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Abstract: Doxycycline (DOX) and its metabolite residues in food and the environment pose a serious
threat to human health and the ecological environment. In this work, a novel method, termed
competitive fluoroimmunoassays (cFIA), based on monoclonal antibody (mAb) bio-conjugated
CdSe/ZnS core–shell quantum dots (QDs), was developed for sensitive and rapid bioanalyses of
DOX in natural water and commercial meats. After the optimization of the experimental conditions,
1 µg mL−1 of coating antigen and 0.5 µg mL−1 of QD-labeled mAb were used for the establishment
of the cFIA. With this assay, the 50% inhibition concentration was found to be 0.35 ng mL−1 of DOX
in phosphate-buffered saline samples, and the limit of detection was 0.039 ng mL−1 with minor
cross-reactivity to other tetracycline members. The recoveries from natural water and commercial
meats spiked with DOX concentrations of 10–600 ng mL−1 were 81.3–109.8%, and standard deviation
were all below 12%. Levels measured with the QD-cFIA for thirty authentic samples were confirmed
by high-performance liquid chromatography with good correlations. These results indicate that
QD-cFIA is sultable for the rapid and quantitative detection of DOX residue in environmental and
food samples.

Keywords: doxycycline; monoclonal antibody; quantum dot; fluoroimmunoassay

1. Introduction

Doxycycline (DOX) is an essential member of the tetracycline family of antibiotics that
is often used to treat infectious diseases in animals [1]. It is also used as a feed additive
to prevent diseases and promote the growth of animals. Early research on DOX residues
focused on food or biological samples [2]. Since animal manure and urine are usually used
as fertilizers on farmland, more attention has been paid to the impact of residual DOXs on
water and soil environments [3]. Depending on the animal species, researchers have found
that up to 70% of DOX in urine or feces enters soil and surface water through the excretion
of prototypes or metabolites.

According to different animal species, researchers have found that up to 70% of DOX in
urine or feces enters the soil and surface water via excreta in prototypes or metabolites [4,5].
Notably, extensive use of animal fertilizers (not harmlessly treated) causes DOX to enter
the soil and groundwater, thereby seriously threatening the ecological environment and
the safety of agricultural products [6]. The presence of these antibiotic residues in the envi-
ronment or food or biological samples can be directly toxic or can cause allergic reactions
in some hypersensitive individuals, also promoting drug resistance to the microbial strain.
Since these DOX residues are present in the environment or in food or biological samples,
they may be directly toxic and cause allergic reactions in certain allergic individuals and
can also promote resistance to microbial strains [7,8]. In addition, due to its broad-spectrum
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antimicrobial activity, residues in environmental media may affect the microbial abundance,
community structure, and function, thus affecting the stability of the entire ecosystem [5,9].

Traditionally, the residues of DOX are measured by analytical methods. Electro-
chemistry [10], high-performance liquid chromatography tandem mass spectrometry [11],
high-performance thin-layer chromatography [12]. and high-performance liquid chro-
matography (HPLC) [13,14] have been successfully used to detect DOX. However, these
methods have some obvious defects, such as the need for expensive equipment and highly
skilled personnel and may not be suitable for rapid screening of many samples. Addi-
tionally, immunoassays are widely used for the detection of various small molecule drugs
because of their simplicity, rapidity, low cost, and high throughput. In our previous study,
enzyme-linked immunosorbent assay [2,15], immunochromatographic test strip [16] and
time-resolved fluroimmunoassay [17] have been developed to detect DOX in animal edible
tissues (Table 1). However, these immunoassay methods based on horseradish peroxidase,
colloidal gold, europium and samarium labelled antibodies to generate colored molecules
as signal output have low sensitivity when detecting some trace antibiotics or biomarkers
in complex biological matrices.

Table 1. A review of immunoassay methods for the determination of DOX in recent years.

Method Antibody Type IC50 (ng mL−1) LOD (ng mL−1) Sample References

Enzyme-linked
immunosorbent

assay

Monoclonal
antibody 1.32 0.14 liver, muscle and egg [2]

Enzyme-linked
immunosorbent

assay

Polyclonal
antibody 8.74 1.96 Liver and muscle [15]

Immunochromatographic
test strip

Polyclonal
antibody 22.0 7.0 Liver and muscle [16]

Time-resolved
fluroimmunoassay

Polyclonal
antibody 1.06 0.04 liver, muscle and egg [17]

QD-cFIA Monoclonal
antibody 0.35 0.039

Chicken (liver, muscle),
fish muscle, tap water,

river, water and
contaminated water

This work

Recently, compared with traditional immunoassays, the use of fluoroimmunoassays
(FIA) has been increasing due to their higher sensitivity, wider detection range, and lower
matrix interference [18,19]. The fluorescent label may be an inorganic or organic mate-
rial, such as CdSe/ZnS core–shell quantum dots (QDs), lanthanide chelates, fluorescent
proteins, fluorescent microspheres, and so on [20,21]. As a class of fluorescent semicon-
ductor nanocrystals with unique optical properties, such as a high quantum yield, high
photostability, large molar extinction coefficient, wide absorption, and narrow fluorescence
emission spectrum, QDs are considered to be promising fluorescent labeling materials for
use in immunoassays [22]. At present, QDs have been widely used in the biomedical and
food safety fields as labeling materials for immunofluorescence probes [22–24]. However,
as yet, no FIA has been reported for DOX, and a simple and rapid QD-based FIA (QD-cFIA)
is urgently needed.

In this work, the aim was to develop QD-cFIA for DOX in edible animal tissues and
environmental samples using QD-labeled monoclonal antibodies (mAbs). The optimization
of parameters, including the coating antigen concentration, QD-labeled mAb concentration,
blocking buffer, incubation temperature, and competitive reaction time, were detailed.
Finally, the proposed QD-cFIA was compared with conventional HPLC results in an
analysis of environment and food samples containing DOX.
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2. Materials and Methods
2.1. Materials and Instruments

Doxycycline (DOX), oxytetracycline, tetracycline, chlortetracycline, ovalbumin (OVA),
and carboxylic acid-modified CdSe/ZnS core–shell QDs were purchased from Sigma–
Aldrich (St. Louis, MO, USA). The coating antigens DOX-para-aminobenzoic acid–DOX
(DOX-PABA-OVA) and anti-DOX mAb were obtained from our laboratory [2]. HPLC-grade
acetonitrile and methanol were purchased from Fisher Chemical Company (Fair Lawn, NJ,
USA). Ultraviolet absorbance was detected by using a NanoDrop-1000 spectrophotometer
(Thermo Fisher Scientific Inc., Wilmington, DE, USA). The fluorescence was determined
with a Varioskan LUX Multimode Microplate Reader (Thermo Fisher Scientific Inc., Wilm-
ington, DE, USA). Deionized water was purified using the Millipore Milli-Q Ultrapure
Water System (Bedford, MA, USA) and was used for all experiments. The QD-cFIA was
validated with an Agilent 1260 HPLC equipped with an ultraviolet detector (Agilent,
Wilmington, DE, USA).

2.2. Preparation of the Labeled Antibodies

The anti-DOX mAbs were covalently conjugated with the QDs by using carbodi-
imide chemistry. Briefly, 50 µL of QD was activated by adding 50 µL of 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride (4 mg mL−1) and 50 µL of N- Hy-
droxysuccinimide (0.15 mg mL−1), and the mixture was incubated for 30 min at room
temperature with gentle shaking. Then, the solution’s pH was adjusted to 7.4, and 300 µL
of mAb (6 mg mL−1) was added to the ester-activated QD and then incubated for 2 h under
dark conditions at room temperature. The reaction was separated by centrifugation at
18,000 rpm for 30 min at 4 ◦C, and the precipitates were dispersed in 0.05 M borate buffer
(pH 8.0) until further use.

2.3. QD-cFIA Procedure Used for DOX Detection

As shown in Figure 1, the QD-cFIA procedure was carried out as follows: (1) The
coating antigen (DOX-PABA-OVA) was diluted to a certain concentration with 0.05 M
carbonate-buffered saline buffer (pH 9.6, 100 µL per well) and then added to a 96-well
microplate. (2) After incubation overnight at 37 ◦C, the microplates were washed five times
with 0.05 M sodium borate buffer (pH 9.0) containing 0.05% Tween-20 and then blocked
with 1% OVA (200 µL per well) for 0.5 h at 37 ◦C. (3) After washing three times, 50 µL of
the sample or standard solution and 50 µL of QD-labeled mAb were added to each well
and incubated for 1 h at 37 ◦C. (4) The fluorescence intensity (F) of each well was measured
with a Microplate Reader after washing and padding dry.
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2.4. Optimization of Experimental Conditions

The experimental parameters were optimized in order to improve the sensitivity of the
QD-cFIA. Coating antigens were diluted to concentrations ranging from 2 to 0.125 µg mL−1

by serial dilution with 0.05 M carbonate-buffered saline buffer (pH 9.6). The QD-labeled
mAb (0.5 mg mL−1) was diluted with sodium borate buffer to concentrations of 4, 2, 1,
0.5, and 0.25 µg mL−1, respectively. The blocking buffers were selected, including 1%
S-Milk, 1% BSA, 1% Gelatin, 1% OVA, and 1% Casein. The incubation temperatures used
for the competitive binding assays were 4 ◦C, 25 ◦C, 37 ◦C, and 45 ◦C, respectively. The
competitive reaction times were 15, 30, 45, 60, and 75 min, respectively. The concentration
of DOX was diluted from 1000 to 0.01 ng mL−1 in sequence. F0/IC50 was used as the
main index to evaluate the performance of QD-cFIA (F0: the fluorescence signal absence
of analytes; IC50 represents the half-maximal inhibition concentration), where the highest
F0/IC50 ratio was the most desirable [25].

2.5. Standard Curve and Specificity of QD-cFIA

To establish a standard curve, a series of DOX standard solutions were prepared by
diluting DOX standards in PBS at a concentration of 0.01–100 ng mL−1. The standard
curves for DOX were obtained by plotting the mean F/F0 against the logarithm of the
analyte concentration under optimized parameters (F0 and F represent the fluorescence
intensities without and with the analyte, respectively). Origin Pro 7.0 software was used to
analyze the IC50 and limit of detection (LOD, IC10) using a four-parameter logistic equation
of the Sigmoidal curve [26]. The specificity of QD-cFIA was evaluated by cross reactivity
(CR). The CR values were calculated as follows: CR% = (IC50 of analyte/IC50 of analog) ×
100 [2].

2.6. Accuracy and Precision Studies

The accuracy and precision of QD-cFIA were evaluated by the recovery rate and
relative standard deviation (RSD). Animal tissue and water samples that had been shown
to be DOX-free were used for matrix effect, accuracy, and precision studies. According to
the Chinese MRLs standard, different concentrations of DOX were spiked to edible animal
tissues, which were 0.5, 1 and 2 times the MRLs, respectively. Liver samples were spiked
with DOX at final concentrations of 150, 300, and 600 µg kg−1 in sample buffer, and muscle
and fish samples had final DOX concentrations of 50, 100, and 200 µg kg−1. All water
samples were spiked with DOX at concentrations of 10, 50, and 100 µg L−1. DOX residues
were extracted and purified from the samples using the modified QuEChERS (quick, easy,
cheap, effective, rugged and safe) extraction method [27]. Each analysis was performed in
quintuplicate.

2.7. The Correlation of QD-cFIA with HPLC

Thirty authentic samples of chicken liver, chicken muscle, fish muscle, tap water, river
water, and contaminated water were collected from farms in Chongqing and Guizhou,
China, where DOX had been used. All the samples were prepared using the procedure
described above. Then, each sample was divided into two parts: one was analyzed using
QD-cFIA and the other was analyzed using HPLC. For HPLC, the samples were analyzed
in accordance with the method provided in the national standards of the Ministry of
Agriculture of the People’s Republic of China (No. 958–2–2007). HPLC was performed
on an Agilent ZORBAX SB–C18 (150 mm × 4.6 mm I.D., 5 µm, New Jersey, USA) using a
mixture of methanol/acetonitrile/oxalic acid (7:8:85, v/v/v) as the mobile phase at a flow
rate of 1.0 mL/min. The operating temperature of the column was set to 35 ◦C while the
wavelength of the UV detector was set to 355 nm, and the injection volume was 50 µL.
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3. Results and Discussion
3.1. Characterization of the QD-Labeled Antibodies

The fluorescence spectra of the QD-labeled mAbs had a maximum emission wave-
length of 520 nm (λex = 400 nm), the same as that of the QDs, indicating that the excellent
optical properties of the QDs conjugated with the mAbs were still preserved. The fluores-
cence intensity of QD-labeled mAbs was slightly weaker than that of the QDs due to the
loss of QDs and fluorescence quenching during the reaction. In addition, the following
QD-cFIA results indicated that the QDs were successfully linked to the mAbs against DOX.

3.2. Optimization of QD-cFIA

The F0/IC50 ratio was used to estimate the optimal parameter, with the highest ratio
corresponding to the optimal parameter for QD-cFIA. QD-cFIA showed the highest F0/IC50
ratios when the coating antigen and QD-labeled mAbs were concentrated at 1 µg mL−1

(Figure 2a) and 0.5 µg mL−1 (Figure 2b), respectively. In this work, the effect of blocking
buffers on the QD-cFIA performance was also studied. As shown in Figure 2c, 1% BSA
was used as the blocking buffer to obtain the best sensitivity for the assay. An optimal
incubation temperature of 37 ◦C was chosen (Figure 2d) and 60 min was selected as the
optimal incubation time for the competitive binding assay (Figure 2e). Therefore, 1 µg
mL−1 of coating antigen, 0.5 µg mL−1 of QD-labeled mAb, 1% BSA, 37 ◦C, and 60 min
were selected as the optimal parameters for QD-cFIA in the experiment.
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Figure 2. (a) Effect of DOX-PABA-OVA concentrations (2, 1, 0.5, 0.25 and 0.125 µg mL−1) on F0/IC50.
(b) The ratio of F0/IC50 with different blocking buffer (1% S-Milk, 1% BSA, 1% Gelatin, 1% OVA
and 1% Casein). (c) The ratio of F0/IC50 under different concentrations of QDs-labeled mAb (4, 2,
1, 0.5 and 0.25 µg mL−1). (d) The ratio of F0/IC50 under different incubation temperatures: 4 ◦C,
25 ◦C, 37 ◦C and 45 ◦C, respectively. (e) The ratio of F0/IC50 under different competitive reaction
time: 15, 30, 45, 60 and 75 min, respectively. The error bars represent the standard deviation of three
measurments.
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3.3. Standard Curve and Specificity of QD-cFIA

Competitive curves with final DOX concentrations of 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3,
10, 30, and 100 ng mL−1 were run in PBS under the optimized parameters (Figure 3a). A
standard curve with good linearity (Figure 3b) was prepared by using DOX concentrations
of 0.03, 0.1, 1, and 3 ng mL−1 in PBS. The standard curves that were based on the DOX
solvent calibration showed good linearity with R2 values equal to 0.9935. The IC50, LOD,
and linear range of the method were 0.35, 0.039, and 0.03–3 ng mL−1, respectively. As
shown in Table 2, the QD-cFIA showed negligible CR with the analogues (CR < 0.01%)
except for 4-epi-doxycycline, which showed a CR of 51.5%. These results are similar to
those reported in previous studies using ic-ELISA [2].
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Table 2. Cross-reactivity of analogues related to DOX by QD-cFIA.

Compound IC50 (ng m L−1) CR (%)

DOX 0.35 100
4-epi-doxycycline 0.68 51.5
Oxytetracycline >10,000 <0.01

4-epi- oxytetracycline >10,000 <0.01
Tetracycline >10,000 <0.01

4-epi-tetracycline >10,000 <0.01
Chlortetracycline >10,000 <0.01

4-epi-chlortetracycline chlortetracycline >10,000 <0.01
Demeclocycline >10,000 <0.01

3.4. Accuracy and Precision

The accuracy and precision values of QD-cFIA were determined by analyzing the
recovery and RSD. As illustrated in Table 3, the recovery rate of spiked samples was in
the range of 81.3–109.8%, and the RSD was 4.2–11.9%. The results indicate an excellent
performance by the QD-cFIA during the detection of DOX residues in edible animal tissue
and environmental samples.
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Table 3. Accuracy and precision of DOX in spiked samples by QD-cFIA (n = 5).

Sample Spiked (ng mL−1, ng g−1) Mean Recovery ±SD (%) RSD (%)

Chicken liver
150 105.4 ± 10.4 9.9
300 98.7 ± 10.8 10.9
600 88.5 ± 9.7 11.0

Chicken muscle
50 98.8 ± 6.6 6.7

100 109.8 ± 9.4 8.6
200 108.4 ± 7.5 6.9

Fish muscle
100 81.3 ± 9.7 11.9
200 91.8 ± 7.2 7.8
400 109.3 ± 11.2 10.3

Tap water
10 102.3 ± 6.4 6.3
50 103.1 ± 7.6 7.4

100 98.8 ± 4.6 4.7

River water
10 103.3 ± 4.3 4.2
50 101.5 ± 9.5 9.4

100 99.6 ± 11.2 11.2

Contaminated water
10 106.3 ± 9.6 9.0
50 100.8 ± 7.9 7.8

100 97.3 ± 9.5 9.8

3.5. Correction of Immunoassays and HPLC

The developed QD-CFIA method and the HPLC reference method were used to
compare and analyze the natural DOX-contaminated food and environmental samples to
evaluate the reliability of the QD-cFIA method. Using QD-cFIA, we found that the samples
were contaminated with various levels of DOX, ranging from 2.2 to 109.8 µg kg−1. The
HPLC results were basically consistent with those of QD-cFIA, and the positive results
ranged from 2.6 to 110.7 µg kg−1. The Bland–Altman plot for DOX measured by QD-cFIA
and HPLC is shown in Figure 4. The results show that the mean bias was −3.6 µg kg−1,
and the 95% limits of the agreement defined as the mean ± 1.96 SD were between –9.7 and
2.4 µg kg−1. It is evident that the results from the QD-cFIA and HPLC were not significantly
different (significant level α = 0.05).
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4. Conclusions

In this study, the proposed method was the first application of the QD-cFIA for the
determination of DOX in edible animal tissue and environmental samples. The QD-cFIA
showed high specificity for DOX and a qualitative LOD of 0.03 ng mL−1. Six samples were
spiked with DOX and detected using the proposed QD-cFIA method, and an excellent
recovery and satisfactory coefficient of variation were obtained. Additionally, the reliability
of the developed QD-cFIA was confirmed by HPLC for parallel analysis of the natural DOX-
contaminated food and environmental samples, further demonstrating that the established
assay method can act as a sensitive and reliable tool for the detection of DOX residue in
environmental and food samples.
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