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Abstract: Understanding the behavior of a single particle flowing in a microchannel is a necessary
step in designing and optimizing efficient microfluidic devices for the separation, concentration,
counting, detecting, sorting, or mixing of particles in suspension. Although the inertial migration
of spherical particles has been deeply investigated in the last two decades, most of the targeted
applications involve shaped particles whose behavior in microflows is still far from being completely
understood. While traveling in a channel, a particle both rotates and translates: it translates in
the streamwise direction driven by the fluid flow but also in the cross-section perpendicular to the
streamwise direction due to inertial effects. In addition, particles’ rotation and translation motions
are coupled. Most of the existing works investigating the transport of particles in microchannels
decouple their rotational and lateral migration behaviors: particle rotation is mainly studied in simple
shear flows, whereas lateral migration is neglected, and studies on lateral migration mostly focus
on spherical particles whose rotational behavior is simple. The aim of this review is to provide a
summary of the different works existing in the literature on the inertial migration and the rotational
behavior of non-spherical particles with a focus and discussion on the remaining scientific challenges
in this field.

Keywords: inertial migration; non-spherical particles; rotational behavior; particle transport; particle-
laden microflows

1. Introduction

Many applications in various fields, such as agriculture, biomedicine, environmental
sciences, food technology, and the pharmaceutical industry, demand counting, detecting,
sorting, and/or orienting particles in a suspending fluid. The conventional separation
processes (settling, centrifugation, membrane filtration . . . ) require large volumes and
have an important energetic cost. In the past decade, miniaturized particle separation
systems using microfluidic flows have been developed: they allow lowering the sample
volumes and the energetic cost and increasing the adaptability to automation and the
portability of the devices. These microsystems often include a preliminary stage in which
the particles are focused into a tight stream.

A diverse set of methods has emerged to help to achieve focusing at the microscale [1]:
some of them require additional sheath flows [2], while others demand an outer force
that can be electric [3], magnetic [4], optical [5], or acoustic [6]. However, the requirement
of sheath flows and/or external forces complicates the device fabrication, increases the
cost, makes miniaturization difficult, and could also damage biological cells flowing in
the device. More recently, inertial focusing techniques have gained significant attention,
since they only rely on the behavior of the particles in the channel without using any
sheath flows or outer forces. This behavior is controlled by the hydrodynamic interactions
between the fluid and the particles and between the different particles flowing together.

The phenomenon of inertial migration was first observed by Poiseuille in 1836 [7],
while studying blood flows; then, it was quantitatively confirmed in 1962 by the experi-
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ments of Segré and Silberberg on spherical particles [8,9]. It has been shown that under
specific flow and geometrical conditions, flowing particles naturally migrate toward lat-
eral equilibrium positions where they concentrate. The number and the locations of the
equilibrium positions vary in function of parameters related to the channel (cross-section
(Figure 1) and length), the particle (shape, size and deformability), the suspension (solid
volume fraction and type of suspending fluid), and the flow (flow rate, type of flow). After
migrating laterally, the particles are shown to form trains, as it will be detailed in Section 3.
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The mechanisms of inertial migration were highlighted by Matas et al. [12]. Three
primary lift forces carry the particles across the streamlines toward their equilibrium
positions in rectangular and square microchannels: the wall-induced lift force that pushes
the particle away from the wall, the shear-induced lift force that drags the particle close to
the wall, and the rotation-induced lift force. These three lift forces are depicted in Figure 2.
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Most of the theoretical, numerical, and experimental works conducted on inertial
migration during the last two decades have mainly investigated spherical particles. This
simple geometry can be easily fabricated for experimental studies and quickly represented
mathematically and numerically. These works have increased the knowledge on the
transport of spherical particles in microchannels and demonstrated the ability of inertial
focusing methods to separate particles based on their sizes. For example, Di Carlo [13]
highlighted the possibility to separate particles of different sizes within the transverse
plane of the channel. The separation was experimentally proven by Bhaghat et al. [14] by
extracting 590 nm particles from a mixture of 1.9 µm and 590 nm particles using inertial
migration.

However, particles found in real suspensions are rarely spherical. For instance, a
human red blood cell adopts a biconcave disk-like shape in the body, Escherichia coli is
cylindrical, and Euglena gracilis has an ellipsoidal geometry. Furthermore, in many appli-
cations, particles of the same size but different geometries can be found, which complicates
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the size-based separation or even makes it impossible. Thus, shape could serve as a specific
marker in the separation, which raises a question: How do non-spherical particles travel in
a microchannel? The transport of non-spherical particles in a microchannel is indeed much
more complicated than the transport of spherical ones, since their translational and rota-
tional motions are strongly coupled [15–17]. Thus, both rotational and migratory behaviors
should be considered when studying non-spherical particles flowing in a microchannel.
Other particle properties such as deformability or surface topography can play an impor-
tant role in inertial focusing [18], but the physical mechanisms involved are different. As
the main objective of this review was to better understand the role played by the particles’
shape in their inertial migration and rotational behavior, these two parameters were not
considered in our analysis.

The aim of this review is, by analyzing and comparing works in the literature investi-
gating the flow transport of rigid non-spherical particles, to identify and summarize the
main findings and remaining questions related to the behavior of complex shape particles
flowing in microchannels. Section 2 covers the studies done on the rotational motions of
different non-spherical particles in straight shear flows. In Section 3, we present the trans-
port of non-spherical particles flowing in a straight square microchannel where the lateral
migration has to be considered. Finally, in Section 4, an overall summary of the review is
given, conclusions are drawn, and unanswered questions related to the inertial migration
and rotational behavior of a non-spherical particle are identified. Table 1 summarizes the
references dealing with suspensions of non-spherical particles cited in this review paper.
These works are classified according to the phenomena investigated (rotational behavior,
inertial migration), the type of flow (unbounded and bounded shear flows, Poiseuille
flow), and the approach adopted by the researchers (theoretical, numerical, or experimental
approach).

Table 1. References dealing with suspensions of non-spherical particles cited in this review paper. These works are classified
according to the studied phenomenon, the type of flow, and the type of approach adopted by the investigators.

Studied Phenomenon Rotational Behavior Inertial Migration

Type of flow
Type of study Unbounded shear Bounded shear Poiseuille

Theoretical [15,19–26] [27–31] [22,29] -

Numerical [15,23,25,26,32–35] [36–44] [16,17,45–48] [16,17,45,47,49]

Experimental - [27–31,50–54] [29,48,51,55,56] [49,55,57,58]

2. Rotational Behavior of a Non-Spherical Particle in a Shear Flow

Different geometries have been studied in the literature. They can be classified into
three main categories: ellipsoids, non-ellipsoidal axisymmetric particles, and asymmetrical
ones (see Figure 3). Based on the aspect ratio of the particle (λ = radial diameter/equatorial
diameter), an ellipsoid can be a prolate or an oblate (λ > 1 and λ < 1, respectively). Similarly,
non-ellipsoidal axisymmetric particles are subclassified into rod-shaped particles (λ > 1)
and disc-shaped ones (λ < 1).
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2.1. Ellipsoidal Particle

Since an ellipsoid is the closest non-spherical shape to a sphere, the first studies done
on the effect of the shape of a particle on its rotational behavior investigated ellipsoidal
particles. These first studies were mainly theoretical and numerical.

2.1.1. Jeffery’s Theory

In 1922, Jeffery [19] theoretically studied the rotational behavior of an ellipsoid in a
simple shear flow. The particle was rigid, isolated, and neutrally buoyant; the fluid was
Newtonian, and the suspension flowed in a simple shear, creeping, unbounded flow (i.e.,
with a constant shear rate and with neglected fluid inertia and wall effects).

Jeffery found that an ellipsoid rotates around the vorticity axis (perpendicular to
the flow-gradient plane) along one of an infinite set of closed orbits, the so-called Jeffery
orbits, which are dependent on the initial conditions, the shear rate, and the spheroid’s
aspect ratio. This mode of rotation is called “kayaking”, since the particle’s trajectory
resembles the motion of a kayak paddle (Figure 4a,b1–b3). The two extreme orbits are
called “tumbling”, when the axis of revolution of the particle is rotating in the flow-
gradient plane (Figure 4a,c1–c3), and “log-rolling” when the particle rotates around its axis
of revolution aligned with the vorticity axis (Figure 4a,d1–d3).

Jeffery also showed that the particle’s angular velocity is not constant but periodic.
It has a maximum value when the particle’s axis of revolution is perpendicular to the
direction of the fluid motion and a minimum value when the particle is aligned with the
flow. The period of rotation T is the time needed to complete one orbit. It depends on the
shear rate γ and the particle’s aspect ratio λ, and it can be calculated as follows:

T = (λ +1/λ) × 2π/γ. (1)

2.1.2. Extension of Jeffery’s Theory for General Shear Flows

Bretherton et al. [20] extended Jeffery’s theory. They theoretically investigated the
rotational behavior of an ellipsoid flowing in a general shear flow, where the shear rate γ
changes with the position. The results validated Jeffery’s analysis: the particle orbits around
the vorticity axis and has a period of rotation T that can be calculated using Equation (1),
with γ equal to the shear rate at the center of the studied particle.
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2.1.3. Effect of Fluid Inertia

Fluid inertia is shown to have a significant influence on the dynamics of particles
suspended in a fluid: it makes ellipsoids adopt a rotational behavior that is different from
the one found by Jeffery [19].

For a small non-zero Reynolds number, a prolate particle gradually turns its axis
of revolution into the flow-gradient plane in order to tumble [27] (Figure 4a1,a2). The
tumbling mode corresponds to the orbit with the maximal energy dissipation [21,28]. At
high Reynolds numbers, other rotational modes have been observed by several authors.
Ding and Aidun [36] found that above a critical Reynolds number (Re ≈ 29 for neutrally
buoyant particles), a prolate can cease rotating in a steady-state flow. According to them,
this change in the particle’s rotational motion is due to modifications in the recirculation
zones created around the moving particle. In the absence of inertia, the streamlines are fully
attached, and therefore, the torque on the ellipsoid is always forcing it to rotate, creating
a time-periodic state. This rotating state is stable. However, at Re > 0, the streamlines
detach, creating recirculation zones that influence the particle’s behavior by generating an
opposing torque and thus decreasing the net torque exerted on the particle. Beyond the
critical Reynolds number, the opposing torque becomes high enough to stop the particle
from rotating. This steady-state mode has not been observed by other authors. Qi and
Luo [32,33] identified in lieu three different rotational modes with increasing inertia: at
low Re (Re < 205), the prolate tumbles in the flow-gradient plane; at intermediate Re (205
< Re < 345), the axis of the spheroid deviates from the flow-gradient plane, and at higher
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Re (345 < Re < 467), the prolate rolls with its revolution axis aligned with the vorticity
axis. According to Yu et al. [37], a prolate spheroid flowing in a simple shear flow with
Re increasing from 0 to 256 undergoes the following transitions: Jeffery’s orbit, tumbling,
kayaking, log-rolling, and inclined rolling (log-rolling around a tilted axis with respect to
the vorticity axis). Huang et al. [38] also found numerically an additional rotational mode
that they called inclined kayaking. Both Yu et al. [37] and Huang et al. [38] found that some
of these solutions co-exist for a given set of parameters and that the final rotational mode
depends on the initial conditions.

In the case of an oblate and in the presence of fluid inertia, Saffman [27] theoretically
showed that the axis of symmetry of the particle gradually aligns with the vorticity axis
imposing a log-rolling rotational mode (Figure 5b1,b2). For high Reynolds numbers
(220 < Re < 467), Qi and Luo [32,33] showed that the inclined log-rolling is the dominant
rotational regime. According to Yu et al. [37], an oblate spheroid in a simple shear flow with
Re increasing from 0 to 192 undergoes the following transitions: Jeffery orbit, log-rolling,
inclined rolling, and steady-state. During this last rotational mode, the oblate does not
rotate and has its axis of revolution aligned with the gradient axis.
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To summarize, the studies converge on the fact that prolate ellipsoids flowing in
low-inertia shear flows tumble and oblate particles log-roll. However, at higher values of
Re, the results diverge, and different rotational modes are observed.

2.1.4. Extension of Jeffery’s Theory for Bounded Flows

In Jeffery’s theory, the particle is flowing in an unbounded flow where no wall effect
on the particle is considered. Chwang [22] theoretically studied the rotational behavior of
ellipsoids in bounded Couette and Poiseuille flows and showed that Jeffery’s results were
applicable as long as the particle is far from the walls.

2.1.5. Effect of Buoyancy (Sometimes Called “Particle Inertia”)

Jeffery’s theory [19] is based on a neutrally buoyant condition, where the particle and
the fluid have the same density. While increasing the particle-to-fluid density ratio, Ding
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and Aidun [36] observed that the ellipsoid’s rotational modes are conserved and that only
the transition Reynolds numbers between the different modes are increased.

2.1.6. Effect of the Particle’s Aspect Ratio

In the absence of fluid inertia, Equation (1) shows that an increase in the particle’s
aspect ratio causes an increase in the rotation period. This phenomenon has been shown to
be still valid in the presence of fluid inertia in [40].

Moreover, the variation in the rotational rate is shown to increase when the ellipsoid’s
aspect ratio is increased: the maximum angular velocity (when the particle is perpendicular
to the flow) becomes higher, and the minimum angular velocity (when the particle is
aligned with the flow) becomes lower. This was also reported by Bretherton [20], who
observed that an elongated prolate with a high value of λ spends most of its time almost
parallel to the streamlines, and it reverses itself periodically.

2.1.7. Effect of the Particle’s Initial Orientation

In the absence of inertia, Jeffery’s theory [19] considered that the particle’s initial
orientation has a determinant effect on its trajectory and the choice of the orbit. When
the inertial effects start taking place, the conclusions are more controversial. Yu et al. [37]
showed theoretically that the trajectories of prolates and oblates flowing in a Couette flow
at a given Reynolds number are determined by their initial orientations. However, the
results of Huang et al. [38] and Rosén et al. [41] indicate that the rotational mode of an
ellipsoid is influenced by its initial orientation only within certain intervals of Re.

2.2. Axisymmetric Non-Ellipsoidal Particle

Due to several challenges in the fabrication of ellipsoids for experimental testing and
since the non-spherical particles that flow in real suspensions have more complex shapes,
some of the studies were extended from ellipsoids to axisymmetric non-ellipsoidal particles
(mainly rods, doublets, and discs). These works helped understand the effect of the shape
of the particle on its behavior, especially when the particle has sharp edges and/or is more
flattened or elongated than an ellipsoidal particle.

2.2.1. Extension of Jeffery’s Theory to Axisymmetric Non-Ellipsoidal Particles

Bretherton [20] showed that Jeffery’s equations are also valid for almost any axisym-
metric particle, provided that an equivalent aspect ratio λe is used. This latter is determined
experimentally by measuring the orbital period [20,50]. So, it can be deduced that an ax-
isymmetric non-ellipsoidal neutrally buoyant particle in simple, creeping, and unbounded
flows kayaks around the vorticity axis in a closed orbit. The orbit is determined by the
particle’s initial orientation, and the rotational period depends on the equivalent aspect
ratio.

2.2.2. Effect of Fluid Inertia

As seen previously, in the presence of inertia, a prolate particle gradually turns into
the flow-gradient plane in order to tumble, whereas an oblate particle gradually aligns its
axis with the vorticity axis in order to log-roll. With increasing Reynolds number, other
rotational modes can appear.

In the same way, in the presence of fluid inertia, a rod-like particle (λe > 1) tumbles in
the flow-gradient plane, while a disc-like particle (λe < 1) rolls with its axis of revolution
perpendicular to this same plane [29,30,51,52]. A Reynolds number Re ~O(10−3) is sufficient
to force rods and discs to drift from kayaking to a new rotational behavior [23,24,29].

Ku and Lin [42] obtained similar results for fibers that are rod-like particles with a
large aspect ratio. At Re = 0, a fiber in a simple shear flow far from the walls rotates with a
constant period that can be accurately calculated using Jeffery’s equations. At weak inertia,
the fiber still rotates periodically, but it slowly drifts toward the flow direction. Similar
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to the case of prolates and rod-like particles, low inertia forces the fiber to tumble in the
shearing plane perpendicular to the vorticity.

Above a critical Reynolds number (4 < Rec < 13, varying with the particle’s aspect
and confinement ratios), Zettner and Yoda [53] showed experimentally that a cylindrical
particle can cease rotating, resting at a nearly horizontal equilibrium orientation. Ku and
Lin [42] obtained similar results for fibers, for a particle Reynolds number Rep ≥ 6 (Rep is
the Reynolds number based on the length of the particle and the flow average velocity). In
addition, they showed that the stable stationary orientation is established with the fiber’s
axis tilted by a small angle about the flow direction.

2.2.3. Walls and Confinement Effects

The experimental study of Poe and Acrivos [54] and the numerical simulations of
Aidun [43] on the transport of rods in simple shear flows revealed that low confinement
ratios (κ < 0.32) have negligible effects on the particle’s behavior. This parameter, also called
blockage ratio, is the ratio between the diameter of the particle and the smallest dimension
in the channel cross-section. However, κ has a marked effect at higher values [36,53].

Increasing the confinement degree causes an increase in the value of the critical
Reynolds number above which a fiber changes its rotational behavior from a periodic
tumbling to a steady state, meaning that it delays the transition from time-periodic rotation
to stationary state. It also decreases the angle between the fiber stationary equilibrium
orientation and the streamwise direction [42]. However, for a highly confined flow, a fiber
has a stable stationary orientation through the whole range of Reynolds numbers studied
in this paper.

2.2.4. Effect of the Particle’s Aspect Ratio

As explained previously, an increase in the aspect ratio of an ellipsoid increases its
period of rotation and can also alter its rotational behavior.

Similar results were obtained in the case of cylinders. Trevelyan and Mason [31],
Kittipoomwong et al. [34], and Skjetne et al. [44] showed that when the aspect ratio of a
cylinder λ increases at a constant shear rate, the cylinder’s angular velocity decreases and
its period of rotation increases (Figure 6). However, the measured period of rotation was
less than the one predicted by Jeffery [19] when the actual aspect ratio λ was inserted in
Jeffery’s equations. For example, Trevelyan and Mason [31] observed that the period of
rotation of a cylindrical particle is equal to two-thirds the period of rotation of a prolate with
the same aspect ratio. This deviation is due to the non-spheroidal form and can be taken
into consideration by replacing the aspect ratio λ by the equivalent ellipsoidal axis ratio
λe [20,29,31,50,59]. For rod-like particles, it was found experimentally and numerically that
λe/λ ≈ 0.7 [31,35].

An increase in the particle’s aspect ratio also modifies the rotational mode. It increases
the critical Reynolds number above which the particle adopts a steady state, i.e., stops
rotating [53]. In addition, the maximum value of the angular velocity (when the particle is
perpendicular to the flow) increases, and its minimum value (when the particle is aligned
with the flow) decreases.
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2.2.5. Effect of the Solid Volume Fraction (Suspension’s Concentration)

Anczurowski et al. [51,52] showed that the drift from Jeffery’s orbits to a tumbling
motion occurred faster (i.e., at a smaller Re) by increasing the suspension’s concentration.

Table 2 summarizes the key conclusions regarding the rotational behavior of ellipsoidal
and axisymmetric non-ellipsoidal particles in shear flows.

Table 2. Summary of the key conclusions concerning the rotational behavior of ellipsoidal and
axisymmetric non-ellipsoidal particles. Ka means “kayaking”, Tu means “tumbling”, LR means
“log-rolling”, SS means “steady state”, DNC means “studies do not converge”, and X means “no
work identified in the literature”. The papers analyzed to produce this table are listed in the second
and third columns of Table 1.

Particle

Ellipsoid Axisymmetric

Prolate
(λ > 1)

Oblate
(λ < 1)

Rod/cylinder
(λ > 1)

Re (increasing) Ka→Tu→DNC Ka→LR→DNC Ka→Tu→SS

Walls/κ No effect, if the particle is far from the wall
Low κ: no effect

High κ: effect on the
transition Re

Buoyancy Effect on the transition Re X

λ (getting far from 1) Period of rotation increases

Initial orientation Effect present for Re = 0
DNC for Re > 0 X

Concentration
(increasing) X The transition

(Ka→Tu) occurs faster

2.3. Asymmetric Particles

On a higher level of complexity, few works investigated the effect of the particle
asymmetry on its rotational behavior in a shear flow. Gierszewski and Chaffey [25] ran
numerical simulations to study the rotation of a triaxial ellipsoid in a simple shear flow.
They showed that if the particle is asymmetric, its motion is qualitatively different from
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that of an axisymmetric particle, and it has no fixed period of rotation around the fluid’s
vorticity axis. In fact, once the symmetry is broken, the period of rotation is altered, and
the more the particle is asymmetric, the more the period is modified. As a function of the
asymmetry in the particle’s geometry, particles can tumble periodically, quasi-periodically
(also called doubly periodic), or in a chaotic way [26]. The behavior can be chaotic in both
space and time references.

3. Rotational and Migratory Behaviors of a Particle Flowing in a Square Microchannel

In this section, we present several studies investigating the behavior of a particle in a
square microchannel and the effect of parameters related to the particle, the channel, the
suspension, and the flow on this behavior.

3.1. Spherical Particles

As seen in the introduction, neutrally buoyant spherical particles flowing at moderate
Reynolds numbers in a square microchannel laterally migrate toward four equilibrium
positions located at the centers of the channel walls. The lateral migration consists of
two main stages: the particle migrates first in the lateral direction through the velocity
iso-contours and reaches an equilibrium ring; then, it moves cross-laterally along the
chosen ring toward its equilibrium position [12,60–63]. In the first stage, called the cross-
streamline migration, the shear-induced and the wall-induced lift forces drive the particles
to a rectangular ring-like region where the effects of both forces are canceled. The rotation-
induced lift force dominates in the second stage of migration (called the cross-lateral
migration) and drives the particles to their equilibrium positions with a smaller migration
velocity.

Depending on the Reynolds numbers, three different migration regimes can be ob-
served. At low Re (Re < 5 in the experimental conditions of [60]), spheres laterally migrate
toward the center of the channel. At moderate Re (5 < Re < 200), particles migrate toward
the four equilibrium positions described above. At high Reynolds numbers (Re > 450,
according to [62]), secondary equilibrium positions appear at the corners of the channel,
increasing the total number of equilibrium positions from four to eight. Regardless of
the regime, increasing the Reynolds number accelerates the migration process and thus
decreases the focusing length. The distance between a face-centered equilibrium position
and its nearest wall varies with the Reynolds number. An increase in Re in the moderate
range gets the spheres closer to the walls [60]. However, at high values of Re, increasing
this number increases the distance between the face-centered equilibrium positions and
the walls, and the particles are observed to be closer to the channel centerline [62].

The confinement ratio κ is also shown to have an effect on the sphere’s inertial mi-
gration. In the case of neutrally buoyant particles, increasing κ accelerates the migration
process and thus decreases the channel length needed to reach the final stage of migration.
In addition, bigger spheres (i.e., higher κ) focus at an equilibrium position closer to the
channel centerline than smaller particles [60].

The migration toward the equilibrium positions is followed by a particle longitudinal
ordering, during which the particles form trains and follow each other in the channel with
a constant interparticle spacing (Figure 7a). This phenomenon only occurs after the lateral
migration is fully developed. This was observed by Segré and Silberberg [8,9]; then, it
was investigated and explained by Matas et al. [64] and Lee et al. [61]. The “reversing
streamlines” created around the particle while flowing in the channel were found to be the
physical phenomenon underlying this particle alignment (Figure 7b).
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merical simulations reveal phenomena similar to those observed for spherical particles. In 
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Figure 7. (a) A captured image representing the longitudinal ordering of spherical particles in a square channel at Re = 210
(reprinted from [63]; (b) Simulated streamlines around an isolated sphere at Re = 48 putting into evidence the reversing
streamlines created at both sides of the particle (reprinted from [61]).

In addition to their inertial migration, particles have a rotational behavior in the
channel. According to [60], the rotational behavior of a spherical neutrally buoyant particle
flowing in a square microchannel at moderate Reynolds numbers depends on the sphere’s
lateral migration development. During the migration process, the particle’s angular velocity
has three components along the three main axes of the channel: it rotates around both
cross-sectional directions due to the presence of two parabolic velocity profiles in a typical
square Poiseuille flow, and it rotates also around the flow axis. Once the particle is focused,
only the rotation in the cross-sectional direction parallel to its closest wall remains. The
particle’s angular velocity increases with increasing Re. Figure 8 shows particles focused
on their equilibrium positions in a square cross-section with their rotational axis.
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3.2. Non-Spherical Particles
3.2.1. Rotation Behavior and Lateral Migration at Moderate Reynolds Numbers

The main difficulty in the study of non-spherical particles is that their migration is
strongly coupled with their orientation and rotational regime [17]. For example, the lift
component induced by the particle’s rotation has an obvious influence on the transverse
focusing position of the particles, which cannot be neglected [65].

In 2017, Lashgari et al. [16] were the first to study the motion of oblate particles in
a microfluidic configuration where not only the equilibrium position but also the entire
migration dynamics of the particle from the initial to the final position, including particle
trajectory, velocity, rotation, and orientation, were investigated. The results of their nu-
merical simulations reveal phenomena similar to those observed for spherical particles. In
particular, an oblate particle experiences at moderate Re a lateral motion toward a face-
centered equilibrium position so that four face-centered equilibrium positions are observed
as for spheres (Figure 9). Likewise, oblates migrate in a two-stage process: they first migrate
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laterally toward a square annulus in the vicinity of the walls, and they secondly move
cross-laterally in the annulus toward the four-centered equilibrium positions.
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More recently, Nizkaya et al. [17] studied inertial focusing of oblate spheroidal parti-
cles in channel flow at moderate Reynolds numbers Re = 11–44 using lattice Boltzmann
simulations. They found also that all spheroids focus on the four face-centered equilibrium
positions.

For cylindrical particles flowing in a square channel as well, Su et al. [45] demonstrated
numerically that there are always four stable equilibrium positions for Re varying from
50 to 200. The two-stage process (cross-streamline and cross-lateral migrations) was also
shown for these cylindrical particles.

While the particles migrate toward their equilibrium positions, their rotational mode
changes. Pan et al. [46] showed that an ellipsoidal particle in a Poiseuille flow has a stable
orientational behavior after reaching its equilibrium position: a prolate ellipsoid tumbles
and an oblate ellipsoid log-rolls, as they do in a shear flow at moderate Re (see Section 2).
According to [16,17], the streamwise motion of an oblate spheroid, from its initial to its final
equilibrium position is coupled to a rotation around its axis of revolution (log-rolling) and
a tumbling around its equatorial axis creating the already described kayaking mode. As
the particle gets closer to the equilibrium position, the tumbling motion vanishes gradually,
and the particle just rotates around its axis of revolution (Figure 10). This means that oblates
start to migrate with a kayaking motion and slowly move to a log-rolling motion while
getting closer to their equilibrium lateral positions. The kayaking motion is responsible for
oscillations of the trajectories.

Lashgari et al. [16] found that, on its final equilibrium position, the orientation vector
of an oblate particle is parallel to the nearest wall, perpendicular to the flow. This is in
agreement with the experimental findings of Di Carlo et al. [13] on the inertial focusing of
particles in microchannels. Finally, at the equilibrium position, an oblate particle rotates
around its axis of revolution (with zero streamwise and wall-normal rotation rates).
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According to [16], the focusing length in square channels is slightly longer for oblate
particles compared to spherical particles of the same volume starting from the same initial
lateral position. This is mainly attributed to the presence of a tumbling motion during
the migration, which reduces the lateral velocity of the oblates. However, this is not
the case in rectangular channels where the focusing length is slightly shorter for oblates
than for spheres. Tumbling is negligible in that case, and it has been numerically found
that the lateral velocity for oblate particles is higher than that of spheres in a rectangular
cross-section [16].

Unlike spherical particles [16,60], non-spherical ones oscillate while being transported
in a microchannel flow. Hur et al. [55], Masaeli et al. [49], and Su et al. [45] observed that
an elongated particle (λ > 1) will keep oscillating regardless of its position in the channel
(still migrating or focused on an equilibrium position) (Figure 11). This might be due to the
fact that a prolate particle prefers to tumble (see Section 2.1.3) and that, while adopting
this type of rotation, the angular velocity, the sweeping area, and the distance from the
wall continuously change, leading to periodical variations of the wall-induced lift force
and thus a periodic motion of the particle toward and away from the wall [45]. In the same
way, Nizkaya et al. [17] showed that an oblate particle oscillates while kayaking, since the
kayaking motion is a combination of tumbling and log-rolling but stopped oscillating once
it is focused on its equilibrium position.
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Publishing).
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Despite this oscillatory behavior, the magnitudes of the observed oscillations are very
small: around 1.25% of the particle’s length [45]. It can be deduced that similarly to spheres,
non-spherical particles have well-defined equilibrium positions.

3.2.2. Influence of the Reynolds Number Re

Similar to spherical particles, Hur et al. [55] experimentally showed that neutrally
buoyant discs, rods, and doublets migrate toward the channel center at low Reynolds
numbers (Re < 14).

For an oblate particle flowing in a square microchannel at moderate and high Reynolds
numbers, Lashgari et al. [16] identified three migration regimes, as seen in Figure 12:

• For Re < 150, particles log-roll and migrate toward the four face-centered equilibrium
positions, with the particles being closer to the wall with increasing Re;

• For 150 < Re < 200, an oblate particle still focuses close to a face-centered equilibrium
position but with its axis not perpendicular to the closest wall. This rotational mode
resembles the inclined rolling mode reported in the dynamical system analysis of
the motion of an oblate spheroid in a simple shear flow [36,39]. In that range of Re,
particles still get closer to the wall when Re increases;

• For Re > 200, an oblate particle approaches one of the four standard equilibrium posi-
tions, but its orientation and rotation are time-dependent and chaotic. The rotational
mode seems to be a combination of the tumbling and the log-rolling motions. This
behavior of oblates was also observed by Rosén et al. [39], who showed that above a
certain particle Reynolds number, the tumbling motion can be found in addition to
the already existing log-rolling mode. At Re > 300, the particle focuses closer to the
channel center.
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Similar results have been obtained for rod-like particles. In a square channel, while
increasing the fluid inertia, Su et al. [45] (Re = 50–400) did not observe any modification
in the distribution of cylindrical particles in the channel. The non-spherical particles kept
their four equilibrium positions at the centers of the channel walls regardless of Re. In
addition, no works showed the transition from four to eight equilibrium positions, which
was observed for spherical particles (see Section 3.1).
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Moreover, Masaeli et al. [49] observed that at a fixed distance from the channel inlet,
the percentage of tumbling prolate particles increased from 39% at Re ≈8 to 84% at Re ≈ 20.
So, an increase in the Reynolds number increases the probability of finding a prolate
particle with a tumbling rotational mode. It might be deduced from this observation that
an increase in Re accelerates the transition phase from the kayaking mode to other modes
(tumbling for prolates and log-rolling for oblates), lowering by that the channel length
needed to reach the equilibrium rotational mode. Note that the Reynolds number has
the same effect on the focusing length: when Re increases, the equilibrium positions are
reached faster [55].

Finally, it has been observed that the effect of the Reynolds number on the distance
between the equilibrium positions of spheres and the closest wall is the same in the case
of non-spherical particles. The experimental results in [49] showed that the equilibrium
positions of rod-like particles move closer to the channel wall while increasing the Reynolds
number up to 200. The numerical simulations of Huang et al. [47] showed also that the
focusing positions of oblate particles tend to get closer to the channel centerline while
increasing Re above 200 (Figure 13).
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position of an ellipsoidal particle (prolate and oblate) as a function of the Reynolds number. H is the
channel’s height.

3.2.3. Influence of the Confinement Ratio κ

At moderate Reynolds numbers, when spherical particles migrate toward the four
face-centered equilibrium positions, it is seen that spheres get closer to the centerline when
the confinement degree increases.

An “equivalent diameter” definition is needed to quantify the confinement for particles
of different shapes. The definitions of this diameter vary among the different studies.
Hur et al. [55] experimentally observed that the particle’s equilibrium position Yeq is
determined by its rotational diameter drot (the longest distance between two points on
the particle, which corresponds to the particle’s longest axis of symmetry for most of the
cases), regardless of its geometrical shape. This was shown to be true for all the tested
geometries (spheres, cylinders, discs, symmetric and asymmetric doublets) except for the
case of asymmetric disks (h-particles). The observations of [55] were later numerically
confirmed by Masaeli et al. [49]. Thus, we chose the rotational diameter as an equivalent
diameter. Figure 14 represents the equilibrium distance from the nearest wall, which is
normalized by the channel smallest dimension W) as a function of the confinement ratio.
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normalized rotational diameter drot/W). The results are obtained by Lashgari et al., 2017 [16] (blue) [Oblate at Re = 100 with
ARc = 0.5 (channel aspect ratio) (filled square)], Hur et al., 2011 [55] (green) [Sphere at Re = 200 with 0.6 < ARc < 0.66 (filled
square), Disc at Re = 200 with 0.6 < ARc < 0.66 (filled triangle), Cylinder at Re = 200 with 0.6 < ARc < 0.66 (filled rhombus),
Doublet at Re = 200 with 0.6 < ARc < 0.66 (filled circle), Asymmetric disc at Re = 200 with 0.6 < ARc < 0.66 (asterisk)], Li
et al., 2017 [57] (yellow) [E. gracilis at Re = 205 with ARc = 0.55 (filled square), E. gracilis at Re = 128 with ARc = 0.55 (filled
circle), E. gracilis at Re = 77 with ARc = 0.55 (filled triangle), E. gracilis at Re = 205 with ARc = 0.45 (dashed square), E. gracilis
at Re = 128 with ARc = 0.45 (dashed circle), E. gracilis at Re = 77 with ARc = 0.45 (dashed triangle)] and Masaeli et al.,
2012 [49] (purple) (Sphere/Rod at Re = 13.09 with ARc = 0.74 (filled triangle), Sphere/Rod at Re = 19.64 with ARc = 0.74
(filled square), Sphere/Rod at Re = 26.18 with ARc = 0.74 (filled rhombus), Sphere/Rod at Re = 32.73 with ARc = 0.74
(filled circle), Sphere/Rod at Re = 39.27 with ARc = 0.74 (dotted triangle), Sphere/Rod at Re = 45.82 with ARc = 0.74 (filled
rectangle), Sphere/Rod at Re = 52.36 with ARc = 0.74 (dotted square), Sphere/Rod at Re = 58.91 with ARc = 0.74 (dotted
rhombus), Sphere/Rod at Re = 65.45 with ARc = 0.74 (dotted rectangle), Sphere/Rod at Re = 72 with ARc = 0.74 (dotted
circle), Sphere/Rod at Re = 14 with ARc = 0.64 (empty triangle), Sphere/Rod at Re = 21 with ARc = 0.64 (empty square),
Sphere/Rod at Re = 28 with ARc = 0.64 (empty rhombus), Sphere/Rod at Re = 35 with ARc = 0.64 (empty circle), Sphere/Rod
at Re = 42 with ARc = 0.64 (X), Sphere/Rod at Re = 49 with ARc = 0.64 (asterisk), Sphere/Rod at Re = 14.8 with ARc = 0.53
(dashed triangle), Sphere/Rod at Re = 22.2 with ARc = 0.53 (dashed rectangle), Sphere/Rod at Re = 29.6 with ARc = 0.53
(dashed rhombus), Sphere/Rod at Re = 37 with ARc = 0.53 (dashed circle)). The black line corresponds to the fitting curve
obtained by the experiments of [55], and the two dashed black lines bound the range of acceptable deviation also called the
confidence zone (half of the radius of the smallest particle).

It can be deduced from Figure 14 that the normalized equilibrium position increases
with the confinement ratio, which means that non-spherical particles get closer to the
channel centerline, as do spheres in the same conditions [63,66].

Moreover, the evolution is quite linear, following the fitting curve obtained by Hur
et al. [55]. This linear progression was also observed in the case of spherical particles [67,68].
We have added in Figure 14 two parallel lines bounding a confidence zone in which the
deviation from the fitting line is considered acceptable. The lines are located at ±0.043 W
from the fitting curve. This value is equal to the half of the radius of the smallest particle
of the data presented in Figure 14 (drot-(min)/W = 0.17142). Most of the particles (94%) are
within the confidence zone. Solely the results of Li et al. [57] seem to be far from the
others, and this deviation could be due to the fact that their work is focused on living
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microorganisms for which additional parameters such as their deformability can play a
role in their displacement in the channel.

Concerning the effect of the confinement degree on the focusing length, Lashgari
et al. [16] numerically found that the focusing length of an oblate particle decreases with
increasing κ. In other words, large particles focus faster than smaller ones. This is similar
to the spherical case where smaller particles need longer channels to reach their focusing
positions.

Finally, Lashgari et al. [16] observed that in a square channel and for a high value of
confinement (κ = 1/2.43), the migration dynamics of an oblate are completely different.
The equilibrium position is along the diagonal symmetry line, between the corner and the
center of the channel (Figure 15). In order to explain the peculiar behavior of the large
oblate in a square channel, the authors examine the rotation rate of the oblate around the
streamwise direction during the migration process. Typically, during the migration stages,
the angular velocity increases and then decreases. It increases due to the fast motion of the
particle toward the equilibrium wall and then decreases due to the particle’s slow motion
toward the equilibrium position under the action of the rotation-induced lift force. The
magnitude of this force is reduced when the angular velocity decreases, and the particle
eventually focuses at a face-centered equilibrium position. This behavior is not observed
for the largest oblates presented here. In this case, the streamwise rotation does not reduce
to zero as the particle moves toward the vertical symmetry line, which accelerates the
particle motion. This might occur because large oblates are more susceptible to tumbling.
As a result of this acceleration, the particle crosses the vertical symmetry line and focuses
on the diagonal where the streamwise rotation rate becomes zero and the shear-induced
and wall-induced lift forces balance each other. This strange behavior was not observed by
Hur et al. [55], who studied the inertial migration in highly confined rectangular channels
and confirmed that the particles focus at the centers of the longest channel sides similarly
to the cases of low κ values.
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Figure 15. Lateral trajectories of oblate rigid particles of different sizes in a square duct at Re = 100. The
particles have the same aspect ratio (ratio between the particle axes, λ = 1/3) and different volumes.
The confinement ratios κ are equal to 1/6.93, 1/3.47, and 1/2.43 for the pink, green, and blue particles,
respectively. The values of κ are calculated using the particles aspect ratio and the equivalent volume
diameters dv (diameter of the sphere of the same volume). Open circles and triangles show the initial
and final equilibrium positions, respectively. The initial and final orientations of the oblates are
shown with dashed and solid lines (reproduced from [16] with permission).
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3.2.4. Influence of the Particle’s Aspect Ratio λ

Figure 9a,b, reprinted from Nizkaya et al. [17], present respectively the streamwise
component (colored curves) and the vorticity component (black curves) of the orientation
vector as well as the trajectories of three oblate particles with the same rotational diameter
but different aspect ratios (λ1 = 0.5 (solid), λ2 = 0.8 (dashed), and λ3 = 1 (sphere) (dotted)).
As seen in Figure 10a, the streamwise component of the orientation vector experiences
decaying oscillations, while the vorticity component converges to unity. This confirms that
oblates start with a kayaking motion (responsible for oscillations) and slowly converge
to a log-rolling motion with the revolution and rotational axes aligned with the vorticity
direction. As seen in Figure 10b, the equilibrium positions for the three oblates are very
close, indicating that the equilibrium positions and the log-rolling motions are controlled
by the particle’s rotational diameter with a weak dependence on the aspect ratio. This
result is in full agreement with the experimental findings of [49,55].

Concerning the rotational behavior, it can be observed that the oscillations vary with
the value of λ, showing that the particle’s aspect ratio influences the kayaking motion. For
example, the oscillations of the less-oblate spheroid (λ = 0.8) decay much slower than those
for λ = 0.5 (more oblate). Moreover, it can be noted that in the case studied by Nizkaya
et al. [17], the particles reach their equilibrium position (Figure 10b) before the stabilization
of their rotational mode (Figure 10a). This phenomenon is more pronounced when the
particle aspect ratio λ is closer to 1 (spherical case).

Equation (1), proposed by Jeffery for the calculation of the period of rotation, indicates
that an increase in the aspect ratio of the ellipsoid increases its period of rotation T. This
was shown to be true by Masaeli et al. [49], who studied the behavior of elongated particles
(λ = 3 and 5) in a rectangular Poiseuille flow. However, this result was not obtained by Hur
et al. [55], who claimed that T is independent of λ and that it increases with the confinement
ratio κ (Figure 16). However, the study presented in [55] was performed on a small range
of λ (2 < λ < 4). In our opinion, the work should be done on a larger interval in order to
validate the obtained results.
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3.2.5. Effect of Other Parameters

Other parameters, such as the particle asymmetry and its initial position and orien-
tation, have been shown to have an influence on the rotational behavior, but the relative
literature summarized hereafter is still poor regarding confined flow.

Effect of asymmetry in the particle’s geometry: In the case of a shear flow (cf.
Section 2.3), asymmetry in the particle’s geometry generates chaos in its rotational be-
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havior [25,26]. This was confirmed by Einarsson et al. in a Poiseuille flow [48,56]. However,
the findings of Hur et al. [55] in a rectangular channel show that h-shaped particles log-roll
similar to axisymmetric discs, and no chaotic behavior is observed.

Effect of the particle’s initial conditions: As shown earlier, in a shear flow, when inertia
is present, the effect of the particle’s initial conditions is still unclear. In a Poiseuille flow,
with a Reynolds number varying between 11 and 44, Nizkaya et al. [17] numerically found
that oblates choose to log-roll regardless of their initial position and orientation.

3.2.6. Applications

Works conducted during the last two decades on inertial focusing have shown that
this technique has a great potential in terms of practical applications. The most developed
application of inertial focusing of non-spherical particles is separation.

Particles of different shapes (hence different λ) but the same volume have different
rotational diameters, which thus modifies the corresponding confinement ratio. As seen
in Section 3.2.3, an alteration in κ induces a change in the particle equilibrium position.
Some works took advantage of this effect to perform a so-called “shape-based” separation
of biological particles. Mach and Di Carlo [58] designed an inertial microfluidic device
to separate pathogenic bacteria cells from diluted blood. After two passes of the single
channel system, the device removed 80% of the pathogenic bacteria and enriched red blood
cells concentration four times. Two similar works were done using more sophisticated
separator designs, permitting the separation of yeast cells [49] and E. gracilis [57] of different
aspect ratios, with high levels of purity (more than 90%).

Although the separation in these works is presented as a “shape-based” separation,
it is still not clear if the difference in the equilibrium positions is due to a change in the
aspect ratio λ or in the confinement degree κ. Thus, complementary experiments should be
performed on particles with identical κ but different aspect ratios λ to verify if they have
the same Yeq or not. In the case where the equilibrium positions of particles of different
shapes are identical, kinetic separation based on the migration velocity could be considered,
exploiting for example the observations from Nizkaya et al. [17] regarding the relation
between the transitory rotational mode of the particles and their aspect ratio.

4. Conclusions

This review aimed to summarize and compare recent works in the literature dealing
with the transport of non-spherical particles in straight square microchannels. For this
purpose, a preliminary analysis of the main studies on non-spherical particles in unconfined
shear flows has been conducted to identify the main parameters influencing their rotational
behavior.

These different works have highlighted that in a Poiseuille flow, a particle simultane-
ously rotates and translates. At moderate Reynolds numbers (0 < Re < 150–200 depending
on the configuration), near the channel entrance, the particle undergoes a transition phase.
During this transition phase, it laterally migrates toward one of the equilibrium positions
located near the channel walls, and its rotational mode gradually shifts from kayaking to
tumbling if its aspect ratio is above 1 (prolate spheroids, rods, fibers . . . ) or to log-rolling if
its aspect ratio is below 1 (oblate spheroids, discs . . . ). At the end of the transition period,
the particle that is focused on its equilibrium position translates solely in the streamwise
direction and tumbles or log-rolls with its axis of rotation parallel to the closest wall. The
channel length needed for a particle to reach its equilibrium position can be different,
depending on the particle aspect ratio, from that needed to reach its equilibrium rota-
tional mode. The particles symmetry, aspect ratio, volume fraction, confinement ratio, and
Reynolds number play a major role in both the rotational behavior and the translational
migration of the particles. At higher Reynolds numbers, other rotational modes (steady
state, inclined rolling . . . ) and focusing positions can appear, but the different existing
studies do not converge on these points.
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Although several numerical works have studied both the rotational and translational
motions of non-spherical particles flowing in square channels, there is a real lack of experi-
mental investigations in that field. To our knowledge, solely Hur et al. [55] have published
experimental data on this problem. De facto, the experimental analysis of the particles’
behavior is much more complicated for non-spherical particles than for spherical ones,
since a three-dimensional approach is needed to observe simultaneously the particles’
position and orientation. The recent advances in image-based 3D reconstruction techniques
could be advantageously exploited here to bring new experimental insights on this subject.

All the results presented in this work are essential to better understand the particles’
transport in a Poiseuille flow and demonstrate that shape-based separation is possible.
However, for that purpose, three important aspects still need to be clarified and should be
the object of the coming works in that field:

• The particles’ behavior (rotational and translational) at high Reynolds numbers (over
200), which is still a subject of discussion in the literature;

• The role of the interaction between non-spherical particles on their lateral migration
and longitudinal ordering, which has not been studied yet to the best of our knowledge,
although it has been proven to be essential in the case of spherical particles;

• The coupling between the lateral migration and the rotation of the particle during the
transitional phase, which is not yet completely understood.

Overcoming these three remaining points is essential to develop shape-based separa-
tion devices that could be integrated into Lab-on-Chip platforms.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gossett, D.R.; Weaver, W.M.; Mach, A.J.; Hur, S.C.; Tse, H.T.K.; Lee, W.; Amini, H.; Di Carlo, D. Label-Free Cell Separation and

Sorting in Microfluidic Systems. Anal. Bioanal. Chem. 2010, 397, 3249–3267. [CrossRef]
2. Takagi, J.; Yamada, M.; Yasuda, M.; Seki, M. Continuous Particle Separation in a Microchannel Having Asymmetrically Arranged

Multiple Branches. Lab Chip 2005, 5, 778. [CrossRef] [PubMed]
3. Zhu, J.; Tzeng, T.-R.J.; Xuan, X. Continuous Dielectrophoretic Separation of Particles in a Spiral Microchannel. Electrophoresis 2010,

31, 1382–1388. [CrossRef] [PubMed]
4. Inglis, D.W.; Riehn, R.; Austin, R.H.; Sturm, J.C. Continuous Microfluidic Immunomagnetic Cell Separation. Appl. Phys. Lett.

2004, 85, 5093–5095. [CrossRef]
5. MacDonald, M.P.; Spalding, G.C.; Dholakia, K. Microfluidic Sorting in an Optical Lattice. Nature 2003, 426, 421–424. [CrossRef]

[PubMed]
6. Laurell, T.; Petersson, F.; Nilsson, A. Chip Integrated Strategies for Acoustic Separation and Manipulation of Cells and Particles.

Chem. Soc. Rev. 2007, 36, 492–506. [CrossRef] [PubMed]
7. Poiseuille, J. Observations of Blood Flow. Ann. Sci. Nat. STrie 1836, 5, 111–115.
8. Segré, G.; Silberberg, A. Behaviour of Macroscopic Rigid Spheres in Poiseuille Flow Part 1. Determination of Local Concentration

by Statistical Analysis of Particle Passages through Crossed Light Beams. J. Fluid Mech. 1962, 14, 115–135. [CrossRef]
9. Segré, G.; Silberberg, A. Behaviour of Macroscopic Rigid Spheres in Poiseuille Flow Part 2. Experimental Results and Interpreta-

tion. J. Fluid Mech. 1962, 14, 136–157. [CrossRef]
10. Di Carlo, D. Inertial Microfluidics. Lab Chip 2009, 9, 3038. [CrossRef]
11. Amini, H.; Lee, W.; Di Carlo, D. Inertial Microfluidic Physics. Lab Chip 2014, 14, 2739. [CrossRef] [PubMed]
12. Matas, Jp.; Morris, Jf.; Guazzelli, E. Lateral Forces on a Sphere. Oil Gas Sci. Technol. 2004, 59, 59–70. [CrossRef]
13. Di Carlo, D.; Irimia, D.; Tompkins, R.G.; Toner, M. Continuous Inertial Focusing, Ordering, and Separation of Particles in

Microchannels. Proc. Natl. Acad. Sci. USA 2007, 104, 18892–18897. [CrossRef] [PubMed]
14. Bhagat, A.A.S.; Kuntaegowdanahalli, S.S.; Papautsky, I. Inertial Microfluidics for Continuous Particle Filtration and Extraction.

Microfluid. Nanofluidics 2009, 7, 217–226. [CrossRef]
15. Broday, D.; Fichman, M.; Shapiro, M.; Gutfinger, C. Motion of Spheroidal Particles in Vertical Shear Flows. Phys. Fluids 1998, 10,

86–100. [CrossRef]
16. Lashgari, I.; Ardekani, M.N.; Banerjee, I.; Russom, A.; Brandt, L. Inertial Migration of Spherical and Oblate Particles in Straight

Ducts. J. Fluid Mech. 2017, 819, 540–561. [CrossRef]
17. Nizkaya, T.V.; Gekova, A.S.; Harting, J.; Asmolov, E.S.; Vinogradova, O.I. Inertial Migration of Oblate Spheroids in a Plane

Channel. Phys. Fluids 2020, 32, 112017. [CrossRef]

http://doi.org/10.1007/s00216-010-3721-9
http://doi.org/10.1039/b501885d
http://www.ncbi.nlm.nih.gov/pubmed/15970972
http://doi.org/10.1002/elps.200900736
http://www.ncbi.nlm.nih.gov/pubmed/20301126
http://doi.org/10.1063/1.1823015
http://doi.org/10.1038/nature02144
http://www.ncbi.nlm.nih.gov/pubmed/14647376
http://doi.org/10.1039/B601326K
http://www.ncbi.nlm.nih.gov/pubmed/17325788
http://doi.org/10.1017/S002211206200110X
http://doi.org/10.1017/S0022112062001111
http://doi.org/10.1039/b912547g
http://doi.org/10.1039/c4lc00128a
http://www.ncbi.nlm.nih.gov/pubmed/24914632
http://doi.org/10.2516/ogst:2004006
http://doi.org/10.1073/pnas.0704958104
http://www.ncbi.nlm.nih.gov/pubmed/18025477
http://doi.org/10.1007/s10404-008-0377-2
http://doi.org/10.1063/1.869552
http://doi.org/10.1017/jfm.2017.189
http://doi.org/10.1063/5.0028353


Micromachines 2021, 12, 277 21 of 22

18. Hur, S.C.; Henderson-MacLennan, N.K.; McCabe, E.R.B.; Di Carlo, D. Deformability-Based Cell Classification and Enrichment
Using Inertial Microfluidics. Lab Chip 2011, 11, 912. [CrossRef]

19. Jeffery, G.B. The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid. Proc. R. Soc. Lond. A. 1922, 102, 161–179. [CrossRef]
20. Bretherton, F.P. The Motion of Rigid Particles in a Shear Flow at Low Reynolds Number. J. Fluid Mech. 1962, 14, 284–304.

[CrossRef]
21. Leal, L.G. Particle Motions in a Viscous Fluid. Annu. Rev. Fluid Mech. 1980, 12, 435–476. [CrossRef]
22. Chwang, A.T. Hydromechanics of Low-Reynolds-Number Flow. Part 3. Motion of a Spheroidal Particle in Quadratic Flows. J.

Fluid Mech. 1975, 72, 17–34. [CrossRef]
23. Subramanian, G.; Koch, D.L. Inertial Effects on Fibre Motion in Simple Shear Flow. J. Fluid Mech. 2005, 535, 383–414. [CrossRef]
24. Candelier, F.; Einarsson, J.; Lundell, F.; Mehlig, B.; Angilella, J.-R. Role of Inertia for the Rotation of a Nearly Spherical Particle in

a General Linear Flow. Phys. Rev. E 2015, 91, 053023. [CrossRef] [PubMed]
25. Gierszewski, P.J.; Chaffey, C.E. Rotation of an Isolated Triaxial Ellipsoid Suspended in Slow Viscous Flow. Can. J. Phys. 1978, 56,

6–11. [CrossRef]
26. Hinch, E.J.; Leal, L.G. Rotation of Small Non-Axisymmetric Particles in a Simple Shear Flow. J. Fluid Mech. 1979, 92, 591–607.

[CrossRef]
27. Saffman, P.G. On the Motion of Small Spheroidal Particles in a Viscous Liquid. J. Fluid Mech. 1956, 1, 540–553. [CrossRef]
28. Harper, E.Y.; Chang, I.-D. Maximum Dissipation Resulting from Lift in a Slow Viscous Shear Flow. J. Fluid Mech. 1968, 33, 209.

[CrossRef]
29. Karnis, A.; Goldsmith, H.L.; Mason, S.G. The Flow of Suspensions through Tubes: V. Inertial Effects. Can. J. Chem. Eng. 1966, 44,

181–193. [CrossRef]
30. Mason, S.G.; Manley, R.S.J. Particle Motions in Sheared Suspensions: Orientations and Interactions of Rigid Rods. Proc. R. Soc.

Lond. A. 1956, 238, 117–131. [CrossRef]
31. Trevelyan, B.J.; Mason, S.G. Particle Motions in Sheared Suspensions. I. Rotations. J. Colloid Sci. 1951, 6, 354–367. [CrossRef]
32. Qi, D.; Luo, L. Transitions in Rotations of a Nonspherical Particle in a Three-Dimensional Moderate Reynolds Number Couette

Flow. Phys. Fluids 2002, 14, 4440–4443. [CrossRef]
33. Qi, D.; Luo, L.-S. Rotational and Orientational Behaviour of Three-Dimensional Spheroidal Particles in Couette Flows. J. Fluid

Mech. 2003, 477. [CrossRef]
34. Kittipoomwong, P.; See, H.; Mai-Duy, N. Dynamic Simulation of Non-Spherical Particulate Suspensions. Rheol. Acta 2010, 49,

597–606. [CrossRef]
35. Joung, C.G. Dynamic Simulation of Arbitrarily Shaped Particles in Shear Flow. Rheol. Acta 2006, 46, 143–152. [CrossRef]
36. Ding, E.-J.; Aidun, C.K. The Dynamics and Scaling Law for Particles Suspended in Shear Flow with Inertia. J. Fluid Mech. 2000,

423, 317–344. [CrossRef]
37. Yu, Z.; Phan-Thien, N.; Tanner, R.I. Rotation of a Spheroid in a Couette Flow at Moderate Reynolds Numbers. Phys. Rev. E 2007,

76, 026310. [CrossRef]
38. Huang, H.; Yang, X.; Krafczyk, M.; Lu, X.-Y. Rotation of Spheroidal Particles in Couette Flows. J. Fluid Mech. 2012, 692, 369–394.

[CrossRef]
39. Rosén, T.; Do-Quang, M.; Aidun, C.K.; Lundell, F. Effect of Fluid and Particle Inertia on the Rotation of an Oblate Spheroidal

Particle Suspended in Linear Shear Flow. Phys. Rev. E 2015, 91, 053017. [CrossRef]
40. Lundell, F.; Carlsson, A. Heavy Ellipsoids in Creeping Shear Flow: Transitions of the Particle Rotation Rate and Orbit Shape.

Phys. Rev. E 2010, 81, 016323. [CrossRef] [PubMed]
41. Rosén, T.; Do-Quang, M.; Aidun, C.K.; Lundell, F. The Dynamical States of a Prolate Spheroidal Particle Suspended in Shear Flow

as a Consequence of Particle and Fluid Inertia. J. Fluid Mech. 2015, 771, 115–158. [CrossRef]
42. Ku, X.K.; Lin, J.Z. Inertial Effects on the Rotational Motion of a Fibre in Simple Shear Flow between Two Bounding Walls. Phys.

Scr. 2009, 80, 025801. [CrossRef]
43. Aidun, C.K.; Lu, Y.; Ding, E.-J. Direct Analysis of Particulate Suspensions with Inertia Using the Discrete Boltzmann Equation. J.

Fluid Mech. 1998, 373, 287–311. [CrossRef]
44. Skjetne, P.; Ross, R.F.; Klingenberg, D.J. Simulation of Single Fiber Dynamics. J. Chem. Phys. 1997, 107, 2108–2121. [CrossRef]
45. Su, J.; Chen, X.; Hu, G. Inertial Migrations of Cylindrical Particles in Rectangular Microchannels: Variations of Equilibrium

Positions and Equivalent Diameters. Phys. Fluids 2018, 30, 032007. [CrossRef]
46. Pan, T.-W.; Chang, C.-C.; Glowinski, R. On the Motion of a Neutrally Buoyant Ellipsoid in a Three-Dimensional Poiseuille Flow.

Comput. Methods Appl. Mech. Eng. 2008, 197, 2198–2209. [CrossRef]
47. Huang, Y.; Marson, R.L.; Larson, R.G. Inertial Migration of Neutrally Buoyant Prolate and Oblate Spheroids in Plane Poiseuille

Flow Using Dissipative Particle Dynamics Simulations. Comput. Mater. Sci. 2019, 162, 178–185. [CrossRef]
48. Einarsson, J.; Mihiretie, B.M.; Laas, A.; Ankardal, S.; Angilella, J.R.; Hanstorp, D.; Mehlig, B. Tumbling of Asymmetric Microrods

in a Microchannel Flow. Phys. Fluids 2016, 28, 013302. [CrossRef]
49. Masaeli, M.; Sollier, E.; Amini, H.; Mao, W.; Camacho, K.; Doshi, N.; Mitragotri, S.; Alexeev, A.; Di Carlo, D. Continuous Inertial

Focusing and Separation of Particles by Shape. Phys. Rev. X 2012, 2, 031017. [CrossRef]
50. Goldsmith, H.L.; Mason, S.G. Particle Motions in Sheared Suspensions XIII. The Spin and Rotation of Disks. J. Fluid Mech. 1962,

12, 88–96. [CrossRef]

http://doi.org/10.1039/c0lc00595a
http://doi.org/10.1098/rspa.1922.0078
http://doi.org/10.1017/S002211206200124X
http://doi.org/10.1146/annurev.fl.12.010180.002251
http://doi.org/10.1017/S0022112075002911
http://doi.org/10.1017/S0022112005004829
http://doi.org/10.1103/PhysRevE.91.053023
http://www.ncbi.nlm.nih.gov/pubmed/26066264
http://doi.org/10.1139/p78-003
http://doi.org/10.1017/S002211207900077X
http://doi.org/10.1017/S0022112056000354
http://doi.org/10.1017/S0022112068001254
http://doi.org/10.1002/cjce.5450440401
http://doi.org/10.1098/rspa.1956.0207
http://doi.org/10.1016/0095-8522(51)90005-0
http://doi.org/10.1063/1.1517053
http://doi.org/10.1017/S0022112002003191
http://doi.org/10.1007/s00397-009-0412-6
http://doi.org/10.1007/s00397-006-0110-6
http://doi.org/10.1017/S0022112000001932
http://doi.org/10.1103/PhysRevE.76.026310
http://doi.org/10.1017/jfm.2011.519
http://doi.org/10.1103/PhysRevE.91.053017
http://doi.org/10.1103/PhysRevE.81.016323
http://www.ncbi.nlm.nih.gov/pubmed/20365476
http://doi.org/10.1017/jfm.2015.127
http://doi.org/10.1088/0031-8949/80/02/025801
http://doi.org/10.1017/S0022112098002493
http://doi.org/10.1063/1.474561
http://doi.org/10.1063/1.5018714
http://doi.org/10.1016/j.cma.2007.09.006
http://doi.org/10.1016/j.commatsci.2019.02.048
http://doi.org/10.1063/1.4938239
http://doi.org/10.1103/PhysRevX.2.031017
http://doi.org/10.1017/S0022112062000051


Micromachines 2021, 12, 277 22 of 22

51. Anczurowski, E.; Mason, S.G. The Kinetics of Flowing Dispersions: III. Equilibrium orientations of rods and discs (experimental).
J. Colloid Interface Sci. 1967, 23, 533–546. [CrossRef]

52. Anczurowski, E.; Cox, R.G.; Mason, S.G. The Kinetics of Flowing Dispersions: IV. Transient orientations of cylinders. J. Colloid
Interface Sci. 1967, 23, 547–562. [CrossRef]

53. Zettner, C.M.; Yoda, M. Moderate-Aspect-Ratio Elliptical Cylinders in Simple Shear with Inertia. J. Fluid Mech. 2001, 442, 241–266.
[CrossRef]

54. Poe, G.G.; Acrivos, A. Closed-Streamline Flows Past Rotating Single Cylinders and Spheres: Inertia Effects. J. Fluid Mech. 1975,
72, 605–623. [CrossRef]

55. Hur, S.C.; Choi, S.-E.; Kwon, S.; Carlo, D.D. Inertial Focusing of Non-Spherical Microparticles. Appl. Phys. Lett. 2011, 99, 044101.
[CrossRef]

56. Einarsson, J.; Johansson, A.; Mahato, S.K.; Mishra, Y.N.; Angilella, J.R.; Hanstorp, D.; Mehlig, B. Periodic and Aperiodic Tumbling
of Microrods Advected in a Microchannel Flow. Acta Mech. 2013, 224, 2281–2289. [CrossRef]

57. Li, M.; Muñoz, H.E.; Goda, K.; Di Carlo, D. Shape-Based Separation of Microalga Euglena Gracilis Using Inertial Microfluidics.
Sci. Rep. 2017, 7, 10802. [CrossRef]

58. Mach, A.J.; Di Carlo, D. Continuous Scalable Blood Filtration Device Using Inertial Microfluidics. Biotechnol. Bioeng. 2010, 107,
302–311. [CrossRef]

59. Goldsmith, H.L.; Mason, S.G. The Microrheology of Dispersions. In Rheology; Academic Press: Cambridge, MA, USA, 1967;
pp. 85–250, ISBN 978-1-4832-2941-6.

60. Abbas, M.; Magaud, P.; Gao, Y.; Geoffroy, S. Migration of Finite Sized Particles in a Laminar Square Channel Flow from Low to
High Reynolds Numbers. Phys. Fluids 2014, 26, 123301. [CrossRef]

61. Lee, W.; Amini, H.; Stone, H.A.; Di Carlo, D. Dynamic Self-Assembly and Control of Microfluidic Particle Crystals. Proc. Natl.
Acad. Sci. USA 2010, 107, 22413–22418. [CrossRef]

62. Shichi, H.; Yamashita, H.; Seki, J.; Itano, T.; Sugihara-Seki, M. Inertial Migration Regimes of Spherical Particles Suspended in
Square Tube Flows. Phys. Rev. Fluids 2017, 2, 044201. [CrossRef]

63. Gao, Y. Inertial Migration of Particles in Microchannel Flows. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2017.
64. Matas, J.-P.; Glezer, V.; Guazzelli, É.; Morris, J.F. Trains of Particles in Finite-Reynolds-Number Pipe Flow. Phys. Fluids 2004, 16,

4192–4195. [CrossRef]
65. Wang, Q.; Yuan, D.; Li, W. Analysis of Hydrodynamic Mechanism on Particles Focusing in Micro-Channel Flows. Micromachines

2017, 8, 197. [CrossRef]
66. Choi, Y.-S.; Seo, K.-W.; Lee, S.-J. Lateral and Cross-Lateral Focusing of Spherical Particles in a Square Microchannel. Lab Chip 2011,

11, 460–465. [CrossRef] [PubMed]
67. Asmolov, E.S.; Dubov, A.L.; Nizkaya, T.V.; Harting, J.; Vinogradova, O.I. Inertial Focusing of Finite-Size Particles in Microchannels.

J. Fluid Mech. 2018, 840, 613–630. [CrossRef]
68. Yuan, C.; Pan, Z.; Wu, H. Inertial Migration of Single Particle in a Square Microchannel over Wide Ranges of Re and Particle Sizes.

Microfluid. Nanofluidics 2018, 22, 102. [CrossRef]

http://doi.org/10.1016/0021-9797(67)90200-7
http://doi.org/10.1016/0021-9797(67)90201-9
http://doi.org/10.1017/S0022112001005006
http://doi.org/10.1017/S0022112075003187
http://doi.org/10.1063/1.3608115
http://doi.org/10.1007/s00707-013-0924-0
http://doi.org/10.1038/s41598-017-10452-5
http://doi.org/10.1002/bit.22833
http://doi.org/10.1063/1.4902952
http://doi.org/10.1073/pnas.1010297107
http://doi.org/10.1103/PhysRevFluids.2.044201
http://doi.org/10.1063/1.1791460
http://doi.org/10.3390/mi8070197
http://doi.org/10.1039/C0LC00212G
http://www.ncbi.nlm.nih.gov/pubmed/21072415
http://doi.org/10.1017/jfm.2018.95
http://doi.org/10.1007/s10404-018-2120-y

	Introduction 
	Rotational Behavior of a Non-Spherical Particle in a Shear Flow 
	Ellipsoidal Particle 
	Jeffery’s Theory 
	Extension of Jeffery’s Theory for General Shear Flows 
	Effect of Fluid Inertia 
	Extension of Jeffery’s Theory for Bounded Flows 
	Effect of Buoyancy (Sometimes Called “Particle Inertia”) 
	Effect of the Particle’s Aspect Ratio 
	Effect of the Particle’s Initial Orientation 

	Axisymmetric Non-Ellipsoidal Particle 
	Extension of Jeffery’s Theory to Axisymmetric Non-Ellipsoidal Particles 
	Effect of Fluid Inertia 
	Walls and Confinement Effects 
	Effect of the Particle’s Aspect Ratio 
	Effect of the Solid Volume Fraction (Suspension’s Concentration) 

	Asymmetric Particles 

	Rotational and Migratory Behaviors of a Particle Flowing in a Square Microchannel 
	Spherical Particles 
	Non-Spherical Particles 
	Rotation Behavior and Lateral Migration at Moderate Reynolds Numbers 
	Influence of the Reynolds Number Re 
	Influence of the Confinement Ratio  
	Influence of the Particle’s Aspect Ratio  
	Effect of Other Parameters 
	Applications 


	Conclusions 
	References

