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Abstract: We propose a design method of asymmetric double freeform surface lens for an integrated
LED automobile headlamp and develop an integrated LED automobile optical system. A single
asymmetric double freeform surface lens is designed to redistribute rays emitting from the light
source for realizing both low and high beams. Moreover, a freeform surface reflector is used to
improve the energy efficiency of high beams. The prism placed in the optical path can suppress
chromatic dispersion on the edge of the target plane. Simulation and experimental results show that
the illumination values and color temperature of the key points can fully meet the requirements of
United Nations Economic Commission for Europe vehicle regulations (ECE) R112, 48, and 128. The
volume of the whole optical system comprised of freeform surface elements is smaller than that of
the low beam system of a traditional headlamp, resulting in saved space, in which other electronic
devices can be installed for the safety of the driver, which indicates that the proposed method is
practical in the field of automobile lighting.

Keywords: asymmetric double freeform surface lens; LED; integrated automobile headlamp; freeform
surface optics

1. Introduction

LEDs have gradually entered our lives due to their advantages of energy saving,
high energy efficiency, long lifespan, and miniaturization [1,2]. In the past decade, LEDs
have been used increasingly as light sources in automobile headlamps for their excellent
properties [3–6]. Since low-beam requirements are completely different from those of high
beams, the traditional optical systems of low and high beams in headlamps are designed
separately, mainly including projection and reflection types. In general, projection-type
optical systems deflect by lenses and reflection type by reflectors [7]. It is easy to form
a clear cutoff line but hard to improve the energy efficiency for projection types with a
baffle plate; conversely, the reflection type without a baffle plate is more efficient but has
a dim cutoff line. Previously, Cvetkovic et al. presented a simultaneous multiple surface
(SMS) 3D method for automobile low and high beam headlamps, whose optical efficiency
is more than 75% [8,9]. Domhardt et al. designed a combined lens for LED-based low
beam headlamp but needed large space to install lenses for high energy efficiency [10].
Ge et al. used an elliptical and parabolic reflector to design a low beam headlamp that
had high energy efficiency [5]. Hsieh et al. proposed a modular design for an LED
vehicle projector headlamp that provided the cutoff line of low beams without a baffle
plate [11]. Chu et al. proposed a low beam headlamp with a compound ellipsoidal reflector
that achieved the highest energy efficiency in the existing literature [12]. In the past,
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our research group has proposed several optical systems for headlamps. For example,
an optical system with a single freeform surface lens [13], a low chromatic dispersion
headlamp system using a parabolic reflector and micro-lens array [14], a LED motorcycle
headlight using a combined lens [15], etc. More separate design methods for low and high
beams can be found in references [16–21]. In recent years, compact headlamp design has
become more and more fashionable [22]. The integrated headlamp reduces its volume
by sharing some optical elements between low- and high-beam systems, allowing the
designs of integrated headlamps to fit with the trend of compact design. However, few
studies in the literature have been reported about the integrated headlamp. Hung et al.
designed an integrated headlamp incorporating a digital micromirror device [23]. Wu et al.
presented a modular LED headlamp system based on a freeform reflector [24]. Borocki
et al. recommended a single optical system with both a low beam and a high beam, in
which switching between the low beam and high beam was achieved by a removable
shutter [25]. M. Rice et al. proposed an integrated headlamp based on a projective low-
beam system, in which the light emitted from the high-beam source was reflected by the
lower plane of the baffle plate and deflected by the lens to form the illumination distribution
of high beams [26]. In previous studies, most of the headlamps were designed individually,
which may increase the complexity and volume of the headlamp. Existing integrated
headlamps with a removable shutter may affect the reliability of the headlamp. Therefore,
it is necessary to study a simple and small-volume headlamp system.

In this paper, we proposed a method of designing an asymmetric double freeform
surface lens (ADFSL) and developed an integrated LED automobile optical system. On
the premise of meeting the requirements of ECE R112, 48, and 128 [27–29], this new
integrated LED headlamp system can greatly improve the compactness of the optical
system and suppress chromatic dispersion at the edge of the target illumination area. Just
one lens is needed to achieve low and high beams, which means that this new headlamp
system can save a lot of space. A freeform surface reflector focusing light is proposed to
improve energy efficiency. Furthermore, a prism is placed in the optical path to reduce
the chromatic dispersion further, which can provide comfortable and safe lighting for the
driver. Compared to the traditional, separated headlamp and integrated headlamp, the
proposed headlamp has only one single lens to achieve low and high beams, reducing
the volume of the automobile headlamp. Furthermore, the color distribution on the target
plane using ADFSL and prism is more stable.

2. Design Method

The optical system of the new integrated headlamp is shown in Figure 1. The whole
system consists of an ADFSL, a freeform surface reflector, a prism, a baffle, and two LEDs.
The optical system of the low beam includes a LED source, an upper half of the ADFSL,
and a baffle plate. Correspondingly, the optical system of the high beam comprises a
freeform surface reflector, a prism, the lower half of the ADFSL, and a LED source. Rays
emitting from the low beam LED source are partially blocked by the baffle plate and then
redistributed by the ADFSL, forming a low beam with a clear cutoff line on the target plane.
On the other hand, rays from the high beam LED source are focused on a point by the
freeform surface reflector and then deflected by the prism. Finally, the remaining rays will
be redistributed by the ADFSL to form the illumination distribution of the high beam. The
implementation of the low and high beams will be described in detail below.
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in front of the headlamp for testing the illuminances on key points. Each optical element 
has a specific function to ensure a qualified low beam on the measuring plane. Concretely, 
the upper half of the ADFSL is used to realize the ellipse lighting spot, and the baffle plate 
blocks the stray light to form a clear cutoff line. In our laboratory, a low beam system for 
laser headlamp without ellipsoid reflector (Figure 3) was designed, and the construction 
was also adopted in the integrated headlamp for the low beam for the compactness of the 
optical system. 
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Figure 1. Optical system of the integrated LED automobile headlamp.

2.1. Optical System of the Low Beam Mode

Over the past decade, a series of regulations have been introduced for driver’s safety.
Low beam is mainly used for good road lighting and cannot cause glare to the opposing
drivers. According to the ECE R112 regulations, the tested points and the cutoff line are
shown in Figure 2.
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Figure 2. Tested points and regions of low beam.

It can be found that the light shape of the low beam has a wide horizontal spread for
both sides, which can provide a big angle of view for drivers. Moreover, the lighting spot
of the low beam is “dark on the left but bright on the right”. The measuring plane is 25 m
in front of the headlamp for testing the illuminances on key points. Each optical element
has a specific function to ensure a qualified low beam on the measuring plane. Concretely,
the upper half of the ADFSL is used to realize the ellipse lighting spot, and the baffle plate
blocks the stray light to form a clear cutoff line. In our laboratory, a low beam system for
laser headlamp without ellipsoid reflector (Figure 3) was designed, and the construction
was also adopted in the integrated headlamp for the low beam for the compactness of the
optical system.
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Double freeform surface lens (DFSL) has many advantages over single freeform
surface lens. For example, it can achieve an accurate distribution of light and suppress
chromatic dispersion by its inner and outer freeform surfaces [15]. The deflection factor C
(0 ≤ C ≤ 1), an important factor in DFSL, is used to represent the angular deflection ratio
of two freeform surfaces. It is worth noting that θ, ϕ are zenith angle and azimuth angle,
respectively, and α is the angle between the discrete points on the target plane and positive
X axis (Figure 4). The ray’s angle after passing through the inner freeform surface could be
denoted as follows:

θ1 = Cθ0 + (1− C)θ2
ϕ1 = Cϕ + (1− C)α

(1)
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To construct the ADFSL, the mapping relationship between certain angle rays on
the target plane and discrete points of the target plane should be calculated. Figure 5
shows the division of the target illumination area. To simplify the calculation and generate
qualified illumination distribution, the lighting zone is set as an ellipse and divided into I,
II, III zones. E1, E2, E3 are the corresponding illuminances of zone I, II, III, respectively,
and the semi-major axis is a, and the semi-minor axis, b. Similarly, the semi-major and
semi-minor axes are equally divided into three parts, with ai, bi being the semi-major axis
and semi-minor axis of the divided sub-ellipse, respectively. On the other hand, the target
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illumination area is divided into n parts along the direction α, where αi is the angle between
ith part and the positive X axis.
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I0 is the central intensity of the LED source; I(θ), the intensity distribution of light
in the θ direction; θ, the angle between the emergent light and the optical axis; and the
relationship between I(θ) and I0 can be expressed as follows:

I(θ) = I0 cos θ (2)

According to the conservation of energy, we obtain [30]

2π
∫ θ1

0 I0· cos θ· sin θdθ = 1
2

∫ αn
0 E1· a2

1b2
1

b1 cos2 α+a1 sin2 α
dα

2π
∫ θ2

θ1
I0· cos θ· sin θdθ = 1

2

∫ αn
0 E2·

(
a2

2b2
2

b2 cos2 α+a2 sin2 α
− a2

1b2
1

b1 cos2 α+a1 sin2 α

)
dα

2π
∫ θ3

θ2 I0· cos θ· sin θdθ = 1
2

∫ αn
0 E3·

(
a2

3b2
3

b3 cos2 α+a3 sin2 α
− a2

2b2
2

b2 cos2 α+a2 sin2 α

)
dα

(3)

By solving the above integral equation, the mapping relationship between θi and the
illumination area on the target plane can be acquired.

According to the conservation of energy, the relationship between the azimuth angle
ϕj and αj can be expressed as follows:

∫ θ1
0

∫ ϕj+1
ϕj

I0· cos θ· sin θdθdϕ = 1
2

∫ αj+1
αj

E1· a2
1b2

1
b1 cos2 α+a1 sin2 α

dα∫ θ2
θ1

∫ ϕj+1
ϕj

I0· cos θ· sin θdθdϕ = 1
2

∫ αj+1
αj

E2·
(

a2
2b2

2
b2 cos2 α+a2 sin2 α

− a2
1b2

1
b1 cos2 α+a1 sin2 α

)
dα∫ θ3

θ2

∫ ϕj+1
ϕj

I0· cos θ· sin θdθdϕ = 1
2

∫ αj+1
αj

E3·
(

a2
3b2

3
b3 cos2 α+a3 sin2 α

− a2
2b2

2
b2 cos2 α+a2 sin2 α

)
dα

(4)

By solving the above equation, the relationship between ϕj and αj is obtained.{
x(i,j) = ai cos αj
y(i,j) = bi sin αj

(5)

The coordinates of the points on the target plane can be calculated by Equation (5).
Then, we obtain the mapping relationship between the light emitting from the source and
the points on the target plane. Next, the profile of ADFL is calculated by iteration. The
initial points of the first and second freeform surfaces are set as L1 and L2, respectively.
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After the initial points are given, the normal vector of the initial points can be obtained
according to the vector form of refraction law,

→
N =

no
→

out− nin
→
In∣∣∣∣no

→
out− nin

→
In
∣∣∣∣ (6)

where
→
In is the unit vector of the incident ray,

→
Out is the unit vector of outgoing ray,

→
N is

the normal vector, no is the refractive index in the outgoing space, and nin is the refractive
index in the incident space. All coordinates of the discrete points on the freeform surface
can be calculated by iteration of the normal vector, which stipulates that the intersection
point of the next incident ray and the normal plane of the last point is the next point on the
curve. The expression of the normal plane at any point can be obtained by Equation (6). By
fixing the value of ϕ and changing the value of θ, the initial curve of the first and second
freeform surfaces is generated. Then, by fixing the value of θ and changing the value of ϕ,
the coordinates of the discrete points on both freeform surfaces can be acquired by iteration
of the normal vector. Readers can find the detailed iteration process in [15]. After importing
the data to modeling software, the upper half of the ADFSL can be obtained by lofting
curve, as shown in Figure 6.
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2.2. Optical System of the High Beam Mode

The high beam of the automobile headlamp is mainly used for bad road lighting since
it provides enough illumination on the target area [31]. In addition, the regulations require
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the target plane center area with maximum illumination. The test area of the high beam is
shown in Figure 8.
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The traditional design uses an ellipsoidal reflector to focus the rays emitted from the
source, while part of the rays emitted from the high beam source will be blocked by the low
beam source due to the volume of the LED source. It will cause significant energy losses,
as shown in Figure 9a. Therefore, the construction in Figure 1 is adopted to improve light
efficiency and illumination. Rays emitted from the high beam source focus on a point on Z
axis by the freeform surface reflector, as shown in Figure 9b.
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Due to the symmetry of the reflector, only half of the freeform surface reflector was
designed. An initial point is given and the normal vector of the initial point can be obtained
according to the vector form of the reflection law, which can be expressed as

→
N =

→
out−

→
In∣∣∣∣ →out−
→
In
∣∣∣∣ (7)

where
→
In,

→
Out are the unit vectors of the incident ray and outgoing ray, respectively, and

→
N

is the normal vector. The initial curve and profile of the freeform surface reflector can be
obtained by an iteration process.

Freeform surface reflector converges rays emitted from the source to another focus
on the Z axis. Therefore, the focus on the Z axis can be seen as a light source without
volume that does not block the rays from the low beam source and will illuminate the
target plane. Similar to the process of low beam design, the lighting spot of the high beam
is set as an ellipse, whose semi-major axis and semi-minor axis are equally divided into m
parts. Accordingly, ai, bi are the semi-major and semi-minor axes of ith part, respectively,
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0 ≤ i ≤m. At the same time, the target plane is also divided into n parts along the α
direction, αi is the angle between ith part and the X axis, and then the target plane is
divided into m× n lattices, as shown in Figure 10. According to the energy conservation,
we can obtain the mapping relations.∫ θi+1

θi

∫ ϕj+1

ϕj

I(θ,ϕ)dθdϕ =
1
2

∫ αj+1

αj

E0·ki·
(

a2
i+1b2

i+1

bi+1 cos2 α + ai+1 sin2 α
−

a2
i b2

i

bi cos2 α + ai sin2 α

)
dα (8)

where E0·ki is the illumination value, and ki is the illuminance control factor on the
ith part. Generally, the closer to the original point, the greater the value of the ki. I(θ, ϕ)
is the intensity distribution of the light focused by the freeform surface reflector. After
calculating Equation (8), the mapping relationship can be acquired, and the profile of the
lower half of the ADFSL is calculated by the normal vector iteration.
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Similar to the low beam lens construction method, the whole ADFSL can be built in
the modeling software. As shown in Figure 11, the diameter and thickness of the lens are
64 mm and 30 mm, respectively.

sin(
α + δ

2
) = n sin(

α

2
)·

cos I′1+I2
2

cos I1+I′2
2

(9)
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Although DFSL can reduce chromatic dispersion on the target plane, there is still
serious chromatic dispersion at the edge due to the large deflection angle. To obtain a light
pattern with a stable color distribution, a prism was added to the optical system to reduce
the deflection angle of the ADFSL. Figure 12 shows an optical path in the prism. The prism
can deflect rays based on refraction law, and the deflection angle between the incident
and outgoing ray is δ. Formula (9) presents the calculation of the deflection angle of the
prism [32].
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3. Simulation

After calculation and optimization, the whole system of the integrated headlamp is
introduced into the optical simulation software LightTools [33], as shown in Figure 13. The
volume of the whole system is 91 × 64 × 64 mm3, which is smaller than all the separately
designed headlamp systems. The low beam source placed at the origin is KW H4L531.TE
of OSRAM company and 6R brightness with 1300 lm luminous flux is selected [34]. On the
other hand, the high beam source placed at a focus of the freeform surface reflector is KW
H4L531.TE and 7R brightness with 1500 lm luminous flux is selected. Low and high beam
sources comply with the ECE R48 and ECE R128 regulations [28,29].
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Before the simulation, the freeform surface reflector is set as an aluminum alloy with a
reflectivity of 90% and the lens material is PMMA with a refractive index of 1.49. The baffle
plate is set as a perfect absorber to absorb all rays that hit it. The exact illuminance values
on key points and the specified regions in the prescribed area can be read in the software.
The simulation results are shown in the figures and tables below.

Figures 14 and 15 show the illumination and color distribution of the low beam,
respectively. Figure 16 shows the illumination distribution of the high beam. Figure 17a
shows the color distribution of a high beam with a prism, and Figure 17b shows the color
distribution without a prism. Tables 1 and 2 show the simulated illuminance values on the
target plane of low and high beams, respectively.
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Table 1. Simulated illuminance values of low beam on the target plane.

Point on Target Plane Required Illuminance in Lux Simulated illuminance in Lux

HV ≤0.7 0.28
B50L ≤0.4 0.00
75L ≤12 6.50
50L ≤15 13.36
75R ≥15 41.50
50R ≥12 40.48
50V ≥6 35.08
25L ≥2 5.22
25R ≥2 5.67

Zone I ≤2E *
√

Zone III ≤0.7
√

Zone IV ≥3
√

E * is the actual measurement of the value at point 50R.
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Table 2. Simulated illuminance values of high beam on the target plane.

Point on Target Plane Required Illuminance in Lux Simulated Illuminance in Lux

Emax ≥48 and ≤240 80.80
HV ≥0.8 Emax 74.81

0–1125L, 1125R ≥24
√

0–2250, 2250R ≥6
√

Figures 14 and 15 indicate that the integrated headlamp system with a single ADFSL
could ensure the quality of the low beam. The illumination width of the low beam can reach
12 m, which can provide a large angle of view for drivers. Furthermore, the cutoff line with
the blue edge does not appear, which means that the inherent problem of the cutoff line
with the blue edge in traditional projection designs can be solved by this method. The color
temperature of the low beam is stable on the target plane, and the color on the target plane
is close to white. As shown in Table 1, the simulation values of the low beam fully meet the
requirements of ECE R112 regulations; Figure 16 shows that the illumination distribution
of the high beam can comply with the requirements of ECE R112 regulations. Furthermore,
the highest value of the high beam is 80.8 lux, providing sufficient illumination when the
road lighting is poor. Figure 17 shows the color distribution of the high beam. The color
distribution with a prism is more stable, as compared to the color distribution without a
prism, which means that adding a prism to the optical path can largely suppress chromatic
dispersion on the edge. Table 2 demonstrates that the simulation values of the high beam
satisfy the requirements of ECE R112 regulations. In short, the light shape of the low beam
and high beam and simulation values of the key points fully comply with the requirements
of ECE R112; Moreover, the chromatic dispersion can be largely suppressed by using a new
integrated optical system.

Here, we must present a simple analysis of the installation error. The error of the low
beam and high beam source position mounting is ±0.3 mm and 0.5 mm, respectively. In
other words, when position error is greater than the above values, the performance will
no longer satisfy the ECE R112 regulations. Therefore, proper installment of the optical
elements is very important for achieving optimal performance.

4. Experiment

To study the illumination performance of the experiment, the optical samples were
processed and assembled according to the results of the optical simulation software, and
the GO-HD5 automobile lighting test system was used for testing the illuminance values
of the key points and specified regions. According to ECE R112 regulations, the test starts
after the light source is steady. The lighting spot of the low beam and color temperature test
of the point 50 V are shown in Figure 18, and the lighting spot of the high beam and color
temperature test of the point HV are shown in Figure 19. The test illumination values of the
low beam and high beam measurement screens are shown in Tables 3 and 4, respectively.

From Figure 18a, there is a straight cutoff line with no stray light above, and the color
temperature is stable on the measuring screen. Slight chromatic dispersion appears near
the cutoff line, which is different from the simulation results. Additionally, it still meets
the ECE regulations. Compared with the traditional low beam, the chromatic dispersion
near the cutoff line is much slighter. The test results of illuminance were slightly different
from the simulations, due to the slight error of the shield’s place and the absorption of
mechanical objects. However, all illuminance values at the required points can fit with the
regulations. According to ECE regulations, the color test results for the 50 V point must
be within the white light range. The color test result at point 50 V is 5160 K, as shown in
Figure 18b, and is quite qualified. The low beam lighting spot has a smooth transition that
provides drivers with visual comfort.
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Figure 19. (a) The lighting spot and (b) test results of color of the point HV for high beam.
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Table 3. Tested illuminance values of low beam on the target plane.

Point on Target Plane Required Illuminance in Lux Tested Illuminance in Lux

HV ≤0.7 0.42
B50L ≤0.4 0.00
75L ≤12 7.36
50L ≤15 13.25
75R ≥15 32.32
50R ≥12 30.26
50V ≥6 34.26
25L ≥2 6.32
25R ≥2 6.85

Zone I ≤2E *
√

Zone III ≤0.7
√

Zone IV ≥3
√

E * is the actual measurement of the value at point 50R.

Table 4. Tested illuminance values of high beam on the target plane.

Point on Target Plane Required Illuminance in Lux Tested Illuminance in Lux

Emax ≥48 and ≤240 70.36
HV ≥0.8 Emax 65.34

0–1125L, 1125R ≥24
√

0–2250L, 2250R ≥6
√

It can be inferred from Figure 19a and Table 4 that the lighting spot is nearly elliptic
and the central area is the brightest, which meets the ECE regulations. The color of the high
beam is almost white, indicating that adding a prism could reduce chromatic dispersion
at the edge of the target area and stabilize the color temperature. Similar to the test low
beam results, the high beam test results in Table 4 are lower than the simulation results.
The maximum illuminance of the high beam is 70.36 lux, less than simulation results but
still much greater than the regulation requires, and can provide sufficient illumination
for the ground. Similarly, the color test results for the HV point must be within the white
light range. The color test result of the HV point is 5560 K, as shown in Figure 19b, which
complies with the regulations.

5. Discussion

According to the simulation and experimental results, it can be found that both
illuminance values of the required points and the color temperature distributions are
qualified. The comparison of the new integrated headlamp system with the traditional
headlamp system is shown in Table 5.

Table 5. The comparison of the new integrated headlamp with traditional headlamp.

Items Volume Cost Low Beam High Beam Cutoff Line Chromatic Dispersion
on the Target Plane

New integrated
headlamp system Small Low Qualified Qualified

Slight
chromatic
dispersion

Slight

Traditional
projection

headlamp system
Large High Qualified Qualified

A little serious
chromatic
dispersion

A little serious

The volume of the new integrated LED headlamp is 91 × 64 × 64 mm3, much smaller
than that of the traditional headlamp. The ADFSL has a diameter of 64 mm, as large as the
traditional low beam lens, which means saving space for installing the high beam system
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and its cooling system. Compared with the high beam without prism, the new headlamp
with ADFSL and prism has a more uniform color distribution due to the light deflection
of the prim. Both low and high beams are qualified. Since the new integrated headlamp
has only one optical system, it costs less than the traditional headlamp with two optical
systems. By using an asymmetric double freeform surface lens, the cutoff line of the new
integrated headlamp has less chromatic dispersion than that of the traditional headlamp
using a single freeform surface or aspheric surface lens, providing comfortable lighting for
oncoming drivers. These advantages make the new integrated headlights acceptable in the
headlamp market.

6. Conclusions

We proposed a method to design the asymmetric double freeform surface lens and
the integrated LED headlamp optical system. The construction algorithms of the optical
elements were presented in detail. Simulation and experimental results show that a good
light pattern can be obtained with the selected source, and the values of key points and
specified regions can fully comply with the standards of ECE R112, 48, and 128. Moreover,
color uniformity on the target plane is improved by the freeform surface lens and the
prism. The volume of the whole optical system is smaller than that of the traditional
headlamp, saving space to install other electronic devices safely, such as distance sensors,
to help drivers gain better control of the distances between vehicles. Moreover, the freeform
surface optical system has high compactness and manufacturing feasibility.
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