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Abstract: Colorectal cancer is the second leading cause of cancer death worldwide. Significant
advances in the molecular mechanisms underlying colorectal cancer have been made; however,
the clinical approval of new drugs faces many challenges. Drug discovery is a lengthy process
causing a rapid increase in global health care costs. Patient-derived tumour organoids are considered
preclinical models with the potential for preclinical drug screening, prediction of patient outcomes,
and guiding optimized therapy strategies at an individual level. Combining microfluidic technology
with 3D tumour organoid models to recapitulate tumour organization and in vivo functions led to
the development of an appropriate preclinical tumour model, organoid-on-a-chip, paving the way for
personalized cancer medicine. Herein, a low-cost microfluidic device suitable for culturing and ex-
panding organoids, OrganoidChip, was developed. Patient-derived colorectal cancer organoids were
cultured within OrganoidChip, and their viability and proliferative activity increased significantly.
No significant differences were verified in the organoids’ response to 5-fluorouracil (5-FU) treatment
on-chip and on-plate. However, the culture within the OrganoidChip led to a significant increase in
colorectal cancer organoid-forming efficiency and overall size compared with conventional culture
on a 24-well plate. Interestingly, early-stage and late-stage organoids were predominantly observed
on-plate and within the OrganoidChip, respectively. The OrganoidChip thus has the potential to
generate in vivo-like organotypic structures for disease modelling and drug screening applications.

Keywords: microfluidics; patient-derived organoids; colorectal cancer; 3D model; drug screening

1. Introduction

Colorectal cancer is the second leading cause of cancer death worldwide, and because
of population ageing, the global burden is expected to grow to 2.5 million new cases
in 2035 [1–3]. Although significant advances in the molecular mechanisms underlying
colorectal cancer have been made, the clinical approval of new drugs still faces many
challenges [4]. Cancer drug development is characterized by high failure rates in clinical
trials, mainly because the preclinical models used in the drug development pipeline do not
provide adequate information about drug efficacy or toxicity [5]. Molecular and cellular
tumour heterogeneity between and within individual patients represent a landscape and
a barrier for effective patient treatment [6–8]. Thus, predictive preclinical cancer models
able to precisely replicate the human tumour biology and allow personalized anti-cancer
therapy are urgently needed [9,10]. Orthotopic mouse models are considered to be poor
human cancer models as they lack the features of the native tissue and do not recreate the
human tumour microenvironment [11]. Moreover, conventional 2D cell cultures do not
provide information about the complex interactions between the cancer cells, associated
stromal components, and the physicochemical microenvironment. Lastly, more complex
3D in vitro models, such as transwell-based cell cultures and spheroids, do not reproduce
the complexity observed in the 3D tissue architecture of living organs, and do not retain
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the mechanical cues that contribute to the tumour behaviour [12]. Microfluidic cell culture
technology has emerged as a promising tool in cancer research as an alternative to animal
and traditional cell culture models [13,14]. It is a low-cost technology that handles fluids
at a nanoscale, enabling small quantities of samples and providing highly sensitive and
high-throughput screening [15,16]. A variety of fabrication methods, aside from soft
lithography, vinyl cutters (xurography), laser cutting, 3D printing, and micromilling,
among others, are available [17,18]. Microfluidics-based systems have contributed to
decreasing manufacturing time and costs by using cheaper materials and tools, allowing
for new and advantageous physical behaviour, functionality, and qualities in microfluidic
devices. Modelling cancer cell behaviour within the microfluidic device of tumour-on-chip,
is highly physiological; enables co-cultures of different cell types; and offer precise control
over physical, mechanical, and biochemical properties on the model. However, tumour-on-
chip relies on pre-differentiated cells, often cell lines, and cannot emulate the histological
and cellular complexity of the tumour and the surrounding microenvironment [19].

Organoid models have been synergistically combined with microfluidic technol-
ogy [20,21]. Organoids are 3D culture models that recapitulate the organ architecture and
in vivo counterparts’ functional features [22]. The generation of organoids derived from
primary and metastatic patient tumours are reported. These patient-derived organoids
are distinct from other cancer models in that they conserve the architecture, (epi)genetic,
and phenotypic alterations of the original tumour [23,24]. More importantly, patient-
derived organoids have been reported to successfully predict a therapy response in cancer
patients and facilitate therapeutic decision-making [23,25]. Therefore, establishing patient-
derived tumour organoids-on-a-chip may serve as more versatile and predictive preclinical
models applicable to cancer drug discovery and personalized therapies. Micro-engineered
organoid systems allow for precise control of the space and environment where an organoid
is growing. Flow conditions, nutrient supply, shear stress, input–output, and organoid
geometry are easily controlled. Furthermore, the complex cellular cross-talk of the native
organ can be modelled by organoid-on-chip technology, and the inter-organoid variability
is drastically decreased [20].

In this study, a microfluidic device was designed and fabricated through a milling
process so as to culture and expand patient-derived colorectal cancer organoids on-chip
(OrganoidChip). A culture medium was continuously injected into the distribution chan-
nels to provide the proper conditions for organoid growth. Viability assays of organoids
cultured within the OrganoidChip were performed and compared with those cultured
on conventional well-plates. Our experiments showed a significant increase in organoid
viability and proliferation within OrganoidChip, as well as similar sensitivity responses of
colorectal cancer organoids to 5-FU on-chip and on-plate. These observations demonstrate
the potential of OrganoidChip to provide precise control of drug distribution, similar sen-
sitivity, and improved growth culture conditions of colorectal cancer organoids. Distinct
morphology features of colorectal cancer organoids were observed. The culture within
OrganoidChip led to a significant increase in colorectal cancer organoid-forming efficiency
and organoid size. More importantly, late-stage colorectal cancer organoids were estab-
lished within OrganoidChip, highlighting the potential for this micro-engineered organoid
device to generate in vivo-like organotypic structures for disease modelling and drug
screening applications.

2. Materials and Methods
2.1. Design and Fabrication of a Microfluidic Platform for Organoid Culture

The molds for the microfluidic device used in this study were fabricated using a high-
speed milling machine (FlexiCam Viper, FlexiCam, Eibelstadt, Germany). Micromilling is
an alternative, low-cost, non-lithographic top-down technique and a fast method to address
some significant microfabrication challenges and allow rapid prototyping. Using rotating
cutting tools to remove or cut micro- or milli-scale features in several types of materials
(acrylic, aluminium, among others), it is possible to generate molds or directly fabricate
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microfluidic channels. Recently, manufacturers have produced milling tools smaller than
100 microns, which have promoted micro-milling machines’ ability to fabricate microfluidic
devices [18,26].

The device design was created using AutoCAD software (Autodesk AutoCAD 2018,
Autodesk, San Rafael, CA, USA) and consists of a bottom layer containing four round wells
with 6 mm in diameter and 2.5 mm of depth for cell seeding, and a top layer displaying
one inlet channel distributed in four small channels of 1.5 mm × 1 mm (width × depth)
and one outlet (2 mm of diameter). The top layer is crucial for the culture medium supply.

The microfluidic devices were fabricated in polydimethylsiloxane (PDMS; Ellsworth
Adhesives Iberica, Spain), which was prepared as a two-part system with a mix ratio of 10:1
(w/w) or 20:1 (w/w) base/curing agent (top and bottom layers, respectively), poured over
the molds, degassed, and cured for 1.5 h at 65 ◦C. The different PDMS ratios were used
for the bottom and top layers to generate slight and reversible bonding when both were
poured in contact. Following that, the PDMS was unmolded, and the inlet and outlet were
made using a puncher of 1.5 mm. Both layers and tubes were sterilized with 70% ethanol
(v/v) and were then exposed for 30 min to UV light. Afterwards, the bottom layer (20:1
PDMS ratio) was placed on a glass slide, and the top layer (10:1 PDMS ratio) was carefully
aligned and placed over the bottom layer. Thus, the layers stuck to each other, creating
contact bonding. Tubes were inserted into the inlet and outlet. After organoids seeding, the
channels were filled with a culture medium. The microfluidic device was connected to a
syringe pump (NE-1000, New Era Pump Systems, Farmingdale, NY, USA) with a working
flow rate of 10 µL/h for a continuous medium supply.

2.2. Organoids Culture

Colorectal cancer organoid line Iso-50 was supplied by Cellesce, Ltd., (Cardiff, Wales,
UK) and was cultured according to their instructions [27]. These tumour organoids were
isolated by Cellesce, Ltd., from surgically-resected colorectal cancer material of patients, as
previously described by Sato et al. [24]. The organoid pellet was resuspended in medium
3+, composed by Advanced DMEM/F12 supplemented with 1% GlutaMAX, 1% HEPES
buffer solution, and 1% Penicillin/Streptomycin (all Life Technologies, Cramlington, UK).
Afterwards, organoids were plated in Matrigel Matrix Basement Membrane Growth Factor
Reduced (Corning, NY, USA) in 24-well plates and a microfluidic device (30 µL of blob).
Following Matrigel polymerization, the organoids were overlaid with 500 µL of “complete”
medium composed of medium 3+ supplemented with 1× B27 supplement, 1× N2 supple-
ment (all from Invitrogen), and 1 mm N-acetyl-L-cysteine (Sigma, Darmstadt, Germany).
To culture the organoids on-chip, the microfluidic device’s bottom layer (previously placed
on a glass slide) was first pre-warmed at 37 ◦C. Iso-50 organoids were then plated in the
Matrigel matrix in each microfluidic device’s well (30 µL of blob). The bottom layer was
placed at 37 ◦C in an atmosphere of 5% CO2 to promote Matrigel polymerization. The
microfluidic device was assembled with a top layer and tubes, as previously described, and
carefully filled with the appropriate culture medium for the organoids’ growth. The device
was connected to a syringe pump and the flow rate condition was defined as 10 µL/h. For
the on-chip control, Iso-50 organoids were cultured within the microfluidic device without
a continuous flow of a culture medium.

All of the cultures were maintained in humidified incubators at 37 ◦C in 5% CO2, and
were monitored daily under a phase-contrast microscope (Nikon Eclipse TS 100, Tokyo,
Japan). The culture medium was changed every 2–3 days, and organoids were passaged
1:4 every week.

2.3. Viability Assay

Iso-50 organoids were seeded at a density of 200 structures per well of 24-well plates
or microfluidic device (in 30 µL of blob per well), and were cultured until day 8. The
viability of the organoids was determined using the CellTiter-Glo 3D Cell Viability As-
say (Promega, Madison, WI, USA), as follows: organoids were mixed with 100 µL of
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CellTiter-Glo® 3D reagent, shaken for 5 min, and incubated for 30 min at room temperature.
Luminescence was measured using a Microplate Reader (Synergy H1, Biotek, Winooski,
VT, USA). Viability was monitored at days 0, 2, 4, 6, and 8.

2.4. Seeding Density Optimization by ATP Assay

The Iso-50 organoids in the culture were gently dissociated to the near single-cell
population using TrypLE (Gibco, Life Technologies, Renfrew, Scotland, UK) before re-
suspension within a growth-factor reduced Matrigel. The individual cells were counted
using a Trypan blue exclusion test (Gibco, Life Technologies, UK) and were seeded at a
range of densities (from 100 to 1000 cells/µL of Matrigel dome) into a 24-well plate or
microfluidic device (30 µL blob per well). The ATP measurement of the CellTiter-Glo 3D
Cell Viability Assay (Promega, Madison, WI, USA) was then performed to evaluate the
organoid proliferative ability according to the manufacturer’s instructions.

2.5. Organoid-Forming Efficiency Assays

The organoid-forming efficiency was determined by quantification of the organoid
numbers (organoid-colony forming efficiency) and size. The total number of organoid
structures per well was manually counted six days after seeding using a phase-contrast
microscope at 4× magnification. The organoid area was measured by encircling the
periphery of each organoid using ImageJ software (NIMH, Bethesda, Rockville, MD, USA).
The organoid size was quantified at day 6 of culture by measuring the longest axis.

2.6. Treatment of Iso-50 Organoids with 5-Fluorouracil

Colorectal cancer Iso-50 organoids were treated with chemotherapeutic drug 5-fluorouracil
(5-FU) at different concentrations. Briefly, Iso-50 organoids were seeded in a 24-well plate
and within the OrganoidChip. Complete media supplemented with 1, 10, and 100 nM
5-FU or 0.1% of dimethyl sulfoxide (DMSO) were replaced onto the organoids on day 4 of
culture. DMSO was used as a vehicle for 5-FU. The viability of the organoids was measured
after 48 h of treatment (Figure 1).
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Figure 1. Schematic of the organoid culture timeline.

2.7. Statistical Analysis

Statistical analyses were performed using the Graph Pad program (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). Student’s tests were used to calculate significance with a
95% confidence level (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).

3. Results
3.1. Fabrication of the OrganoidChip Microfluidic Device

The design considerations of the two layers were performed to have the possibility for
manual seeding of the organoid structures. In this way, no cell damage and higher control
in the seeding procedure could occur. There is also the possibility of downstream testing
assays after the culture and maturation under continuous flow conditions.
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The layer molds were fabricated in a poly(methyl methacrylate) (PMMA) material
with single-flute carbide end-mill tools of 2 mm for the larger steps and 1 mm for the small
features of the design and to smooth the surface. The depth of the bottom and top layer
was 2.5 and 1 mm, respectively.

In Figure 2A, it is possible to observe the design of the manufactured PMMA molds.
The PMMA material proportionated a clear and smooth surface in the PDMS device,
essential for the microscope visualizations of 3D structures (Figure 2B). The inlet and outlet
in the top layer had a diameter of 2 mm, and the channels for the medium supply had
a width of 1.5 mm. The top layer was fabricated with 10:1 PDMS. The bottom layer had
6 mm round wells with a depth of 2.5 mm, and was fabricated with 20:1 PDMS. The PDMS
thickness of the bottom and top layer was 4 mm and 2.5 mm, respectively. Thus, the
OrganoidChip had a total thickness of 6.5 mm.
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Figure 2. Design and fabrication of the organoid on-chip device. (A) AutoCAD design of the
OrganoidChip (A1) top and (A2) bottom layers. The top layer includes one inlet channel distributed
in four small channels and one outlet. The bottom layer consists of four round wells of 6 mm in
diameter for organoids’ seeding and growing. (B) OrganoidChip poly(methyl methacrylate) (PMMA)
layers mold fabricated in (B1) the milling machine and the (B2) respective polydimethylsiloxane
(PDMS) layers. (C) OrganoidChip setup.

The bonding of both layers was performed by aligning the top layer over the bottom
layer. An off-ratio bonding technique occurred (i.e., two layers partially cured with different
base-to-crosslinker ratios are brought into contact creating a bonding interface) [28]. This
technique enables layer adjustments and a contact bonding strong enough to support the
working flow rate of 10 µL/h, giving the possibility of layer detachments and further
applications. A flow rate of 10 µL/h has been used in several tumoroid platforms and
reported to generate internal shear stress supported by the Matrigel blob [29,30]. Note that
the established flow rate proportionates for 48 h had the same amount of medium added
in the on-plate for the comparison tests (500 µL per well). With the inlet connected to a
syringe pump via tubing and the outlet connected to a reservoir, the OrganoidChip setup
was set, as seen in Figure 2C.

3.2. Establishment of Colorectal Cancer Organoid Line within OrganoidChip

Having designed and fabricated the microfluidic device, the OrganoidChip (Figure 2),
we explored its feasibility for culturing organoids. Proper development and maturation of
organoids implies a continuous feed of fresh nutrients and waste removal, as they expand
in size when they are not vascularized [31,32]. In this study, to evaluate the organoids’
growth, colorectal cancer Iso-50 organoids were seeded in Matrigel on-chip and on-plate
(around 200 structures/well), and their viability was assessed over eight days of culture.
As shown in Figure 3A, the organoids’ viability increased, as expected in the first days
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of culture. However, a significant decrease in viability was observed after six days of
culture, both on-plate and on-chip. This result suggests that the exponential growth of
organoids occurs within the first six days of culture. However, comparing the viability of
the organoids in the different culture conditions, we observed that the viability of Iso-50
was significantly higher on-chip after day 2.
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Figure 3. Optimization of Iso-50 organoids culture on-chip. (A) Viability of cultured organoids within OrganoidChip
(on-chip) and on a traditional plate (on-plate). Viability was monitored at days 0, 2, 4, 6, and 8 using a CellTiter-Glo 3D
Cell Viability Assay. The results are described as mean ± standard deviation (SD) of three independent experiments. The
viability of the organoids at days 2, 4, 6, and 8 is expressed as the fold increase, compared with the viability at day 0, taken
as 1 (Student’s t-test: ** p ≤ 0.01; *** p ≤ 0.001). (B) ATP measurement for proliferation in Iso-50 organoids after six days of
culture at different cell seeding densities. Results are described as mean ± SD of three replicated wells (one independent
experiment) for each cell density (Student’s t-test: ** p ≤ 0.01; *** p ≤ 0.001).

Moreover, the significantly decreased viability of the organoids observed from day
6 was more pronounced in the on-plate. These observations indicate that OrganoidChip
provides a continuous infusion of nutrients and growth factors, and removes metabolic
waste, which are crucial for developing organoids within the microfluidic device. As the
organoids viability increases significantly until six days of culture, the endpoint at day six
was pointed out all subsequent culture experiments (Figure 1).

We further evaluated the influence of the cell seeding density on the organoids’
proliferative ability. Single-cell suspensions were prepared from Iso-50 organoids. The cells
were seeded at a range of cell densities within a traditional 24-well plate and microfluidic
device, and their proliferation was assessed on day 6 of the culture by measuring the ATP
released from the proliferative cells composed of organoids. Regarding the organoids
cultured on-plate, an increase in the relative luminescence signal was observed with the
ascent of the initial cell seeding on-plate (Figure 3B). Beyond 600 cells/µL of blob, a plateau
was reached, indicating a slowdown in the organoid proliferation activity, possibly due
to restriction to the nutrient and growth factor access and the limited physical space.
Interestingly, such a threshold was observed at a seeding density of 750 cells/µL of blob
on-chip, highlighting that on-chip and under continuous flow conditions, it is possible to
have more proliferation. The continuous flow proportionates the constant and renews the
culture medium.

3.3. Culture within OrganoidChip Promotes Colorectal Cancer Organoid-Forming Efficiency

The colorectal cancer organoids were characterized to display the morphological and
histological features in common with the tumour from which they were derived [27]. The
morphological characteristics of the Iso-50 organoids were observed on days 2 and 6 of the
culture on-plate versus on-chip (Figure 4A). On day 2 of the culture, colorectal organoid
formation was still occurring, as the not late-stage morphology typical of colorectal cancer
organoids was not verified. Small and round organoids were observed both on-plate and
within OrganoidChip. On day 6 of the culture, distinct morphology features were observed.
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Iso-50 organoids cultured on-plate were predominantly mono-cellular structures with
a cystic-like shape, exhibiting a visible lumen without projections (arrow). In contrast,
structures displaying a thick epithelial cell layer containing glandular structures within
the organoid (white arrowhead) or multi-layered organoids with crypt-like projections
(black arrowhead) were observed when cultured within OrganoidChip. Because of these
different morphological features of Iso-50 organoids cultured on-chip versus on-plate,
the organoid-forming efficiency was evaluated. The organoid-forming efficiency was
determined by quantifying the organoid numbers (organoid-colony forming efficiency)
and size (are and longest axis). The organoid-colony forming efficiency was significantly
higher on-chip than on-plate and on-chip control without continuous flow (Figure 4B). In
addition, Iso-50 on-chip organoids were significantly higher in diameter and area than for
the culture on-plate and on-chip control (Figure 4C). These results highlight the potential
of OrganoidChip to provide more physiologically relevant cell culture conditions than the
static cell culture, thus contributing to the efficient establishment of cancer organoids.
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Figure 4. Organoid-forming efficiency within OrganoidChip. (A) Representative images of organoids morphology at days 2
and 6 of culture. On day 6, Iso-50 organoids cultured on-plate exhibited a cystic-like morphology with a visible lumen. In
contrast, the organoids cultured on-chip are multi-layered with crypt-like projections or display a thick epithelial cell layer
containing glandular structures. Scale bar: 100 µm. (B) Quantification of organoid colony-forming efficiency at day 6 of
culture. The results are reported as the mean ± SD of three independent experiments. (C) Analysis of organoid size and
area at day 6 of culture. The results are described as mean ± SD of a total of 50 organoids in three independent experiments
subjected to the analysis (Student’s t-test: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).

3.4. On-Chip Organoids Drug Sensitivity Testing

To assess the organoids’ sensitivity cultured within OrganoidChip to chemotherapeu-
tic drugs, Iso-50 organoids were treated with an increasing dose of 5-fluorouracil (5-FU).
5-FU remains the first-line of treatment for colorectal cancer. Following treatment with
5-FU for 48 h, the organoid viability was determined. According to Figure 5, no signif-
icant differences in sensitivity to 5-FU treatment were observed in the colorectal cancer
organoids cultured within OrganoidChip and traditional plates. These results suggest the
stability and accuracy of colorectal cancer organoids cultured within OrganoidChip as a
drug screening model.
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Figure 5. Analysis of organoid viability after treatment with 5-fluorouracil (5-FU). On day 4 of culture,
the organoids were treated with 5-FU or 0.1% dimethyl sulfoxide (DMSO; control), and their viability
was assessed on day 6. For the dead control, 30% of DMSO was used. The results are described as the
mean ± SD of two wells per condition of two independent experiments. No significant differences
were observed (Student’s t-test: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).

4. Discussion

In the present study, a microfluidic device—OrganoidChip—was fabricated using
a milling technique to enable the culture of patient-derived colorectal cancer organoids
on-chip. The milling fabrication technique was employed to create the master molds of the
microchannels and the main body of the OrganoidChip. In the last decades, milling and
micromilling have demonstrated a great potential for lab-on-a-chip and organ-on-a-chip
applications, primarily because of their wide selection of working materials, versatile
applications, and rapid prototyping, compared with other fabrication procedures [33]. The
most common milling application is the fabrication of organ-on-chip platform holders [34]
or the direct use of the milled parts combined with other methodologies, such as pho-
tolithography and 3D printing, to connect all of the device modules, as Behroodi et al.
demonstrated [35]. Another rapid, reliable, and cost-effective microfabrication of microflu-
idic systems with biomedical applications and lab-on-a-chip devices is the CO2 laser [chen,
wu]. Chen et al. successfully elaborated a versatile protocol of CO2 laser drilling for the
rapid prototyping of various microstructures with different substrate materials to showcase
the wide usability range for the proposed method [36]. Wu et al. developed a micro U-well
platform with an optimally arranged microwell array using a rapid and straightforward
CO2 laser microfabrication method. This platform has demonstrated their feasibility for
developing in vitro 3D multicellular tumour spheroids as a tumour-mimicking model, and
as an effective tool for discovering the therapeutic drug screening for cancer treatment [37].
Besides the advantages of CO2 laser patterning, the milling fabrication for this applica-
tion is demonstrated to be equally efficient, but cheaper and easier to integrate into the
developed device’s manufacturing. In this work, the layer molds were fabricated in acrylic
to obtain a higher durability, and PDMS replica molding was performed. In this way, a
transparent device with an adequate refractive index for microscope visualizations and
image acquisition and gas permeability was obtained. Another important application
for the developed system is the possibility of downstream studies. The organoids could
be recovered intact, as the layers are not bonded permanently, and no holder strategies
were needed. Thus, the milling fabrication simplified the manufacturing process of the
OrganoidChip: low- cost, high precision, and accuracy in the molds’ manufacturing, as
well as being user-friendly and applicable for downstream studies.

We further investigated the potential for OrganoidChip as a reliable preclinical cancer
model. For this, patient-derived colorectal cancer organoids were cultured within the
OrganoidChip. The establishment of patient-derived organoids is crucial for preclinical
cancer research and personalized medicine, as they retain patients’ genetic and epigenetic
aspects. Currently, various patient-derived tumour organoids have been generated. Using
microfluidic technology, most reported organoid-on-chips rely on organoids derived from
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human induced pluripotent stem cells [38–40]. Tumour organoids derived from patient
tissues with lung, mesothelioma, breast, and pancreatic cancer have been generated and
cultured within microfluidic devices [41–44]. In our study, colorectal cancer organoids
derived from patient tissue established by Cellesce and reported in pilot studies with
reproducible data, maintaining the counterpart tissue’s phenotype and genotype, were
used [27]. Their viability and proliferation, when cultured within OrganoidChip, was
evaluated. Our results revealed significantly increased viability and proliferation rates
of colorectal cancer organoids on-chip, compared with traditionally cultured on-plate.
Consistent with our observations, previous reports have shown a significant improvement
in cell growth and survival within microfluidic devices that can minimize shear stress. In
fact, microfluidic technology allows dynamic cell cultures in microperfusion systems to
deliver continuous nutrient supplies for long term cell culture [45,46].

Patient-derived organoids preserve the structural architecture of primary tumours [22].
Our results show that colorectal cancer organoids cultured within OrganoidChip exhibit
a significant increase in organoid size and organoid colony-forming efficiency, as well as
a late-stage morphology, compared with organoids cultured on-plate. Previous reports
have shown that as tumour organoids grow in size in conventional culture plates, the
diffusion-dependent nutrient and oxygen supplies and waste removal become less efficient.
Consequently, organoid viability decreases, and dead cells accumulate in the core region
of organoids and undergo fragmentation and necrosis [46,47]. In contrast, microfluidic
devices enable the integration of access channels for nutrient supply within organoids, as
well as waste removal, mimicking the permeation provided by blood capillaries in vivo [47].
In our study, the OrganoidChip provides a control overflow, shear stress, and biochemical
gradient. Nutrients, metabolic, and oxygen are delivered to organoids via laminar flow,
reducing the necrotic core’s size and increasing their viability, organoid colony-forming
efficiency, and overall size.

The nutrient and oxygen supplies and the removal of waste provided by microfluidic
technology also influences organoid maturity. Interestingly, the significant morphological
differences observed between colorectal cancer organoids cultured within OrganoidChip
and on-plate were closely related to the organoid’s organization stage. The colorectal cancer
organoids cultured within OrganoidChip exhibited a late-stage morphology, characterized
by a crypt and villi-morphology, thick epithelial cell layer, and oriented and specialized
epithelial cells. In contrast, we observed early-stage organoids on-plate as monocellular
structures with a cystic-like shape. In fact, the organoid formation process followed a
pattern of proliferation, differentiation, cell sorting, lineage commitment, and morphogen-
esis, resulting in a 3D organoid structure [48,49]. Organoid formation is usually guided
by culturing cells in a medium containing soluble factors that promote or inhibit specific
signaling pathways. Thus, the culture is directed towards the formation of late-stage
organoids, which includes specialized cell types that give rise to organotypic structures
and functions [50].

The potential for microfluidic devices for the culture and expansion of patient-derived
organoids for personalized drug screening is of the utmost importance. In this study,
similar sensitivity responses of colorectal cancer organoids to chemotherapeutic drug
5-FU were observed within OrganoidChip and on-plate. These results highlight the po-
tential for OrganoidChip to provide precise control of drug distribution, sensitivity to
chemotherapeutic drugs, and improved growth culture conditions of colorectal cancer
organoids. Microfluidic platforms able to culture patient-derived pancreatic and lung
tumour organoids and to perform drug sensitivity tests directly on devices have been
developed [41,44]. These studies observed significant differences in the responses of
individual patient-based organoids to drug treatments.

Taken together, we fabricated a low-cost microfluidic device suitable for the mainte-
nance and expansion of patient-derived colorectal cancer organoids, applicable in down-
stream studies. The organoids’ morphological and proliferation features were improved
when cultured within this microfluidic device. More importantly, a high-fidelity response
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to drug treatment was observed compared with the organoid culture in traditional plates.
However, device optimizations are needed in order to obtain a higher versatility for the
design for other applications. Several outlets can be added; seeding chambers area and flow
rates can also be adapted and optimized considering the final application. The individual
response of patient-based organoids to 5-FU drug treatment is also necessary. Addition-
ally, further studies, including the genetic profiling of individual patient-based organoids
on-chip, are warranted to validate OrganoidChip as a reliable preclinical cancer model.

Overall, these results open new avenues for evaluating phenotypic drug susceptibil-
ity tests and disease modelling, as well as for the development of an organoid-on-chip
preclinical cancer model with the potential for personalized medicine.
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49. Kratochvil, M.J.; Seymour, A.J.; Li, T.L.; Paşca, S.P.; Kuo, C.J.; Heilshorn, S.C. Engineered materials for organoid systems. Nat. Rev.
Mater. 2019, 4, 606–622. [CrossRef] [PubMed]

50. Brassard, J.A.; Lutolf, M.P. Engineering Stem Cell Self-organization to Build Better Organoids. Cell Stem Cell 2019, 24, 860–876.
[CrossRef] [PubMed]

http://doi.org/10.1063/1.4826935
http://doi.org/10.3390/cancers13040737
http://doi.org/10.3390/mi10030165
http://doi.org/10.1083/jcb.201610056
http://www.ncbi.nlm.nih.gov/pubmed/28031422
http://doi.org/10.1038/s41578-019-0129-9
http://www.ncbi.nlm.nih.gov/pubmed/33552558
http://doi.org/10.1016/j.stem.2019.05.005
http://www.ncbi.nlm.nih.gov/pubmed/31173716

	Introduction 
	Materials and Methods 
	Design and Fabrication of a Microfluidic Platform for Organoid Culture 
	Organoids Culture 
	Viability Assay 
	Seeding Density Optimization by ATP Assay 
	Organoid-Forming Efficiency Assays 
	Treatment of Iso-50 Organoids with 5-Fluorouracil 
	Statistical Analysis 

	Results 
	Fabrication of the OrganoidChip Microfluidic Device 
	Establishment of Colorectal Cancer Organoid Line within OrganoidChip 
	Culture within OrganoidChip Promotes Colorectal Cancer Organoid-Forming Efficiency 
	On-Chip Organoids Drug Sensitivity Testing 

	Discussion 
	References

