. Through a Photonic Network-on-Chip, they present the idea of an
SDN central controller and protocol definition. They assume 15 micro-resonator rings for
a photonic switch structure and a two-dimensional mesh. We can observe that the paper
lacks an interface definition and a layered architecture.

In 2015, we presented a complete Software-Defined Networks-on-Chip layered archi-
tecture [20]. We describe every SDNoC layer needed to facilitate reuse and innovation in
Many-Core SoCs. Despite the paper impact, the literature has omitted critical components,
as we will point in the below-described works. This paper emphasizes the opportunities
acquired when embracing a layered SDNoC architecture in Section 6.

5.2. Exploration

Once literature set the SDNoC foundations and a clear vision of their future, in the
next stage, researchers and designers developed new systems and extended the SDNoC
concept in and out of the chip. In 2016, we analyzed the SDNoC performance, through
simulation models, regarding configuration time, throughput, and delay in several popular
routing algorithms in a 2D Mesh with a central controller [47].

In [68], Scionti et al. explored an SDNoC architecture combining local ring and
global 2D-mesh network to generate different logical topologies configured via software.
The routers used bypassing elements to reduce latency and power-gating strategies to
reduce energy consumption. They aimed to adapt the NoC logical topology to the applica-
tion’s communication patterns. In order to test their models, they used simulation-based
evaluations. This paper’s significant features concerning SDNoC are the configuration
process incorporated into the Instruction Set of the processing elements and a switch table
that describes how traffic entering a link can flow into another link. Even though they



Micromachines 2021, 12, 183 18 of 26

present a proper application of an SDNoC implementation, they omit the SDNoC controller
implementation details. Also, the paper did not present a layered architecture with clear
definitions of the interfaces. This fact limits the reuse of their work and ideas in other
SDNoC designs.

Berestizshevsky explored an SDNoC architecture based on switches instead of routers,
leaving behind the benefits of a packet-switched network and a flow-based routing [69].
Omnet++ simulation models serve to obtain some benchmarks results. They proposed a
central network manager implemented in software and executed on a dedicated core that
controls all the network’s switches using a separate control network. Despite a so-called
Software-Defined Network approach, this paper lacks references to SDN ideas or previous
SDNoC proposals. There is no evidence of a layered architecture and protocol or interface
definitions, limiting the reuse in other designs. This paper could reveal an open architecture
with an explicit programming interface to use the Network Manager for other purposes
such as monitoring or energy-saving, which would improve the paper’s innovation.

Fathi et al. [43], replaced routers with switches too, to change the logical topology of
the network through a central controller in an SDNoC architecture. The central controller
executes the routing algorithm and makes the control decisions for all the switches. This
scheme makes the controller a bottleneck in the network since it analyzes the header flit
from every packet. One notable feature of this works is the first implementation of an
SDNoC proposal in VHDL. However, the proposal lacks precise interface descriptions,
an quantitative measurement of the hardware resources employed, and an SDNoC con-
troller programming interface to encourage its reuse.

Ruaro et al. [51], described a layered SDNoC architecture, which uses an NoC for
configuration and an SDNoC for operation. This work uses cycle-accurate RTL models and
VHDL implementations to obtain performance analyzes and hardware resource estimations.
Moreover, it presents a distributed controller approach for SDNoC management. This
paper presents a correct implementation of some of the ideas in [20]; however, it lacks open
interfaces to improve its reuse and further innovation.

Silva et al. used a single controller to evaluate the SDNoC performance regarding
latency in [70]. In their proposal, the controller (manager) is implemented in software and
approves the route request from every processing core in the network. They employed
simulation models to obtain performance analyses. The paper omits an open programming
interface that will improve its reuse and innovation.

All works explore the SDNoC approach; however, they miss an open programming
interface to encourage its reuse and innovation, as we pointed before.

5.3. Extensions

The extensions of SDNoC to other solutions and systems begin in this stage. In 2018,
Ellinidou et al. [57] extended the SDN and datacenter concepts to SoCs using an SDNoC
paradigm. In this approach, several SDNoC-based SoC chips are integrated into a PCB
and interconnected to create a broader network, which yields the Cloud-on-Chip concept.
Moreover, they present the SoC-flow protocol, which is a secure protocol based on Open-
Flow to configure the SDN switches across chips and PCBs. However, their work lacks
model validation or hardware implementations.

Scionti et al. [71], proposed a scalable SDNoC to adapt the interconnections of different
subsystems of a datacenter, in different chips, to deep learning applications running in
the system. In this paper, the authors use routers with four local interfaces to improve
performance and connectivity. Their proposal adapts the NoC topology to applications.
To differentiate configuration from data packets, they use 0XFFFFFFFF as a starting flit.
They use configuration functions to configure topology, router’s look-up tables, and coun-
ters. They use a Xilinx Kintek-7 FPGA to implement the SDNoC architecture. Despite
an exemplary SDNoC implementation, the work presented lacks an open programming
interface with enough detail to be reused and encourage further innovation.



Micromachines 2021, 12, 183 19 of 26

SDNoC extensions for on-chip and out-of-chip interconnections are in this stage.
Ellinidou et al., in 2019 [72], extended the SDNoC concept out of the chip to interconnect
chiplets. The authors present MicroLET, a combined architecture for on-Chip and out-
of-Chip networks with a clear description of the protocol and messages. They presented
simulation-based model evaluations of their SDNoC architecture with XY and Odd-Even
routing algorithms. However, the paper still misses an open programming interface to
drive innovation and reuse.

Network Function Virtualization (NFV) is a hot topic in SDN networks. NFV intro-
duces network functionality in virtual components, i.e., software functions running on
processing elements; for example, SDN systems implement routing algorithms in software.
Shantharama et al. [73] presented an extensive survey on NFV from datacenters to on-chip
networks. In their work, they expressed that SDNoC facilitates the integration of inter-
connection systems at different scales. This paper paves the road to an integrated SDN
framework from the datacenter to the chip with the same SDN philosophy.

Ibarra-Delgado et al. presented a fine-grained bandwidth control for on-chip inter-
connections configured in an SDNoC paradigm in [74]. The authors present the idea of
a bandwidth control arbitration method for buses, switches, and routers. An SDNoC ap-
proach can exploit this method to assign the bandwidth to different applications enforcing
a QoS policy at the flit level.

In this stage, the works mentioned above consolidated the SDNoC approach and
extended the reach to the bus, switches, and routers, as we visioned in [20,47].

5.4. Applications

In this stage, new applications began to appear, and some security-focused approaches
supported SDNoC architectures. Jantsch et al. presented a self-aware System-on-Chip
proposal to manage and report their system behavior [39]. The authors present a framework
to implement different resource allocations, process monitors, and a learning framework
with the recollected statistics that optimize the systems’ performance. Despite not using an
SDNoC, we believe that an SDNoC could help achieve its goals by generating a modular
solution in different SDNoC architecture layers. For example, a monitoring solution at the
control layer working with a learning solution at the network orchestration functions in
the management layer.

In 2018, Temuçin and Imre presented a Software-Defined Photonic Network-on-
Chip [49]. They aimed to centralize a contention-free and conflict-free scheduling algorithm
to solve the routing and wavelength assignment in optical networks. The controller has
predefined schedules of different traffic patterns to improve the speed and reduce the
implementation complexity. In the same way as other papers, this work did not present a
layered architecture or a programming interface to encourage its reuse or innovation.

Security is one main topic in this stage. Ellinidou et al. [64] extend his previous work
and addressed the secure communication problem for SDNoC router configurations in their
Could-on-Chip architecture. They described a secure protocol to manage SDNoC routers,
including three phases, a private key derivation phase, a group key agreement (GKA)
phase, and a data exchange phase. This protocol ensures that basic security primitives
are preserved and provide secure communication. The paper presents evaluations of
Sharma and TENG, both GKA protocols based on Mininet simulations. The paper’s main
drawback is the lack of well-defined interfaces to encourage the implementation of their
secure protocol in other designs.

In [17], Rouaro et al. presented the idea of achieving SoC security through an SDNoC
approach. They test their proposal of a secure SDNoC framework with Denial of Service,
Flooding, and Spoofing attacks using SystemC models and VHDL implementations to
evaluate additional hardware resources. They based their baseline architecture on their
previous paper [51] and improved the Network Interfaces with a Secure Configuration
Logic (NI-SCL). This element introduces a secure protocol for network configuration.
The lack of open interfaces to exploit this framework on other designs is a detriment.



Micromachines 2021, 12, 183 20 of 26

Then, in [16] Ruaro et al. defined secure zones in an SoC employing an SDNoC
architecture. They use an application admission mechanism to accept new applications
in a secure zone. Therefore, secure applications are isolated physically using the SDNoC
approach. The authors used SystemC simulation and VHDL for the synthesis to evaluate
their proposal. This paper presents an explicit use of an SDNoC architecture for security
application admission in NoC-based SoCs. Nevertheless, the paper did not present an
open programming interface to encourage its reuse in other designs.

5.5. Summary

Figure 8 presents the summary of the survey results, complementing Figure 7, and clas-
sifying the literature by the SDN features that display. The SDNoC approach has five
features; however, as we can observe in Figure 8, researchers concentrated their efforts on
three features, control plane separation from forwarding, a central controller, and inter-
faces. However, they have left out flow-based decisions, programmability, and standard
interfaces. We can see the literature gaps In Figure 8; thus, we propose redirecting the
research endeavors to fill these gaps.

Further research efforts need to consider deploying SDNoC features, such as detailed
API implementation and standardization between the control plane and the data forward-
ing plane. Some other SDN characteristics are missing from the literature, such as flows as
the unit of forwarding decisions; software abstractions with a global view of the network;
a Network Operating System; network programmability; and well-defined and standard
interfaces to enhance the reuse of SDNoC solutions in other systems design. In this paper,
we propose to research these issues further.

Figure 8. Literature classification regarding the SDNoC desired features (columns) and chronological
stages (colors at the bottom).



Micromachines 2021, 12, 183 21 of 26

6. Challenges and Opportunities

In this section, we discuss some of the challenges and opportunities detected in the
SDNoC literature. We explain the benefit that each one will convey.

6.1. Challenges

We classified the challenges regarding their implementation in hardware, middleware,
and software. Also, we briefly introduce each concept to illustrate the impact of the
component in the architecture.

6.1.1. Hardware

Hardware implementations depend on the process technology (silicon, photonic,
or 3D), platform (ASIC, FPGA, or hybrid), and application (Radiation-hardening, electro-
magnetic shielding, industrial environment, and operating temperature) requirements.

• SDNoC elements: In a Many-Core paradigm, where the NoC scales to thousands of
network elements, we need to develop hardware implementations of buses, switches,
routers, and network interfaces employing few resources and low energy consump-
tion.

• Programmable devices: The Software-Defined approach requires programmable un-
derlying devices. One of the main goals is to achieve a reconfigurable topology,
physical or logical, that adapts to the application’s data dependency requirements.
A hybrid or dual packet/circuit-switched implementation would help service differ-
entiation to achieve QoS requirements.

– Network Interfaces: We need to adapt (program) the packet size, flow, mem-
ory addresses, and network address. Moreover, a traffic regulator approach
would help to characterize traffic before entering the network, for security and
performance goals.

– Buses: Dynamic reconfiguration buses with programmable priorities and arbitra-
tion policies to ensure bandwidth allocation [74], QoS, and resource reservation.

– Switches: We can use port reconfiguration and dynamic arbitration policies to
ensure QoS to real-time processes.

– Routers: path (route) reconfiguration is a desirable feature and a must in SDN.

• Wireless SDNoC routers: Wireless NoCs bring connectivity enhance that an SDN
approach can easily exploit.

• Introduce SDNoC architecture with new process technologies: Optical, wireless,
and 3D, to cope with thermal and latency issues.

• SDNoC for Inter-Chip networks: Off-Chip interfaces adapted to on-Chip Networks to
interconnect several chips in a PCB or larger designs as presented in [64].

6.1.2. Middleware

These software components offer services aggregated as needed that complement the
network operating system, such as secure protocols, network protocols, and configuration
processes. We can characterize them by function (configuration, monitoring, or information
gathering), device (routers, switches, buses, network interfaces, controller-to-controller),
or generic drivers for network elements. Also, they may provide an open programming
interface, packets, and protocol definitions.

• Secure protocols: As Ruaro et al. [17] propose, a secure protocol to configure the
SDNoC elements is needed. Moreover, we need to adapt the secure protocol to
different implementations and network scales.

• Network protocols: SDNoC design will need new protocols for network information
exchange, operation status, configuration, and further. For example, a DNS-like
service to find network addresses based on memory addresses.

– Addresses-directory service: In an SDNoC-based Many-Core platform, we will
need to translate memory addresses from the memory space to network ad-



Micromachines 2021, 12, 183 22 of 26

dresses. This process is simple in a static environment; however, dynamic
workloads may change this memory mapping at runtime. Therefore, an address-
directory service will help the dynamic reconfiguration.

– Address-allocation service: Address allocation may change in a dynamic en-
vironment; therefore, the system will need an address-allocation process for
new applications or services or reallocated unused address spaces. Furthermore,
we will create virtual networks or sub-networks in the system to isolate traffic
for performance or security reasons. This example would lead to achieving
autonomous systems-like designations into on-Chip networks with different
routing algorithms and policies.

– Location-based services: We can exploit location information to treat packets in
a differentiated manner, establish secure zones, or location-based forwarding
device configuration (routers, switches, buses, and network interfaces). For ex-
ample, a network interface may be in an energy-saving zone and adapt the packet
size to reduce transistor switching and energy consumption.

• Hypervisors: These components derive a partial or global network view with the
information gathered from the forwarding devices. With this view, the component
presents a software abstraction of the network to upper layers. For example, a view of
memory-only, CPU-only, or IP Core-only networks with every application’s resource
allocation in the system.

• Network Function Virtualization: As in SDN in networking, we can virtualize some
network functions such as routing, filtering, and access lists. However, the challenge
is to achieve a low latency software implementation.

6.1.3. Software

The management framework that we conceive has several software components
such as Network Operating Systems, network drivers, network applications, network
optimization frameworks, and network orchestration functions, to mention a few.

• Network drivers allow having specialized functions and software abstractions/models
of some parts of the network such as routers, secure zones, applications, and virtual
networks. These components present a programming interface to use or reconfigure
some parts of the network without knowing the low-level implementation details.

• The Network optimization framework allows solving complex optimization problems
with different goals and constraints. As we mentioned above, the future and current
NoCs require several dynamic network optimizations such as routing, mapping,
topology, and scheduling. The SDNoC architecture requires software components to
execute several optimizations dynamically with goals and constraints translated in
the network configurations for lower layers.

• The Network applications are functions to optimize the network or obtain information
from the network, such as an energy-saving function for routing or scheduling. Fur-
thermore, a desirable feature of SDNoC is observing the buffers, energy consumption,
link use, and temperature executed by a monitor application.

• The Network orchestration functions manage conflicts among different optimization
functions or goals, with the plan of a greater goal or knowledge. As optimization
goals have conflicts, we need policies to resolve these issues, achieve adequate system
performance, and assure QoS requirements.

• The Network Operating Systems englobes all the features above in a single and well-
articulated software component. Furthermore, different systems will need different
Network Operating Systems specialized in some areas such as energy-saving, thermal
management, real-time performance, multimedia processing, or artificial intelligence,
to mention a few.



Micromachines 2021, 12, 183 23 of 26

6.2. Opportunities

When we review the SDNoC literature, we observed some opportunities to thrive the
SDNoC research.

• Extend the Instruction Set of some microprocessor architectures –such as RISC-V–
to include networking functions or instructions for sending messages through the
network.

• Include network sensors to monitor within a machine learning adaptive architecture.
Some physical variables of interest are temperature, electromagnetic field, voltage,
electrical current consumption, optical power, signal-to-noise ratio, error rate, error
correction rate, and channel/link state.

• Encourage open hardware/software/architecture initiative to encourage innovation
with clear and standard programming interfaces to drive HW/SW component reuse.

• A flow-based management of routing functions is a cornerstone of the SDN missing
from the SDNoC literature.

• A programmable network is a clear opportunity for SDNoC. This feature will dy-
namically adapt the network resources to the application currently running in the
system.

• A network programming language for SDNoC will improve adoption, standardiza-
tion, and new features.

7. Conclusions and Perspectives

The complexity of NoC management problems associated with Many-Core SoCs
implies a different solution approach than traditional NoCs. The layered SDNoC archi-
tecture presents a modular strategy where the separation of concerns permits innovation
at different abstraction levels. Despite the high-grade quality of the works in the SDNoC
literature, some SDN features are missing. This fact conveys that solutions to management
problems are not reusable in new designs, increasing the development and time to market.
Therefore, SoC architects refuse to employ an SDNoC architecture for their future designs.

NoC management includes challenging optimization problems; in an SDNoC architec-
ture, researchers can focus on these problems without coping with the low-level details.
Furthermore, we observe that an optimization framework for Many-Core systems is a
required component.

This paper surveyed the literature regarding SDNoC and observed some challenges
and opportunities to improve the state-of-the-art. Once we, the research community,
overcome the challenges, we will facilitate SDNoC implementations and spread their use
in new SoC designs. The most important opportunity is to impulse an open architecture
where researchers can apport their contributions and new designs use them with easy
integration and configuration.

Author Contributions: Conceptualization, J.R.G.-R., R.S.-A., S.I.-D., R.P.-M., and J.L.V.-A.; methodol-
ogy, J.R.G.-R., and R.S.-A.; formal analysis, J.R.G.-R., R.S.-A., S.I.-D., R.P.-M. and J.L.V.-A.; investi-
gation, J.R.G.-R., R.S.-A., S.I.-D., V.I.R.-A., R.P.-M., and J.L.V.-A.; writing—initial draft preparation,
J.R.G.-R., R.S.-A., S.I.-D., V.I.R.-A., R.P.-M., and J.L.V.-A.; writing—review and editing, J.R.G.-R.,
R.S.-A., S.I.-D., V.I.R.-A., R.P.-M. and J.L.V.-A.; funding acquisition, J.R.G.-R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by PRODEP (Programa para el Desarrollo Profesional Docente)
grant number UAZ-407. In addition we would like to acknowledge the support of PRODEP to the
research group CA-201 “Telecomunicaciones y Electrónica”.

Acknowledgments: We want to acknowledge and thank the support of LINNX-TEL (Telecommuni-
cation Innovation Lab), CIDTE (Centro de Investigación, Innovación y Desarrollo en Telecomunica-
ciones) and the Ph.D. program in Engineering and Applied Technology of UAZ.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
study’s design; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.



Micromachines 2021, 12, 183 24 of 26

References
1. Shuler, K. Certain Arteris Technology Assets Acquired. 2013. Available online: https://www.arteris.com/press-releases/

qualcomm-arteris-asset-acquisition-2013 (accessed on 2 December 2020).
2. Intel. Intel Acquires NetSpeed Systems for Chip Design. 2018. Available online: https://newsroom.intel.com/news/intel-

acquires-netspeed-systems-chip-design/#gs.i08tpn (accessed on 2 December 2020).
3. Yoshida, J. Facebook Buys Interconnect IP Vendor Sonics. 2019. Available online: https://www.eetimes.com/facebook-buys-

interconnect-ip-vendor-sonics/(accessed on 2 December 2020).
4. Balkind, J.; Lim, K.; Gao, F.; Tu, J.; Wentzlaff, D.; Schaffner, M.; Zaruba, F.; Benini, L. OpenPiton + Ariane: The First Open-Source,

SMP Linux-booting RISC-V System Scaling From One to Many Cores. In Proceedings of the Third Workshop on Computer
Architecture Research with RISC-V, CARRV, Phoenix, AZ, USA, 22 June 2019.

5. Olofsson, A. Epiphany-v: A 1024 processor 64-bit risc system-on-chip. arXiv 2016, arXiv:1610.01832.
6. Jeffers, J.; Reinders, J.; Sodani, A. Knights Landing overview. In Intel Xeon Phi Processor High Performance Programming, 2nd ed.;

Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 15–24. [CrossRef]
7. Liao, H.; Tu, J.; Xia, J.; Zhou, X. DaVinci: A Scalable Architecture for Neural Network Computing. In Proceedings of the 2019

IEEE Hot Chips 31 Symposium (HCS 2019), Cupertino, CA, USA, 18–20 August 2019. [CrossRef]
8. Hsu, J. IBM’s new brain [News]. IEEE Spectr. 2014, 51, 17–19. [CrossRef]
9. Debole, M.V.; Taba, B.; Amir, A.; Akopyan, F.; Andreopoulos, A.; Risk, W.P.; Kusnitz, J.; Otero, C.O.; Nayak, T.K.;

Appuswamy, R.; et al. TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years. Computer 2019, 52, 20–29. [CrossRef]
10. Qualcomm. Cloud AI 100. 2020. Available online: https://www.qualcomm.com/products/cloud-artificial-intelligence/cloud-ai

(accessed on 12 December 2020).
11. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi:

A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [CrossRef]
12. Han, J.; Choi, M.; Kwon, Y. 40-TFLOPS artificial intelligence processor with function-safe programmable many-cores for ISO26262

ASIL-D. ETRI J. 2020, 42, 468–479. [CrossRef]
13. Swarbrick, I.; Gaitonde, D.; Ahmad, S.; Gaide, B.; Arbel, Y. Network-on-chip programmable platform in versal™ ACAP

architecture. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA 2019),
Seaside, CA, USA, 24–26 February 2019; pp. 212–221. [CrossRef]

14. Swarbrick, I.; Gaitonde, D.; Ahmad, S.; Jayadev, B.; Cuppett, J.; Morshed, A.; Gaide, B.; Arbel, Y. Versal network-on-chip
(NoC). In Proceedings of the 2019 IEEE Symposium on High-Performance Interconnects (HOTI 2019), Santa Clara, CA, USA,
14–16 August 2019; pp. 13–17. [CrossRef]

15. Xilinx. Versal ACAP Programmable Network on Chip and Integrated Memory; Technical Report; Xilinx: San Jose, CA, USA, 2020.
16. Ruaro, M.; Caimi, L.L.; Moraes, F.G. SDN-based Secure Application Admission and Execution for Many-cores. IEEE Access

2020, 8. [CrossRef]
17. Ruaro, M.; Caimi, L.L.; Moraes, F.G. A Systemic and Secure SDN Framework for NoC-Based Many-Cores. IEEE Access 2020,

8, 105997–106008. [CrossRef]
18. Tsoutsouras, V.; Masouros, D.; Xydis, S.; Soudris, D. SoftRM. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–19. [CrossRef]
19. Chittamuru, S.V.R.; Thakkar, I.G.; Pasricha, S. LIBRA: Thermal and Process Variation Aware Reliability Management in Photonic

Networks-on-Chip. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 758–772. [CrossRef]
20. Sandoval-Arechiga, R.; Vazquez-Avila, J.L.; Parra-Michel, R.; Flores-Troncoso, J.; Ibarra-Delgado, S. Shifting the network-on-

chip paradigm towards a software defined network architecture. In Proceedings of the 2015 International Conference on
Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 7–9 December 2015; pp. 869–870. [CrossRef]

21. Benini, L.; De Micheli, G. Networks on chips: A new SoC paradigm. Computer 2002, 35, 70–78. [CrossRef]
22. Marculescu, R.; Ogras, U.Y.; Peh, L.S.; Jerger, N.E.; Hoskote, Y. Outstanding research problems in NoC design: System,

microarchitecture, and circuit perspectives. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2009, 28, 3–21. [CrossRef]
23. Grecu, C.; Ivanov, A.; Saleh, R.; Pande, P.P.; Grecu, C.; Ivanov, A.; Saleh, R.; De Micheli, G. Design, synthesis, and test of networks

on chips. IEEE Des. Test Comput. 2005, 22, 404–413. [CrossRef]
24. Dally, W.J.; Towles, B.P. Principles and Practices of Interconnection Networks; Elsevier: Amsterdam, The Netherlands, 2004.
25. Chatterjee, N.; Mukherjee, P.; Chattopadhyay, S. Reliability-aware application mapping onto mesh based Network-on-Chip.

Integration 2018, 62, 92–113. [CrossRef]
26. Chatterjee, N.; Paul, S.; Chattopadhyay, S. Fault-Tolerant Dynamic Task Mapping and Scheduling for Network-on-Chip-Based

Multicore Platform. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–24. [CrossRef]
27. Chatterjee, N.; Paul, S.; Chattopadhyay, S. Task mapping and scheduling for network-on-chip based multi-core platform with

transient faults. J. Syst. Archit. 2018, 83, 34–56. [CrossRef]
28. Said, M.; Shalaby, A.; Gebali, F. Thermal-aware network-on-chips: Single- and cross-layered approaches. Future Gener. Comput.

Syst. 2019, 91, 61–85. [CrossRef]
29. Paul, S.; Chatterjee, N.; Ghosal, P. Dynamic Task Mapping and Scheduling with Temperature-Awareness on Network-on-Chip

based Multicore Systems. J. Syst. Archit. 2019, 98, 271–288. [CrossRef]

https://www.arteris.com/press-releases/qualcomm-arteris-asset-acquisition-2013
https://www.arteris.com/press-releases/qualcomm-arteris-asset-acquisition-2013
https://newsroom.intel.com/news/intel-acquires-netspeed-systems-chip-design/#gs.i08tpn
https://newsroom.intel.com/news/intel-acquires-netspeed-systems-chip-design/#gs.i08tpn
https://www.eetimes.com/facebook-buys-interconnect-ip-vendor-sonics/
https://www.eetimes.com/facebook-buys-interconnect-ip-vendor-sonics/
http://doi.org/10.1016/b978-0-12-809194-4.00002-8
http://dx.doi.org/10.1109/HOTCHIPS.2019.8875654
http://dx.doi.org/10.1109/MSPEC.2014.6905473
http://dx.doi.org/10.1109/MC.2019.2903009
https://www.qualcomm.com/products/cloud-artificial-intelligence/cloud-ai
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.4218/etrij.2020-0128
http://dx.doi.org/10.1145/3289602.3293908
http://dx.doi.org/10.1109/HOTI.2019.00016
http://dx.doi.org/10.1109/ACCESS.2020.3025206
http://dx.doi.org/10.1109/ACCESS.2020.3000457
http://dx.doi.org/10.1145/3126562
http://dx.doi.org/10.1109/TMSCS.2018.2846274
http://dx.doi.org/10.1109/CSCI.2015.45
http://dx.doi.org/10.1109/2.976921
http://dx.doi.org/10.1109/TCAD.2008.2010691
http://dx.doi.org/10.1109/MDT.2005.108
http://dx.doi.org/10.1016/j.vlsi.2018.02.002
http://dx.doi.org/10.1145/3055512
http://dx.doi.org/10.1016/j.sysarc.2018.01.002
http://dx.doi.org/10.1016/j.future.2018.08.041
http://dx.doi.org/10.1016/j.sysarc.2019.08.002


Micromachines 2021, 12, 183 25 of 26

30. Reza, M.F.; Le, T.T.; De, B.; Bayoumi, M.; Zhao, D. Neuro-NoC: Energy Optimization in Heterogeneous Many-Core NoC using
Neural Networks in Dark Silicon Era. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
Florence, Italy, 27–30 May 2018; pp. 1–5. [CrossRef]

31. Ali, H.; Tariq, U.U.; Zheng, Y.; Zhai, X.; Liu, L. Contention & Energy-Aware Real-Time Task Mapping on NoC Based Heteroge-
neous MPSoCs. IEEE Access 2018, 6, 75110–75123. [CrossRef]

32. Moghaddam, M.G.; Guan, W.; Ababei, C. Dynamic Energy Optimization in Chip Multiprocessors Using Deep Neural Networks.
IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 649–661. [CrossRef]

33. Chaves, C.G.; Azad, S.P.; Hollstein, T.; Sepúlveda, J. DoS attack detection and path collision localization in NoC-based MpsoC
architectures. J. Low Power Electron. Appl. 2019, 9, 7. [CrossRef]

34. Indrusiak, L.S.; Harbin, J.; Reinbrecht, C.; Sepúlveda, J. Side-channel protected MPSoC through secure real-time networks-on-chip.
Microprocess. Microsyst. 2019, 68, 34–46. [CrossRef]

35. Ogras, U.Y.; Hu, J.; Marculescu, R. Key research problems in NoC design. In Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS ’05), Jersey City, NJ, USA, 19–21 September
2005; ACM Press: New York, NY, USA, 2005; p. 69. [CrossRef]

36. Huang, J.; Xu, X.; Wang, N.; Chen, S. Reconfigurable topology synthesis for application-specific NoC on partially dynamically
reconfigurable systems. Integration 2019, 65, 331–343. [CrossRef]

37. Oveis-Gharan, M.; Khan, G.N. Reconfigurable on-chip interconnection networks for high performance embedded SoC design. J.
Syst. Archit. 2020, 106, 101711. [CrossRef]

38. Wu, W.T.; Louri, A. A methodology for cognitive NoC design. IEEE Comput. Archit. Lett. 2016. [CrossRef]
39. Jantsch, A.; Dutt, N.; Rahmani, A.M. Self-Awareness in Systems on Chip—A Survey. IEEE Des. Test 2017, 34, 8–26. [CrossRef]
40. Alagarsamy, A.; Gopalakrishnan, L.; Ko, S.B. KBMA: A knowledge-based multi-objective application mapping approach for 3D

NoC. IET Comput. Digit. Tech. 2019. [CrossRef]
41. Gao, W.; Qian, Z.; Zhou, P. Reliability- and performance-driven mapping for regular 3D NoCs using a novel latency model and

Simulated Allocation. Integration 2019, 65, 351–361. [CrossRef]
42. Huang, C.H. HDA: Hierarchical and dependency-aware task mapping for network-on-chip based embedded systems. J. Syst.

Archit. 2020, 108, 101740. [CrossRef]
43. Fathi, A.; Kia, K. A Centralized Controller as an Approach in Designing NoC. Int. J. Mod. Educ. Comput. Sci. 2017, 9, 60–67.

[CrossRef]
44. Chen, K.C. Game-Based Thermal-Delay-Aware Adaptive Routing (GTDAR) for Temperature-Aware 3D Network-on-Chip

Systems. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 2018–2032. [CrossRef]
45. Ghaderi, Z.; Alqahtani, A.; Bagherzadeh, N. AROMa: Aging-Aware Deadlock-Free Adaptive Routing Algorithm and Online

Monitoring in 3D NoCs. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 772–788. [CrossRef]
46. Taheri, E.; Mohammadi, K.; Patooghy, A. ON–OFF: A reactive routing algorithm for dynamic thermal management in 3D NoCs.

IET Comput. Digit. Tech. 2019, 13, 11–19. [CrossRef]
47. Sandoval-Arechiga, R.; Parra-Michel, R.; Vazquez-Avila, J.L.; Flores-Troncoso, J.; Ibarra-Delgado, S. Software Defined Networks-

on-Chip for Multi/Many-Core Systems. In Proceedings of the 2016 Symposium on Architectures for Networking and Commu-
nications Systems (ANCS ’16), Santa Clara, CA, USA, 17–18 March 2016; ACM Press: New York, NY, USA, 2016; pp. 129–130.
[CrossRef]

48. Fang, J.; Chang, Z.; Li, D. Exploration on Routing Configuration of HNoC With Intelligent On-Chip Resource Management. IEEE
Access 2020, 8, 12117–12129. [CrossRef]

49. Temuçin, H.; İmre, K.M. Scheduling computation and communication on a software-defined photonic Network-on-Chip
architecture for high-performance real-time systems. J. Syst. Archit. 2018, 90, 54–71. [CrossRef]

50. Wachter, E.; Caimi, L.L.; Fochi, V.; Munhoz, D.; Moraes, F.G. BrNoC: A broadcast NoC for control messages in many-core systems.
Microelectron. J. 2017, 68, 69–77. [CrossRef]

51. Ruaro, M.; Medina, H.M.; Amory, A.M.; Moraes, F.G. Software-Defined Networking Architecture for NoC-based Many-Cores.
In Proceedings of the IEEE International Symposium on Circuits and Systems, Florence, Italy, 27–30 May 2018; Volume 2018,
pp. 1–5. [CrossRef]

52. Tarafdar, N.; Eskandari, N.; Sharma, V.; Lo, C.; Chow, P. Galapagos: A Full Stack Approach to FPGA Integration in the Cloud.
IEEE Micro 2018, 38, 18–24. [CrossRef]

53. Fettes, Q.; Clark, M.; Bunescu, R.; Karanth, A.; Louri, A. Dynamic Voltage and Frequency Scaling in NoCs with Supervised and
Reinforcement Learning Techniques. IEEE Trans. Comput. 2019, 68, 375–389. [CrossRef]

54. Kanduri, A.; Miele, A.; Rahmani, A.M.; Liljeberg, P.; Bolchini, C.; Dutt, N. Approximation-aware coordinated power/performance
management for heterogeneous multi-cores. In Proceedings of the 55th Annual Design Automation Conference on (DAC ’18),
San Francisco, CA, USA, 24–29 June 2018; ACM Press: New York, New York, USA, 2018; pp. 1–6. [CrossRef]

55. Han, K.; Lee, J.J.; Lee, W.; Lee, J. A Diagnosable Network-on-Chip for FPGA Verification of Intellectual Properties. IEEE Des. Test
2019, 36, 81–87. [CrossRef]

56. Madden, K.; Harkin, J.; McDaid, L.; Nugent, C. Adding Security to Networks-on-Chip using Neural Networks. In Proceedings of
the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1299–1306.
[CrossRef]

http://dx.doi.org/10.1109/ISCAS.2018.8351580
http://dx.doi.org/10.1109/ACCESS.2018.2882941
http://dx.doi.org/10.1109/TMSCS.2018.2870438
http://dx.doi.org/10.3390/jlpea9010007
http://dx.doi.org/10.1016/j.micpro.2019.04.004
http://dx.doi.org/10.1145/1084834.1084856
http://dx.doi.org/10.1016/j.vlsi.2018.02.012
http://dx.doi.org/10.1016/j.sysarc.2020.101711
http://dx.doi.org/10.1109/LCA.2015.2447535
http://dx.doi.org/10.1109/MDAT.2017.2757143
http://dx.doi.org/10.1049/iet-cdt.2018.5055
http://dx.doi.org/10.1016/j.vlsi.2018.04.012
http://dx.doi.org/10.1016/j.sysarc.2020.101740
http://dx.doi.org/10.5815/ijmecs.2017.01.07
http://dx.doi.org/10.1109/TPDS.2018.2812164
http://dx.doi.org/10.1109/TPDS.2017.2780173
http://dx.doi.org/10.1049/iet-cdt.2017.0139
http://dx.doi.org/10.1145/2881025.2889474
http://dx.doi.org/10.1109/ACCESS.2019.2958945
http://dx.doi.org/10.1016/j.sysarc.2018.07.007
http://dx.doi.org/10.1016/j.mejo.2017.08.010
http://dx.doi.org/10.1109/ISCAS.2018.8351830
http://dx.doi.org/10.1109/MM.2018.2877290
http://dx.doi.org/10.1109/TC.2018.2875476
http://dx.doi.org/10.1145/3195970.3195994
http://dx.doi.org/10.1109/MDAT.2018.2890238
http://dx.doi.org/10.1109/SSCI.2018.8628832


Micromachines 2021, 12, 183 26 of 26

57. Ellinidou, S.; Sharma, G.; Dricot, J.M.; Markowitch, O. A SDN solution for system-on-chip world. In Proceedings of the 2018
Fifth International Conference on Software Defined Systems (SDS), Barcelona, Spain, 23–26 April 2018; pp. 14–19. [CrossRef]

58. McKeown, N. Keynote talk: Software-defined networking. In Proceedings of the IEEE INFOCOM, Rio de Janeiro, Brazil,
19–25 April 2009.

59. Kreutz, D.; Ramos, F.M.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined networking: A compre-
hensive survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]

60. Saraswat, S.; Agarwal, V.; Gupta, H.P.; Mishra, R.; Gupta, A.; Dutta, T. Challenges and solutions in Software Defined Networking:
A survey. J. Netw. Comput. Appl. 2019, 141, 23–58. [CrossRef]

61. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]

62. Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.; Casado, M.; McKeown, N.; Shenker, S. NOX: Towards an operating system for networks.
ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 105–110. [CrossRef]

63. Wickboldt, J.; De Jesus, W.; Isolani, P.; Both, C.; Rochol, J.; Granville, L. Software-defined networking: Management requirements
and challenges. IEEE Commun. Mag. 2015, 53, 278–285. [CrossRef]

64. Ellinidou, S.; Sharma, G.; Rigas, T.; Vanspouwen, T.; Markowitch, O.; Dricot, J.M.; Schneider, D. SSPSoC: A Secure SDN-Based
Protocol over MPSoC. Secur. Commun. Netw. 2019, 2019. [CrossRef]

65. Goossens, K.; Dielissen, J.; Rǎdulescu, A. Æthereal network on chip: Concepts, architectures, and implementations. IEEE Des.
Test Comput. 2005, 22, 414–421. [CrossRef]

66. Cong, L.; Wen, W.; Wang, Z. A configurable, programmable and software-defined network on chip. In Proceedings of the
2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2014), Ottawa, ON, Canada,
29–30 September 2014; pp. 813–816. [CrossRef]

67. Wang, J.; Zhu, M.; Peng, C.; Zhou, L.; Qian, Y.; Dou, W. Software-Defined Photonic Network-on-Chip. In Proceedings of the
Third International Conference on e-Technologies and Networks for Development (ICeND), Beirut, Lebanon, 29 April–1 May
2014; pp. 127–130.

68. Scionti, A.; Mazumdar, S.; Portero, A. Software defined Network-on-Chip for scalable CMPs. In Proceedings of the 2016
International Conference on High Performance Computing and Simulation (HPCS 2016), Innsbruck, Austria, 18–22 July 2016.
[CrossRef]

69. Berestizshevsky, K.; Even, G.; Fais, Y.; Ostrometzky, J. SDNoC: Software defined network on a chip. Microprocess. Microsyst. 2017.
[CrossRef]

70. Silva, R.S.; Cruz, P.P.; Kreutz, M.E.; Pereira, M.M. Communication Latency Evaluation on a Software-Defined Network-on-Chip.
In Proceedings of the Brazilian Symposium on Computing System Engineering (SBESC), Natal, Brazil, 19–22 November 2019;
Volume 2019, pp. 1–7. [CrossRef]

71. Scionti, A.; Mazumdar, S.; Portero, A. Towards a scalable software defined network-on-chip for next generation cloud. Sensors
2018, 18, 2330. [CrossRef] [PubMed]

72. Ellinidou, S.; Sharma, G.; Kontogiannis, S.; Markowitch, O.; Dricot, J.M.; Gogniat, G. MicroLET: A New SDNoC-Based
Communication Protocol for ChipLET-Based Systems. In Proceedings of the Euromicro Conference on Digital System Design
(DSD 2019), Kallithea, Greece, 28–30 August 2019; pp. 61–68. [CrossRef]

73. Shantharama, P.; Thyagaturu, A.S.; Reisslein, M. Hardware-Accelerated Platforms and Infrastructures for Network Functions: A
Survey of Enabling Technologies and Research Studies. IEEE Access 2020, 8, 132021–132085. [CrossRef]

74. Ibarra-Delgado, S.; Sandoval-Arechiga, R.; Gómez-Rodríguez, J.R.; Ortíz-López, M.; Brox, M. A Bandwidth Control Arbitration
for SoC Interconnections Performing Applications with Task Dependencies. Micromachines 2020, 11, 1063. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/SDS.2018.8370416
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1016/j.jnca.2019.04.020
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1384609.1384625
http://dx.doi.org/10.1109/MCOM.2015.7010546
http://dx.doi.org/10.1155/2019/4869167
http://dx.doi.org/10.1109/MDT.2005.99
http://dx.doi.org/10.1109/WARTIA.2014.6976396
http://dx.doi.org/10.1109/HPCSim.2016.7568323
http://dx.doi.org/10.1016/j.micpro.2017.03.005
http://dx.doi.org/10.1109/SBESC49506.2019.9046092
http://dx.doi.org/10.3390/s18072330
http://www.ncbi.nlm.nih.gov/pubmed/30021975
http://dx.doi.org/10.1109/DSD.2019.00019
http://dx.doi.org/10.1109/ACCESS.2020.3008250
http://dx.doi.org/10.3390/mi11121063
http://www.ncbi.nlm.nih.gov/pubmed/33266035

	Introduction
	The Motivation for an SDNoC Approach
	NoC Basics
	Design Goals
	Performance and QoS
	Reliability and Fault Tolerance
	Thermal Management
	Power Efficiency
	Security

	NoC Optimization Problems
	Topology Design
	Scheduling
	Mapping
	Routing
	Management

	Summary

	Software-Defined Networking Concept
	SDN Motivation
	SDN Definition
	SDN Origins
	SDN Features

	The SDNoC Layered Architecture
	Infrastructure Segment
	Data Processing Layer
	Network Interface
	Data Forwarding Layer
	Southbound Interface

	Network Operating Segment
	Control Layer
	Northbound Interface
	Network Management Layer
	NOS System Calls

	Applications Segment
	SDNoC Implementations
	Centralized
	Distributed
	Integrated
	Isolated

	Advantages and Disadvantages

	Literature Review
	Foundations
	Exploration
	Extensions
	Applications
	Summary

	Challenges and Opportunities
	Challenges
	Hardware
	Middleware
	Software

	Opportunities

	Conclusions and Perspectives
	References

