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Abstract: In this research, glassy carbon electrode (GCE) amplified with single-wall carbon nanotubes
(SWCNTs) and ds-DNA was fabricated and utilized for voltammetric sensing of doxorubicin with a
low detection limit. In this technique, the reduction in guanine signal of ds-DNA in the presence of
doxorubicin (DOX) was chosen as an analytical factor. The molecular docking study revealed that
the doxorubicin drug interacted with DNA through intercalation mode, which was in agreement
with obtained experimental results. The DOX detection performance of ds-DNA/SWCNTs/GCE
was assessed at a concentration range of 1.0 nM–20.0 µM. The detection limit was found to be 0.6 nM
that was comparable and even better (in many cases) than that of previous electrochemical reported
sensors. In the final step, the ds-DNA/SWCNTs/GCE showed powerful ability for determination of
the DOX in injection samples with acceptable recovery data.

Keywords: docking investigation; doxorubicin; Sensor; modified biosensor

1. Introduction

Cancer is regarded as one of the most important diseases in the world as well as
the primary cause of mortality for many individuals [1,2]. The use of chemotherapy and
anticancer drugs is the best and most important way to deal with this deadly disease [3,4].
Breast cancer is one of the most important and prevalent kinds of cancer that has been
diagnosed [5]. Doxorubicin is one of the most important and extensively used drugs
with an appropriate response for the treatment of breast cancer, which has been used
for this purpose for many years [6,7]. This drug is one of the initial options of doctors
in the treatment of breast cancer [8,9]. However, due to the drug’s adverse effects, its
regulated dosage is essential in chemotherapy [10]. Therefore, its continuous measurement
in biological environments following treatment is crucial and required [11–15]. Numerous
methods have been used for this purpose, such as high-performance liquid chromatography
(HPLC), spectroscopic methods, and electrochemical sensors [11,16–19].

Electrochemical strategies showed many advantages for sensing of biological, an-
ticancer drugs and a wide range of electroactive materials due to easy operation, fast
response, high sensitivity, and portable ability [20–25]. Furthermore, the electrochemi-
cal sensors are considered to be more efficient and sensitive than other methods due to
the opportunity to be boosted using various modifiers [26–29]. As a result of these con-
siderations, numerous teams have reported electrochemically modified sensors for DOX
monitoring [15,30–32]. However, the low selectivity issue is still one of the most important
obstacles of electrochemical sensors for the detection of DOX. Due to the specific reaction,
biological recognition elements, such as DNA, can be used to overcome this issue [33,34].

The intercalation of DOX with ds-DNA inhibits macromolecular biosynthesis, thereby
it helps in the progression of topoisomerase II, an enzyme that relaxes supercoils in DNA
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for transcription [35]. On the other hand, intercalation between ds-DNA bases and doxoru-
bicin allows the formation of a highly sensitive and selective strategy for electrochemical
monitoring of DOX, which has also been confirmed by different groups [36].

Nanotechnology is now considered to be an important part of engineering processes
in the world [37–42]. The unique properties of nanomaterials have led to their widespread
application in industry and the design of engineering systems and have led to significant
changes in various scientific fields [43–49]. SWCNTs, meanwhile, have been surprisingly
improved as a one-dimensional nanomaterial with high electrical conductivity in improving
the properties of electrochemical sensors [50]. Bearing all points in mind, herein, it was
aimed to design an SWCNTs-modified sensor to be utilized in DOX analysis. The schematic
illustration of the proposed work was given in Scheme 1. The findings revealed that
the ds-DNA/SWCNTs/GCE showed good selectivity and high sensitivity for sensing of
doxorubicin in pharmaceutical samples.
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2. Materials and Methods
2.1. Materials and Instrument

Calf Thymus DNA (double-stranded), boric acid, phosphoric acid, Tris hydrochloride,
acetic acid, doxorubicin hydrochloride, and SWCNTs-COOH (>90% carbon basis, D × L
4–5 nm × 0.5–1.5 µm) were purchased from Across and Sigma-Aldrich Companies. Stock
solution of doxorubicin hydrochloride (0.001 M) was prepared by dissolving 0.0058 g
doxorubicin hydrochloride in 10 mL buffer solution. An Ivium-Vertex machine connected
to the three-electrode experimental setup consisting of Ag/AgCl/KClsat reference, Pt wire
(Azar Electrode, Tehran, Iran) and ds-DNA/SWCNTs/GCE were employed for differential
pulse voltammetric (DPV) (pulse height of 50 mV and a pulse width of 5 mV) analysis.

2.2. Preparation of ds-DNA/SWCNTs/GCE

GCE (A = 0.314 cm2, Azar Electrode, Iran) was polished via alumina powder and
washed by distilled water solution. Subsequently, 10 mL of SWCNTs-COOH suspension
was dropped at the surface of clean GCE and dried for 10 min. The ds-DNA was prepared
into acetate buffer (0.5 M, pH 4.8). Afterwards, 10 µL of ds-DNA solution (50 mg/L) was
dropped at the surface of SWCNTs/GCE.
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2.3. Preparation of Clinical Samples

Injection samples of doxorubicin (2 mg/mL) and dextrose saline were purchased
from a local pharmacy and used for clinical samples analysis without any pretreatment.
Samples were diluted in tris-HCl buffer solution pH 7.4 and transferred to electrochemical
cell for clinical sample analysis by standard addition strategy. Different concentrations of
doxorubicin were spiked in dextrose saline and used for real sample analysis.

2.4. Experimental Procedure

Doxorubicin solution was prepared in tris-HCl buffer solution pH 7.4. Intercalation
of doxorubicin and ds-DNA was checked in tris-HCl buffer solution at pH 7.4 for 20 min.
Finally, the electrode was transferred into another electrochemical cell and relative voltam-
mograms were recorded in an acetate solution (0.5 M, pH 4.8). All of the experiments were
repeated four times. Electrochemical impedance spectroscopy (EIS) was employed in the
frequency range of 100 kHz to 1.0 Hz.

2.5. Molecular Docking

Molecular docking was conducted to predict the favorable DOX-DNA complexes
using AutoDock Vina [51] and AutoDockTools (ADT) V.1.5.6 [52]. 3D structures of DNA
dodecamer (PDB ID: 1BNA) and DNA hexamer containing an intercalation gap (PDB
ID:1Z3F) were extracted from RCSB protein data bank [53]. Moreover, the 3D structure
of DOX drug was downloaded from PubChem database [4] (CID 31703). The partial
atomic charges for both DNA receptor and DOX were assigned using the Kollman united
atom [54] and Gasteiger–Marsili [55] methods, respectively. The parameters of DOX-DNA
complexes were prepared using ADT, which were denoted in the PDBQT file. The grid
maps of dimensions 72 × 72 × 122 Å (80 × 68 × 82 Å) with a grid-point spacing of 0.375 Å
were created around the center of 1BNA (1Z3F) so that the whole structure was included.
In addition, the grid box centers for x, y and z coordinates of 1BNA receptor (1Z3F) are
14.779 Å, 20.976 Å, and 8.804 Å (2.303 Å, 15.703 Å, and 37.592 Å). During the docking
process, DOX molecule was allowed to move freely, whereas the receptor molecule was
kept rigid and fixed. The structures of DOX-DNA docked models were visualized using
PyMol software [56].

3. Results and Discussion
3.1. Modification of Electrode Surface

The EIS technique was used to examine the modification of the bare electrode by
SWCNTs. The signal of 1.0 mM [Fe(CN)6]3−,4− + 1.0 mM KCl was selected as a reference
signal for this goal. The charge transfer resistances were obtained as 2.1 KΩ, 1.4 KΩ, and
1.85 KΩ for GCE and GCE modified with SWCNTs and GCE modified with SWCNTs
and ds-DNA, respectively, confirming the higher conductivity of SWCNTs at the surface
of GCE.

3.2. Electrochemical Sensing of Doxorubicin

The ds-DNA/SWCNTs/GCE voltammograms in the absence (curve a) of doxorubicin
and in the presence of 7.0 and 14.0 µM doxorubicin (curves b and c) are depicted in Figure 1.
It was clear that the currents of guanine base were significantly dependent on the concen-
tration of doxorubicin in the solution. With increasing doxorubicin concentration from
0.0 µM to 7.0 and 14.0 µM in the solution, the oxidation signal of guanine reduced from
2.6 µA to 1.74 µA and 1.17 µA, respectively. In addition, a positive shift could be observed
in guanine signal after the addition of doxorubicin, confirming the intercalation between
ds-DNA at the surface of the sensor and doxorubicin.
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Figure 1. DP voltammograms of ds-DNA/SWCNTs/GCE in the absence (a) and in the presence of
7.0 µM (b) and 14.0 µM (c) doxorubicin, respectively.

3.3. Optimization of ds-DNA Concentration

ds-DNA concentration is one of the most important factors in DNA-based biosensor
applications. Therefore, the ds-DNA concentration was optimized before linear dynamic
range investigation and clinical sample analysis. The differential pulse voltammograms of
ds-DNA/SWCNTs/GCE prepared with different initial concentrations of ds-DNA was also
recorded at the same experimental conditions (not shown). The current concentration
diagram relative to DP voltammograms is given in Figure 2A. As can be seen, with
increasing the initial concentration of ds-DNA, the oxidation current of guanine base
increased and then reached a stable condition at the concentration of 30 mg/L. After this
value, the oxidation current of dsDNA/SWCNTs/GCE did not change with increasing
ds-DNA, indicating that the electrode surface was saturated. Therefore, 30 mg/L ds-DNA
was selected as the optimum concentration for monitoring ds-DNA/SWCNTs/GCE to
sensing of doxorubicin.

In addition, intercalation time between 30.0 mg/L ds-DNA and 7.0 µM anticancer
drug was optimized as one of the main factors in the ability of the sensor for trace-level
analysis of doxorubicin in the period time 0–25 min. As can be observed, with increasing
the time until 20 min, the oxidation current of guanine reduced and then remained stable
(Figure 2B). This referred that 20 min was sufficient for intercalation between analytes and
ds-DNA.



Micromachines 2021, 12, 808 5 of 12Micromachines 2021, 12, x 5 of 12 
 

 

 
Figure 2. (A) Current-concentration plot of ds-DNA/SWCNTs/GCE fabricated with different initial 
concentrations of ds-DNA. (B) Current-time plot of ds-DNA/SWCNTs/GCE (ds-DNA 30.0 mg/L) in 
the presence of 7.0 µM doxorubicin. 

3.4. Linear Dynamic Range and Limit of Detection 
DP voltammograms of ds-DNA/SWCNTs/GCE in the presence different concentra-

tions of doxorubicin were recorded and represented in the inset of Figure 3. As can be 
seen, the oxidation current of the guanine base displayed a linear dynamic range in the 
concentration range 1.0 nM–20.0 µM for sensing of doxorubicin at the optimum condi-
tions (Figure 3). Moreover, the findings indicated that the ds-DNA/SWCNTs/GCE could 
be successfully utilized for the determination of doxorubicin with a limit of detection 
(LOD) of 0.6 nM (YLOD = 3Sb/m; Sb is the standard deviation of blank and m is the slope of 
linear dynamic range). The linear dynamic range and limit of detection of the proposed 
biosensor were comparable with previous electrochemical suggested sensors for moni-
toring of DOX (see Table 1). 
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3.4. Linear Dynamic Range and Limit of Detection

DP voltammograms of ds-DNA/SWCNTs/GCE in the presence different concentra-
tions of doxorubicin were recorded and represented in the inset of Figure 3. As can be
seen, the oxidation current of the guanine base displayed a linear dynamic range in the
concentration range 1.0 nM–20.0 µM for sensing of doxorubicin at the optimum conditions
(Figure 3). Moreover, the findings indicated that the ds-DNA/SWCNTs/GCE could be
successfully utilized for the determination of doxorubicin with a limit of detection (LOD)
of 0.6 nM (YLOD = 3 Sb/m; Sb is the standard deviation of blank and m is the slope of linear
dynamic range). The linear dynamic range and limit of detection of the proposed biosensor
were comparable with previous electrochemical suggested sensors for monitoring of DOX
(see Table 1).
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Figure 3. Current concentration plot of ds-DNA/SWCNTs/GCE in the presence of 1.0 nM–20.0 µM
doxorubicin at the optimum condition (n = 4). (Inset) DP voltammogram of ds-DNA/SWCNTs/GCE
in the presence of 1.0 nM–20.0 µM (a–i; 0.0, 0.001, 1.72, 5.0, 7.0, 10.0, 14.0, 18.0, and 20.0 µM)
doxorubicin at the optimum condition.

Table 1. The comparison of the reported analytical parameters of similar electrochemical sensors for monitoring DOX.

Electrode Mediator LDR (µM) LOD (µM) Ref.

Glassy Carbon Graphene quantum dot 0.018–3.600 0.016 [57]

Carbon paste
ZnO nanoparticle/1-butyl-3-

methylimidazolium
tetrafluoroborate

0.07–500 0.009 [11]

Hanging mercury drop
electrode — 0.5–10.0 0.1 [58]

Glassy Carbon Cyclodextrin-graphene hybrid nanosheets 0.01–0.2 0.0001 [59]
Screen-printed bird nest-like nano-structured NiCo2O4 0.01–600.0 µM 0.0094 [60]
Glassy Carbon ds-DNA/SWCNTs 0.001–20.0 0.0006 This work

3.5. Analysis of the Clinical Samples

The ability of ds-DNA/SWCNTs/GCE for sensing of doxorubicin was checked in
various clinical samples, including injection and dextrose saline. Dextrose saline was
selected as a complex matrix that usually has injections added in it. The standard addition
results for the determination of doxorubicin were tabulated in Table 2. The recovery range
of 97.2–104.9% offered the high-performance ability of ds-DNA/SWCNTs/GCE, implying
the potential for utilization as a new biosensor for the determination of doxorubicin in
clinical samples.
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Table 2. The clinical samples analysis data for determination of doxorubicin using ds-DNA/SWCNTs/GCE as a new
biosensor (n = 4).

Sample Doxorubicin Added
(µM)

Doxorubicin
Expected (µM)

Doxorubicin Founded
(µM)

Recovery%
(Doxorubicin

Founded/Doxorubicin
Expected) * 100

Injection - 1.00 1.03 ± 0.05 103

- 9.00 10.00 9.72 ± 0.53 97.2

dextrose saline - - <Limit of detection -

- 10.00 10.00 9.82 ± 0.53 98.2

- 15.00 15.00 15.74 ± 0.86 104.9

3.6. Molecular Docking Investigation

The binding affinity of doxorubicin (DOX) drug inside the DNA receptor was theo-
retically assessed in two manners: Groove interaction and intercalation. For those, DNA
structures with base pairs sequences dodecamer d(CGCGAATTCGCG)2 (PDB ID: 1BNA)
and hexamer d(CGATCG)2 (PDB ID: 1Z3F) were used. The best conformations of DOX-
DNA docked models with the lowest binding affinity are visualized in Figures 4–6.
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pink, deoxythymine: orange and Doxorubicin: red).
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3.6.1. Minor Groove Docking Study

Molecular docking revealed that the binding mode of DOX drug to DNA dodecamer
was via minor groove manner with the binding affinity of −9.1 kcal/mol (see Figure 4).
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As shown in this figure, doxorubicin drug was located in the vicinity of cytosine
and guanine base pairs of DNA in such a way DOX forms O . . . H-O and O . . . H-
N conventional hydrogen bonds (HBs) with DNA. The mentioned interactions were as
follows: (I) The oxygen (O4′) atom of 16th guanine of DNA interacts with the hydrogen
(H51) atom of drug molecule with a hydrogen bond distance of 2.4 Å and a bond angle of
about 133.1◦; (II) the hydrogen (H56) atom of NH2 group of drug interacts with (O)P1 of
deoxyadenosine 17 (DA-17) with a bond length of 3.7 Å and a bond angle of about 130.3◦.
The oxygen atom (O6) of hydroxyl termination of drug molecule was 2.8 Å from the
nitrogen atoms (N2) of DG-16 chain B and DG-10 chain A. The nitrogen (N2) atom of
deoxyguanosine 14 (DG-14) chain B was doubly bonded to oxygen atoms of drug molecule
with N2 . . . O8 and N2 . . . O7 distances of 2.8 and 3.1 Å, respectively. Moreover, the
oxygen (O10) atom of drug molecule was bonded with N2 atom of DG-16 chain B and O4′

atom of DG-10 chain A with bond distances of 3.3 and 3.5 Å, respectively.

3.6.2. Intercalation Docking

It was found that doxorubicin was stabilized in the intercalating site of the hexamer
of DNA in which drug was surrounded by nitrogenous cytosine (DC-1 and DC-5) and
guanine (DG-2 and DG-6) base pairs of DNA with a binding affinity of −9.6 kcal/mol (see
Figure 5). In addition, it was observed that the hydrogen and oxygen atoms of DOX drug
were participated as the donor and acceptor moieties to form three O . . . H-N and two
O . . . H-O conventional HBs with DNA receptor (see Figure 6). The preferential in-
tercalative binding poses of DOX drug were approved by a higher negative value of
binding affinity of the DOX with DNA hexamer in comparison with DNA dodecamer.
The hydrogen atom (H21) of deoxyguanosine 2 (DG-2) chain B was doubly bonded with
O1 and O3 atoms of DOX molecule, those are, O1 . . . H21-N2 and O3 . . . H21-N2 (rO1 . . .
H21-N2 = 2.8 Å with <NHO = 103.0◦ and rO3 . . . H21-N2 = 2.2 Å with <NHO = 132.4◦).

Moreover, hydrogen atom of hydroxyl termination of drug molecule as the proton
donor interacted with O4′ atom of deoxyribose sugar moiety linked to adenine (DA-3 of
chain B) as a proton acceptor with a distance of 2.7 Å and a bond angle of about 101.8◦. The
oxygen atom of deoxyribose sugar moiety of 6th guanine DNA interacted with hydrogen
atom of drug molecule with O4′ . . . H60-O5 hydrogen bond distance of 2.2 Å and a bond
angle of about 143.4◦. Furthermore, the hydrogen atom (H55) of NH2 terminal group of
drug molecule was bonded to the oxygen atom (O3′) of deoxycytosine (DC-5 of chain A)
with a bond length of 2.6 Å and a bond angle of about 117.3◦. In addition, the intermolecular
interaction between hydrogen atom of hydroxyl group of DOX drug and hydrogen atom
of DG-2 chain B DNA with H51 . . . H3 bond length of 1.5 Å was observed.

4. Conclusions

In this study, a highly sensitive and powerful electroanalytical biosensor was fab-
ricated and utilized for sensing of doxorubicin. ds-DNA/SWCNTs/GCE offered an in-
tercalation reaction between ds-DNA and doxorubicin and used as analytical approach
for sensing of doxorubicin with a detection limit of 0.6 nM. The presence of single-wall
carbon nanotubes at the surface of GCE boosted the sensitivity of the sensor for trace-level
analysis. Moreover, the docking investigation confirmed the satisfactory intercalation
between adenine and guanine bases of ds-DNA and validated the experimental part.
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