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Abstract: More and more attention is being paid to the use of massive parallel computing performed
on many-core Networks-on-Chip (NoC) in order to accelerate performance. Simultaneously deploy-
ing multiple applications on NoC is one feasible way to achieve this. In this paper, we propose a
multi-phase-based multi-application mapping approach for NoC design. Our approach began with a
rectangle analysis, which offered several potential regions for application. Then we mapped all tasks
of the application into these potential regions using a genetic algorithm, and identified the one which
exhibited the strongest performance. When the packeted regions for each application were identified,
a B*Tree-based simulated annealing algorithm was used to generate the optimal placement for the
multi-application mapping regions. The experiment results show that the proposed approach can
achieve a considerable reduction in network power consumption (up to 23.45%) and latency (up to
24.42%) for a given set of applications.

Keywords: networks-on-chip; multi-application; mapping

1. Introduction

Due to the advancement of transistor technology, hundreds to thousands of processors
or cores have now been integrated on a single chip. Networks-on-Chip (NoC) has emerged
as an efficient and scalable interconnect solution to address the challenges of the increas-
ing concurrent communication requirements in such many-core processor systems [1,2].
Massive parallel computing performed on many-core NoC is the present and future of
computing [1,3]. To realize higher level parallelism, it is no longer reasonable to focus only
on the implementation of single applications, given the abundant processing elements
available on many-core NoC. Multiple applications could be deployed on different regions
of the NoC and executed in parallel [4].

Based on the existing NoC platforms, much research addressing the application
mapping problem has been undertaken in recent years. However, much of this research has
been carried out using single-application mapping [5–10], and only a few multi-application
mapping methods were proposed. Murali et al. first presented a methodology to map
multiple use-cases onto NoC architecture, satisfying the constraints of each use-case [11].
A multi-objective adaptive immune algorithm which considered different various delay
constraints for multi-application mapping was proposed in [12]. In these studies, multiple
applications reused the same platforms in different time slots. The main drawbacks of
these systems were the time overhead incurred by reconfiguring the NoC and loading
new applications, and the fact that multiple applications were not considered to execute
in parallel. Yang et al. [4] proposed a multi-application mapping method to identify an
optimal mapping region for each application. However, it dealt with multiple applications
sequentially on a fixed platform. The applications mapped later may have fewer choices,
which is not equitable for these applications. A fault-tolerant multi-application mapping
algorithm was proposed by Khalili et al. [13]. The main goal of the algorithm was to
map an application to free non-faulty processing cores and identify the best spare core
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placements. Zhu et al. [14] proposed an efficient heuristic-based algorithm for solving
the issue of balancing minimized on-chip packet latency with performance-awareness in
the multi-application mapping of chip-multiprocessors. Khasanov et al. [15] proposed an
algorithm to map applications on heterogeneous multicore systems. However, all these
studies focused on the scheduling of threads or tasks in each application.

In this paper, we propose a multi-phase-based multi-application mapping approach
for NoC design analogous to those used in [4], but completely different in its algorithm
design. Our approach began with a rectangle analysis which identified several potential
regions for an application. Then we mapped all tasks of the application into these potential
regions and identified the one which exhibited the strongest performance. When the
packeted regions for each application were identified, a B*Tree-based simulated annealing
(SA) algorithm was used to generate the optimal placement of the mapping regions. The
aim of our proposed approach is to identify the best performance for each individual
application mapping, then packet each application mapping region as a block to determine
placements for all the applications with a minimized mapping area of the NoC platform.

The rest of the paper is organized as follows. Section 2 describes problem formulation
and definitions. Section 3 presents our multi-application mapping approach. The results of
our experiment are demonstrated in Section 4, and we conclude our work in Section 5.

2. Problem Formulation and Definitions

In the single-application scenarios, the mapping problem is how to identify an appro-
priate position for each task of the application according to particular performance or cost
metrics. In the multi-application scenarios, the problem is extended to the search for the
optimal positions for both the applications and tasks of the individual application [4]. In
order to formulate this mapping problem, we require the following definitions.

Definition 1. A single application can be denoted by a task digraph TG(T,A). Each vertex ti∈T
represents a task, and each edge ai,j∈A represents the communication from task ti to tj. Every edge
has one attribute, denoted by vi,j, which represents the total volume of communication. Multiple
applications can be represented by a set of applications S = {TG1,TG2, . . . TGn}, where n is the
number of the given applications.

Definition 2. The target architecture NoC composed of n cores is modeled by an architecture graph
NAG (C,L), where C = {c1,c2, . . . cm} is the set of cores in the NoC platform and L is the set of
links between cores. In this paper, the NoC is assumed to be a homogeneous 2D architecture using a
deterministic XY routing algorithm.

Definition 3. Ri denotes the mapping region on the NAG for application TGi. P = {(xi,yi)|1 ≤
I ≤ n} is an assignment of the rectangular regions Ri’s with the coordinates of their bottom-left
corners being assigned to (xi,yi)’s so that no two regions overlap.

Using the above definitions, the problem of the multi-application mapping can be
described as follows.

Given a set of applications where S = {TG1,TG2, . . . TGn} and an NAG, identify a
mapping region Ri on the NAG for each TGi which can allocate all tasks in TGi on the cores
within the region Ri such that the best performance is achieved. Then, identify the optimal
placement P of the mapping regions for all the applications, such that the mapping area A
formed by mapping regions for accommodating all applications is minimized, where A is
typically measured by the final enclosing rectangle of P.

For an individual application mapping, the network performance—in terms of com-
munication power consumption and the latency between task ti and tj executed in mapping
cores in the Ri of the NoC platform—is mainly determined by vi,j and the Manhattan dis-
tance hi,j between the mapping cores [4]. Hence, to achieve the best performance, we need
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to minimize the sum of the products of the vi,j and hi,j for all the communications in an
application, which is to identify:

min

∑
∀ai,j

vi,j × hi,j

 (1)

3. Multi-Application Mapping Algorithm

To achieve the goal of best network performance and minimize the mapping area of the
NoC platform, we proposed a multi-phase-based multi-application mapping approach. The
main procedure of our proposed algorithm is given in Algorithm 1. The mapping consists
of three phases: Rectangle Analysis (RA), Task Mapping (TM) and Application Placement
(AP). RA analyzes the potential mapping regions for a target single application under
width and height bounds. TM is applied to different rectangles on the NoC platform to
minimize network communication power consumption and latency, and then the rectangle
which performs best is chosen as the mapping region for the application. AP is undertaken
after TM to conduct the mapping of multiple applications, and to determine the optimal
placement of chosen regions for multiple applications mapped on the NoC platform.

Algorithm 1 The main procedure of the proposed multi-phase multi-application mapping

Input: a set of N applications, a 2D Mesh based NoC architecture
Output: mutli-application mapping results
1. for i=1 to N
2. analyze potential rectangles Ri1, Ri2, . . . Rij . . . , based on the number of tasks of the application

and the bounds of width and height
3. for a single application, under different potential rectangles, a genetic algorithm is used to map

tasks onto cores with selected regions on the NoC platform
4. identify the rectangle which performs best as the mapping region for the application
5. end for
6. packet each mapping region as a block and generate initial placement for multiple applications

mapping using a B*Tree representation
7. use a simulated annealing algorithm to explore optimal placements
8. output the optimal solution

3.1. Rectangle Analysis
On a 2D Mesh NoC, any sub-mesh or rectangle can be regarded as a section of a compact area.

Before task mapping, we needed to choose a rectangular region with a corresponding number of cores
in an NoC platform for each individual application. To do this, we used an approximate-factorization
solution. Given the number of tasks of an application and the rectangle bounds of width and height,
we were able to generate several potential rectangles. Taking an application with 12 tasks as an
example, the given width bound is 4, and the height bound is 4. Then we generate 4 × 3 (R1), 4 × 4
(R2)—two rectangles in an NoC platform—as potential regions for mapping as shown in Figure 1.
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3.2. Task Mapping
In order to optimize network performance, an optimal mapping set is produced by utilizing a

genetic algorithm (GA), which is similar to the single application mapping described in reference [9],
and generally comprises four steps.

Firstly, an initial population of chromosomes is generated, which consists of many randomly
generated task placements. Each chromosome is encoded into integer strings, with its length equal
to the number of vertices in a TG, as shown in Figure 1. Then the fitness of each chromosome is
evaluated in the second step. The fitness function here is given by Equation (1). In the third step, a
new population is created by applying three operators (selection, crossover and mutation) similar
to the natural selection operators. Finally, the optimal solution with minimized network power
consumption and latency is selected at the end of a number of generations.

We used the above GA base mapping algorithm to map tasks of an application onto potential
regions which can be obtained from the last phase. Then we compared the mapping results, and
choose the region which performed best as the packeted region for the application.

3.3. Application Placement
After the packeted regions for each application were identified, we generated a layout for

multi-application mapping regions utilizing B*Tree representation [16]. A B*-tree is an ordered binary
tree for representing non-slicing floorplans. Given an admissible placement (in which no blocks can
move left or down), a unique B*-tree can be constructed, which corresponds to a unique layout result.
Figure 2 shows a B*-tree structure and its corresponding placement.

Micromachines 2021, 12, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 1. Potential mapping regions for an application with 12 tasks. 

3.2. Task Mapping 
In order to optimize network performance, an optimal mapping set is produced by 

utilizing a genetic algorithm (GA), which is similar to the single application mapping de-
scribed in reference [9], and generally comprises four steps. 

Firstly, an initial population of chromosomes is generated, which consists of many 
randomly generated task placements. Each chromosome is encoded into integer strings, 
with its length equal to the number of vertices in a TG, as shown in Figure 1. Then the 
fitness of each chromosome is evaluated in the second step. The fitness function here is 
given by Equation (1). In the third step, a new population is created by applying three 
operators (selection, crossover and mutation) similar to the natural selection operators. 
Finally, the optimal solution with minimized network power consumption and latency is 
selected at the end of a number of generations. 

We used the above GA base mapping algorithm to map tasks of an application onto 
potential regions which can be obtained from the last phase. Then we compared the map-
ping results, and choose the region which performed best as the packeted region for the 
application. 

3.3. Application Placement 
After the packeted regions for each application were identified, we generated a lay-

out for multi-application mapping regions utilizing B*Tree representation [16]. A B*-tree 
is an ordered binary tree for representing non-slicing floorplans. Given an admissible 
placement (in which no blocks can move left or down), a unique B*-tree can be con-
structed, which corresponds to a unique layout result. Figure 2 shows a B*-tree structure 
and its corresponding placement. 

 
 

(a) (b) 

Figure 2. B*Tree structure and its corresponding placement: (a) B*-tree structure; (b) The corre-
sponding placement. 
Figure 2. B*Tree structure and its corresponding placement: (a) B*-tree structure; (b) The correspond-
ing placement.

As shown in Figure 2, a unique placement of blocks can be generated through a given B*-tree
structure, where node ni in the B*-tree represents a block bi placed in an NoC platform. The depth-first
search (DFS) procedure is used to recursively traverse nodes in the B*-tree to generate the placement
result. Starting from the root, the block corresponding to the root node is placed on the bottom-left
corner and thus the coordinate of the block is (xroot,yroot) = (0,0). Then the left sub tree and right sub
tree are recursively traversed, respectively. If node nj is the left child of node ni, block bj is placed
on the right-hand side and adjacent to block bi, i.e., xj = xi + wi, where wi represents the width of
the block. Otherwise, if node nj is the right child of ni, block bj is placed above block bi, with the
x-coordinate of bj equal to that of bi, i.e., xj = xi. Therefore, given a B*-tree, the x-coordinates of all
blocks can be determined by traversing the tree once in linear time. Further, the y-coordinate of each
block can be computed by a contour data structure related to the width and height of each block [17].
In our proposed approach, each block bi represents a mapping region for an application, as shown in
Figure 2b.

Based on the B*-tree structure, we used SA to explore optimal placement solutions for multi-
application mapping regions. SA is a global optimization search algorithm based on the physical
principle of annealing. The algorithm flow used to generate an optimal placement using the B*-tree-
based SA is shown in Figure 3.
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Step 1: Set SA parameters, e.g., initial temperature T = T0, initial iteration time n = 1. Then
generate an initial solution of regions placement using B*Tree representation, and calculate its
corresponding objective function value E(S) represented by mapping area A.

Step 2: Based on the current solution S, a disturbance operation is adopted to generate a new
solution S’, which contains three steps. First, rotate a block 90 degrees on the 2D plane. Second, swap
the locations of the two nodes randomly selected in the B*Tree. Third, remove a node and insert it
into a child node of its parent node randomly selected in the B*Tree. Afterwards, calculate the E(S’)
of the new solution and difference ∆ f = E(S′)− E(S).

Step 3: Judge ∆ f , if ∆ f < 0, accept S’ as the new current solution. Otherwise, accept S’ as the
new current solution at a certain probability exp(−f /T).

Step 4: Under the current temperature T, repeat the disturbance and accept process (repeat Step
2 and Step 3) for L times.

Step 5: Decrease current temperature T=K_t*T, where K_t represents a cooling parameter.
Step 6: Judge whether current T is equal to the terminal temperature Tf. If T = Tf, output the

optimal placement. Otherwise, return to Step 2.

4. Experimental Results
To verify the efficiency of our proposed multi-phase based multi-application mapping approach,

we chose the approach described in [4] as a reference. Four benchmark applications were generated
by TGFF with 25, 16, 16 and 9 tasks executed in a corresponding number of cores in an NoC
platform [18]. Nirgam integrated with Orion was adopted as the NoC simulator to evaluate the
network communication power consumption and latency [19,20]. The experimental parameters of
the NoC architecture used in Nirgam are shown in Table 1. For the power results, the technology
node was set to the default value of 110 nm in Nirgam.

Figure 4 shows the performance comparison between our proposed approach (GA + Btree) with
the approach (Mer + Tree) described in [4] for four benchmarks. Our proposed approach saves on
average 23.45% power consumption and 24.42% latency compared with the results generated with
the approach described in [4].
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We also analyzed the normalized energy-delay product (EDP) of different applications as shown
in Figure 4c. The EDP with our approach of “GA + Btree” is much lower than that of the approach
of “Mer + Tree”, which is reduced by about 42%. This is because our proposed approach reduces
the communication distance between mapping cores, which is the main factor affecting the power
consumption and delay of on-chip communication.
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Table 1. The experimental parameters of the NoC architecture.

Parameter Name Value

Topology 10 × 7 Mesh, 9 × 8 Mesh
Routing algorithm XY

Packet size (flit) 2
Router buffer (flit) 5

Clock frequency (GHz) 1

Figure 5 shows the placement result of reference [4] which takes the Mer technique and tree
model algorithm under a fixed 10 × 7 NoC platform [4]. Figure 6 shows the result of our proposed
approach. Our proposed approach first considers each application mapping separately, and then
generates the placement of multiple application mapping regions to determine the optimal scale of
the NoC platform. The NoC platform generated by our proposed approach is 9 × 8. Hence, our
approach may have more blank spaces, but it secures better performance.
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Furthermore, we compared our proposed approach with the approach in [4] under the same
NoC platform. The performance comparison is shown in Figure 7. Our proposed approach saved
21.92% power consumption and 21.85% latency on average compared with the result described by
the author of [4], and the EDP with our approach of “GA+Btree” is also much lower than that of the
approach of “Mer+Tree” described in [4], which was reduced by about 38%.
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5. Conclusions
In this paper, we proposed a multi-phase-based multi-application mapping approach for NoC

design. In the first phase, our approach started with rectangle analysis which identified several
potential regions for an application. In the second phase, a GA based mapping algorithm was
used to map all tasks of the individual application into these potential regions and identify the one
which exhibited the strongest performance. In the third phase, each application mapping region was
packeted as a region, and a B*Tree based SA algorithm was used to generate the optimal placement for
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multi-application mapping regions in an NoC platform. The experiment results show that, compared
with existing multi-application mapping schemes, the proposed approach can achieve considerable
reduction of network power consumption (up to 23.45%) and latency (up to 24.42%) for a given set of
applications.
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