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Abstract: The response time is an important parameter for thermopiles sensors, which reflects the
response speed of the device. The accurate measurement of response time is extremely important to
evaluate device characteristics for using them in suitable scenarios. In this work, to accurately measure
the response time of thermopile sensors, an Al microheater is integrated in a MEMS thermopile as
an in situ heat source. Compared with the traditional chopper measurement method for response
time, this approach avoids mechanical delay induced by chopper blades. Accordingly, based on this
approach, the response time of the device is measured to be 6.9 ms, while that is 12.7 ms when a
chopping system is used, demonstrating that an error of at least 5.8 ms is avoided. Such an approach
is quite simple to realize and provides a novel route to accurately measure the response time.

Keywords: response time; microheater; MEMS; thermopiles

1. Introduction

MEMS thermopiles can convert infrared radiation into electrical signals and have
been widely used in non—contact thermometers [1,2], uncooled infrared cameras [3,4], gas
flow sensors [5–7], heat flow sensors [8–10], nondispersive infrared sensors [11–15], and
vacuum gauges [16,17], etc. The performance of thermopiles can be evaluated by various
parameters, including responsivity, detectivity, response time, etc. Herein, the response
time is the time required by the device to detect the object and reach the stable state, which
reflects the response speed of the device to external excitation [18,19]. In the past few
decades, previous research has been mainly focused on shortening the response time of
the device by optimizing thermopile structures [20–24]. However, accurate measurement
methods for this parameter have not been well developed. It should be noted that the
more precisely the response time of the device can be measured, the more useful the device
will be in various applications. Accordingly, to obtain an accurate response time for the
thermopile sensors, a high—precision measurement system is required.

Traditionally, the test of response time requires a complex system involving a black-
body radiation source, a chopper, and other equipment. With rotation of the chopper
blades, the test system provides a changing radiation so that the sensor outputs the corre-
sponding voltage, from which the response time of the device can be obtained [20,22–28].
Nevertheless, it takes time for the chopper blades to rotate, which prolongs the response
time of the device. Besides, after the chopper is used for a long time, the mechanical wear
of the blades may also concomitantly increase the measurement error of the response time.
Since the delay caused by the chopper cannot be excluded from the test system, there is an
inevitable error in the response time by using the traditional measurement system.

To avoid such an error, Zhang et al. adopted a pulsed laser—based system for response
time measurement [19]. In that work, a pulsed laser is used to measure the response time
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of the thermopiles. Though the system error is in the ps level due to the high precision
of the laser equipment, the method is complex and low operable, so that it is easy to
cause the measurement error when the sensor sample is changed every time, and the laser
may irradiate on different position of the thermopile in the measurement. Therefore, it is
necessary to develop a simple, stable, and accurate method for measuring the response
time of thermopile sensors.

In this work, a novel approach is designed to accurately measure the response time
of MEMS thermopiles through in situ integration of an Al microheater in the sensor.
Using the advantages of a short distance from the Al microheater to the hot ends and the
corresponding extreme—short heat transfer time, the measurement response time with
a very small error is realized. Besides, on—chip integration of the heat source with the
thermopile is quite simple and easy to fabricate. It is expected that such an approach
has wider application prospects as it can be extended to other MEMS thermal sensors in
the future.

2. Design and Working Principle
2.1. Response Time of Thermopile Sensors

According to the Seebeck effect, the output voltage of a MEMS thermopile can be
described as:

Vout = N∆T(αA − αB) (1)

where αA and αB are the Seebeck coefficients of thermocouple materials A and B, respec-
tively. ∆T is the temperature difference between the hot and cold ends of the thermocouples,
and N is the number of the thermocouples.

Besides, the response time of a sensor refers to the time required for the output voltage
to reach 63% of its stable value [19], which is defined by the following formula:

Vt = 0.63Vout = 0.63 (Vmax − Vmin) (2)

where Vout is the stable output voltage of the thermopile device, Vt is the output response
voltage. From Vt, it is deduced that t is the response time of the thermopile device. In the
presence of external excitation, Vmax is the maximum value of output voltage, and Vmin is
the minimum value.

2.2. Structure Design of the Thermopile Sensor

In order to obtain the response time of the device with high accuracy, a microheater
is embedded around the hot ends of the thermocouples in a MEMS thermopile. When
a voltage is applied to the microheater, the temperature on and around the microheater
rises, thus will create a temperature difference between the hot and cold ends of the
thermocouples. Figure 1 shows the working principle diagram of the approach.
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Based on this working principle, a novel structure of the MEMS thermopile is designed,
as shown in Figure 2. The sensor consists mainly of a silicon substrate, a supporting layer,
stacked thermocouples composed of N—PolySi and P—PolySi strips, a microheater, and
a light absorber. The supporting layer uses a “sandwich” structure consisting of SiO2,
Si3N4, and SiO2 to decrease the tensile stress. The light absorber of a Si3N4 layer is located
at the top level. The N/P PolySi strips are connected with metal forming a series of
thermocouples.
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Figure 2. Schematic diagram of a MEMS thermopile with an embedded microheater.

In order to transfer the heat energy generated by the microheater to the thermocouples
more accurately, a microheater is designed to be embedded around and as close as possible
to the hot ends of thermocouple strips. Since the solid thermal conduct occur between the
microheater and the thermopile, the reduction of the distance between the microheater and
the thermopile will shorten the heat transfer time to the thermopile when the microheater
acts as a heat source. Considering the manufacturing capability of our laboratory, a 3 µm
interval is selected between the microheater and the thermopile during the fabrication
process, as depicted in Table 1. Besides, to ensure that each pair of thermocouple strips
can receive heat energy from the microheater and reduce the complexity of the fabrication
process, the microheater is designed to be embedded between the hot ends of every two
thermocouple strips. In the fabrication process, the metal connection lines, electrodes, and
the microheater are formed simultaneously.

Table 1. Key structural parameters of the device.

Parameters Length (µm) Width (µm) Thickness (µm) Interval (µm)

N—PolySi 300–620 30 0.42 3
P—PolySi 260–580 18 0.42 15

Microheater / 3 0.5 3

The key structural parameters of the thermopile are shown in Table 1. The microscopic
image of the device is displayed in Figure 3. By applying an input voltage for the micro-
heater to generate joule heat, the heat transfers to the hot ends of the thermocouple strips
through solid heat conduction. Subsequently, a temperature difference between the hot and
the cold ends is generated, then, an output voltage is generated in the sensor, which can
be detected from the electrodes of the thermopile. According to Equation (2), the output
response voltage and the response time of the thermopile can be obtained.
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3. Results and Discussion
3.1. Effects of Microheater Materials

For a typical microheater, the relationship between its resistance and temperature can
be expressed by the following equation:

R(T) = R(T0)[1 + m(T − T0)] (3)

Here R(T) is the resistance of the microheater when its temperature reaches T, m is
its temperature coefficient of resistance (TCR), R(T0) is the resistance of the microheater at
room temperature T0, which can be expressed as:

R(T0) = η
L
S

(4)

Here η is the resistivity of the microheater material, L is the length of the microheater,
and S is the cross—sectional area of the microheater.

To analyze the resistance of the microheater, according to Table 2 (resistivity, η (Ω.m);
TCR, m (10−4/K)) as well as Equations (3) and (4), the resistance is proportional to the
resistivity and TCR. Since the input pulse voltage generated by the signal generator is a
constant voltage signal, the joule heat from the microheater is inversely proportional to the
resistance. In order to obtain more joule heat, Al, Cu, and Ag are analyzed and compared,
as these materials all have low resistivity and small TCR.
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Table 2. Characteristics of materials suitable for microheaters at room temperature [29].

Materials η (Ω.m) m (10−4/K) ρ (kg/m3) c (J/(kg.K)) λ (W/(m.K))

Al 2.69 × 10−8 42.0 2700 904 237
Cu 1.67 × 10−8 43.0 8960 384 401
Au 2.30 × 10−8 39.0 19,300 129 317
Fe 9.71 × 10−8 65.1 7860 449 80.2
Ni 6.84 × 10−8 68.1 8900 445 90.7
Pt 10.6 × 10−8 39.2 21,450 133 71.6
Ag 1.63 × 10−8 41.0 10,500 235 429
W 5.50 × 10−8 46.0 19,350 132 174

PolySi 4 × 10−6∼1 × 10−1 −250∼10 2320 678 31

With the microheater working, the response time of the thermopile can be expressed
as [23]:

t =

(
1
N
·

5

∑
i=1

li
λi·di·wi

)
[

5

∑
i=1

li·wi·di·ρi·ci + Ad·
7

∑
i=6

(di·ρi·ci)] (5)

where l, w, d, λ, ρ, c denote the length, width, thickness, thermal conductivity, mass
density and heat capacity of each part of the thermopile zone, respectively (i = 1, the param-
eters of P—PolySi thermocouple strips; i = 2, the parameters of N—PolySi thermocouple
strips; i = 3, the parameters of the thermal insulation layer of SiO2; i = 4, the parameters of
dielectric support layer; i = 5, the parameters of microheater; i = 6, the parameters of the
absorber; i = 7, the parameters of supporting membrane of the absorber; Ad, the area of the
infrared radiation absorber).

By analyzing the response time of the thermopile device when the microheater was
working, it can be known from Equation (5) and Table 2 (mass density, ρ (kg/m3); heat
capacity, c (J/(kg.K)); thermal conductivity, λ (W/(m.K))) that the response time was
proportional to the mass density and heat capacity, and inversely proportional to the
thermal conductivity [29]. In other words, the response time is proportional to the ratio
of the product of the material’s mass density and heat capacity to thermal conductivity
(RMHT). Considering these three factors, it can be seen from Table 2 that the RMHT of Al,
Cu, and Au was relatively small; thus, they are suitable for preparing the microheater.

In summary, comparing with the changes of the microheater resistance caused by the
different resistivity and TCR of different materials and the changes in the response time
and output voltage generated by the working microheater, it is deduced that Al and Cu are
more suitable for constructing microheaters. As Al is compatible with the CMOS process
and easier to be patterned in the manufacturing process, therefore, Al is adopted as the
material of microheater in this work. To further verify the conception, the properties of
Pt and PolySi are compared and analyzed with those of Al in the following work, since
previous studies mostly used Pt and PolySi as the microheater materials [5,27,30,31].

3.2. Simulation of Response Time

From Table 2 and Equation (5), it can be seen that the RMHT of PolySi is quite large,
which will increase the response time of the device. The resistance of the microheater is
relatively large when a stable pulse voltage is applied to the PolySi microheater, which will
severely reduce the thermal energy of the microheater, resulting in a very low voltage of
the thermopile. Therefore, PolySi is not discussed according to these theories. In order
to ensure that the device can obtain greater thermal energy and reduce the influence on
response time, the thermal distribution and the device output with a microheater consisting
of Al and Pt are simulated, respectively. As depicted in Figure 4, when applied with a 5 V
heating voltage, the output voltages of the device with Al and Pt microheaters are 2.58 V
and 0.73 V, respectively. Besides, the response times of the device are simulated to be 7.4 ms
and 8.7 ms, respectively, as shown in Figure 5.
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Figure 5. Simulated output voltages and response times of the same device embedded with an
Al—based microheater and a Pt—based microheater.

From the results, it could be clearly seen that compared with a Pt microheater, the
Al microheater can enhance the output voltage of the thermopile device by 253% while
reducing the response time by 15%. This is because the resistance of Al is much smaller
than that of Pt, as well as the RMHT of the Al is also much smaller than that of Pt. From
Equations (3) and (5), it can be deduced that the output voltage and the response time
vary accordingly. Based on these reasons, Al is selected as the microheater material in
thermopile fabrication.
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3.3. Measurement System for Response Time
3.3.1. A Chopper—Based System

As shown in Figure 6a, a chopper—based system for measuring response time consists
of a blackbody radiation source, a mechanical chopper, a thermostat, and a semiconductor
parameter analyzer, etc. During the measurement, the device was placed in a thermostat,
which was used to keep the detector at an ambient temperature of 23 ◦C consistently.
The temperature of the blackbody was set at 500 K. With the function of the chopper, the
infrared radiation was modulated into a 5 Hz alternating signal before reaching the device
in the thermostat. Subsequently, an alternating voltage signal with the same frequency
was exported by the detector and displayed on the semiconductor parameter analyzer
after passing through a low—pass filter circuit module. As illustrated in Figure 6b,c, the
response time obtained by the chopper—based system was 12.7 ms.
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3.3.2. A Microheater—Based System

Figure 7a illustrates an in situ microheater—based system, which consists of a signal
generator, a thermopile sensor embedded with a microheater, a smoothing filter circuit
module, and an oscilloscope. In the measurement, a square wave voltage of 5 V @ 5 Hz
generated by the signal generator was applied to the microheater, then the output voltage
of the thermopile was captured by the oscilloscope after being filtered by a smoothing filter
circuit module. As depicted in Figure 7 b,c, the response time based on the microheater
system was 6.9 ms.
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By comparing the response time obtained from the two systems, a difference of 5.8 ms
is observed, indicating that the microheater—based approach has a 46.7% improvement
in the accuracy of response time than the chopper—based method. The reason is that the
shading and light—transmitting parts in the chopper have specific and fixed areas; delayed
periods are induced when the chopper blades are rotating, which also becomes a part of
the response time of the device. Besides, In the long—term test of the chopper, the blades
of the chopper may wear out or drift in rotational speed, which will lead to problems of
inconsistent sampling frequency and longer sampling time. However, the measurement
system with an in situ microheater can avoid the delay caused by the chopper. Table 3
displays the series of chopper—based test systems and the microheater—based system
compared by response time parameters. It is seen that compared with the chopper—based
system, the response time measurement of the microheater—based system to the thermopile
sensor was more accurate.

Table 3. Thermopile sensor response time, measured by different test systems.

Reference Resistance (KΩ) Thermocouples t (ms) Test Method

20 485.5 N—Poly/P—Poly 14.46 Chopper
22 458.5 N—Poly/P—Poly 14.46 Chopper
25 124.7 N—Poly/Al 16.8 Chopper
26 29 P—Poly/Al 126 Chopper
28 270 Al/P—Poly 10 Chopper

This work 195 N—poly/P—poly 12.7 Chopper
This work 195 N—Poly/P—Poly 6.9 Microheater
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4. Conclusions

In this work, a MEMS thermopile sensor with an in situ integrated microheater
between the thermocouple’s strips is designed and fabricated. In the device, Al was chosen
as the material for the microheater. Compared with the thermopile of the Pt—based
microheater, the output voltage of the Al—based device can be increased by 253% in
performance, and the response time can be decreased by 15%. Moreover, a test system
based on a microheater is established for response time measurement, and the response
time is measured to be 6.9 ms. Correspondingly, the response time of the same device
was 12.7 ms when adopting a traditional chopper—based test system. Therefore, the
microheater—based test system improves the measurement accuracy of response time by
46.7%. The result demonstrates that the method of the microheater—based test system is
simpler, and has higher accuracy as well as effectiveness. Furthermore, it is an easier way to
integrate the microheater into the thermopile device through a CMOS—compatible process.
Hence, this test system has greater development potential in the thermal response device,
especially in the application with strict requirements on the response time of devices.
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