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Abstract: Simulation technology is widely used in computer-aided process planning (CAPP). The
part machining process is simulated in the virtual world, which can predict manufacturing errors
and optimize the process plan. Simulation accuracy is the guarantee of process decision-making and
optimization. This article focuses on the use of digital twin technology to build a high-fidelity process
model, taking the advantage of the integration of multiple systems, in order to achieve the dynamic
association of real-time manufacturing data and process models. Making use of the CAPP/MES
systems, the surface inspection data of the part is fed back to the CAPP system and associated with
the digital twin process model. The wavelet transform method is used to reduce the noise of the
high-frequency signal of the detection data, and the signal-to-noise ratio (SNR) is calculated to verify
the noise reduction effect. The surface topography, after noise reduction, was reconstructed in Matlab.
On this basis, the Poisson reconstruction algorithm is used to reconstruct the high-fidelity process
model for the refined simulation of the subsequent processes. Finally, by comparing the two sets of
simulation experiments with the real machining results, we found that the simulation results, based
on the digital twin model, are more accurate than the traditional simulation method by 58%.

Keywords: digital twin; simulation; computer-aided process planning (CAPP); machining; manufac-
turing systems engineering

1. Introduction

The research on computer-aided process planning (CAPP) technology based on ar-
tificial intelligence has been widely developed [1]. In modern intelligent manufacturing
systems, CAPP is no longer an independent system, but part of product life-cycle manage-
ment (PLM) system, integrated with enterprise resource planning (ERP), the manufacturing
execution system (MES), and other systems [2,3]. The boundary of the original definition
of CAPP has been gradually blurred in practical application. Using artificial intelligence
and big data analysis to realize dynamic process planning is the inevitable trend of CAPP
technology in the future.

As is well-known that the two types of CAPP approaches are variant and generative,
which are based on knowledge [1]. However, such knowledge-based approaches rely
on statistical data or models. The real-time manufacturing data, collected in the actual
manufacturing process, is separated from the theoretical model in CAPP stage. There is no
mature modelling method and correlation mechanism that can merge the real-time manu-
facturing data and theoretical process model, which results in a process plan that cannot be
dynamically updated and optimized according to the processing status of the workshop.

In the Industry 4.0 context, the statistical CAPP mode is not only difficult to effectively
integrate with technologies, such as Internet of Things (IoT), big data, and artificial intelli-
gence, but it also cannot meet the requirements of micro-processing and super-finishing

Micromachines 2022, 13, 620. https://doi.org/10.3390/mi13040620 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13040620
https://doi.org/10.3390/mi13040620
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-2062-8826
https://doi.org/10.3390/mi13040620
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13040620?type=check_update&version=2


Micromachines 2022, 13, 620 2 of 22

for process digital models. Its disadvantages are mainly manifested in: (1) the in-process
models cannot be directly used in digital measurement, which makes the CAPP and digital
measurement systems unable to be integrated effectively; and (2) due to the lack of man-
ufacturing data of the part, it is easy to cause a deviation between simulation and actual
processing quality.

On the other hand, manufacturing machines and tools are increasingly equipped
with sensors and communication capabilities, which have the ability to collect dynamic
manufacturing information in real-time [4,5]. Advances in sensor and communication
technologies provide foundations for linking the physical world of machines to the cyber
world of computation. Such an integration and convergence into a cyber-physical world of
manufacturing gives rise to a new focus on digital twin (DT). It provides a complete digital
footprint of a physical system in the manufacturing process [6]. Decision-making and
optimization of CAPP can then exploit these data, which can be updated in real-time on
the physical system, through the synchronization enabled by sensors. DT technology can
not only be used for modelling and simulating machining process, but it can also support
operation and manufacturing services for optimized operations and failure prediction [7,8].

2. Related Work

The traditional CAPP system usually uses a series of drawings to express the geometric
changes and processing requirements of the part. This mode is increasingly mismatched
with today’s intelligent manufacturing system, which is mainly reflected in the following
aspects: (1) the traditional CAPP system uses drawing files as the carrier, which cannot
meet the needs of three-dimensional simulation, AR/VR, CNC machining, and 3D printing.
(2) In manufacturing progress, one revision in a processing drawing will often lead to
massive changes in the subsequent drawings. These modifications are geometrically
relevant, but the drawing files are usually independent data sets and lack of correlation
with each other. (3) Traditional CAPP systems mostly use knowledge to make process
decisions and inferences, which belong to static process planning. In modern intelligent
manufacturing systems, sensors, RFID, and other IoT technologies can achieve efficient
integration between manufacturing units and systems, which makes it possible to use
multi-dimensional, multi-level, real-time manufacturing data for dynamic process decision-
making and optimization.

In order to make up for the shortcomings of the traditional CAPP system in data
integration, process changes, and process decision-making, this article focuses on the
application of DT technology in dynamic CAPP technology and refined simulation. This
section summarizes the related works and progress of DT-based applications, in the field of
machinery manufacturing, and analyzes the deficiencies and gaps of current research.

2.1. Digital Twin (DT)-Based Manufacturing Related Information Model, Framework, and
Application Scenario

Combining Industry 4.0 concepts and imagining the future workshops, Tao proposed
a concept of a DT workshop based on DT technology and discussed the related framework,
system composition, operating mechanism, and key technologies [6]. Rainer proposed a
“Digital Twin 8-dimension model”. On this basis, their team spent three years conducting
social research (including experts from academia and industry), theoretical research (i.e.,
framework, modelling method, and future research directions of DT), and experimental
verification on digital twin (building a prototype system of digital twin intelligent factory
in the laboratory) [9]. Zhuang proposed a DT-based smart production management and
control framework for the complex product assembly shop floor [10].

DT technology has a variety of application scenarios in the manufacturing field. In
order to achieve in-process quality control of aerospace component manufacturing, Liu
and Bao developed multiple DT sub-models, based on biomimicry principles [11]. These
models comprised of an integrated true representation of the physical machining process.
Liu proposed a CMCO (i.e., configuration design motion planning control development
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optimization decoupling) design architecture [8]. Through embedded PLC control and
customized software development in a hollow glass smart manufacturing system, the
interaction between networks and physical devices in different places (Chengdu and
Guangzhou) is realized. Luo and Hu explored a mapping strategy between the cyber and
physical worlds and established a multi-domain, unified modelling method of DT. On
this basis, the method is verified by predicting and diagnosing the faults of CNC milling
machine tool [12].

Judging from the literature in recent years, scholars have different understandings of
the digital twin model and framework; however, they have reached a certain consensus, in
some aspects, as below:

• The digital twin model needs to have high fidelity, so that it can restore the real behav-
ior and state of physical entities in the virtual world. Therefore, the DT information
model often contains multiple dimensions [6,9].

• The interaction between virtual models and physical entities is the key to the role of
DT technology. The real-time interaction directly affects the simulation results in the
virtual world.

• Value-added services, obtained through data analysis, are the purpose of DT technol-
ogy application. The manufacturing services that DT technology can provide for users
mainly include equipment operation and maintenance [13], production scheduling
optimization [14], processing/assembly precision control [10], and manufacturing
energy consumption management [15].

2.2. Research Gaps

In recent years, digital twin technology has gradually become a research hotspot
and received extensive attention from industry and academia. From the above research,
we know that, in the virtual world, simulation based on the digital twin models can
provide guidance, prediction, and optimization for the production activities in the physical
world [7]. However, in the field of precision machining, there is a big gap between the
simulation result and actual processing effect [16,17]. The following three aspects may be
the main reasons:

• The information contained in the model is incomplete and imprecise. The simulation
model, in the process design stage, is an ideal model and lacks micro-scale surface
quality information in the actual machining process [17].

• The assumptions and preconditions in the simulation are not accurate, and the model
verification is insufficient. Simulation experiments based on ideal models usually
require hypothetical conditions [16,17], which usually have a certain gap with the
actual physical state.

• Simulation lacks an accurate method to evaluate the results. The evaluation method
should be able to determine how the simulation experiment meets the target.

• DT technology emphasizes the integration of virtual and reality. Through the integra-
tion of cyber and physics, the real state in the physical world is restored to the greatest
extent in the virtual world. In this paper, by studying the application framework
of digital twin-based process planning (DTPP) technology, the authors explored a
process planning mode for refined simulation using measured data on the surface of
parts, in order to improve the accuracy of simulation results and provide more reliable
predictive data for process decisions.

The rest of this paper is organized as follows. In Section 3, the information models
of DTPP framework are highlighted. Consequently, Section 4 describes the framework
of DTPP and proposes a new refined process simulation method based on DT in-process
models. Following that, a case study is given to prove the proposed method. Finally,
conclusions and identified areas for future research are given.
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3. Digital Twin-Based Process Planning (DTPP) Information Model for Machining

Combined with digital twin technology, the concept and content of the process model
should be newly defined and divided, which lays the foundation for the construction of
the DTPP system.

Definition 1. Digital twin-based process planning refers to the structured process digital models cor-
responding to the actual product manufacturing process. It consists of a series of three-dimensional
virtual models that are completely consistent with related physical objects and can simulate the
behavior and performance of real product manufacturing processes. The process information model
of DTPP can be expressed as:

DTPP = DTDM ∪
n

∑
i=1

DTpmi ∪ DTEM (1)

where DTDM means to DT design model of product; DTpmi means the ith in-process model; DTEM
represent the equipment models, which mainly contain DT models of machine tool, cutting tool,
and fixture.

Definition 2. Digital twin in-process model (DTPM) expresses the intermediate state model of
part machining. During the machining process, the geometric dimensions and surface quality are
constantly changing. This process is similar to biological evolution [11]. In order to truly depict
the changing state of the part during machining, DTPM needs to constantly “evolve”, according to
the machining conditions. From the perspective of virtual world, this “evolution” process can be
described as the continuous superposition of multi-scale and -dimensional real-time manufacturing
data on the as-designed model, so that it has the dual function of guiding the machining operation
and feeding back the processing effect of the process. DTPM can be expressed as Formula (2):

DTpm = Adm ∪
t

∑
i=1

Stepi ∪ Phy (2)

where Adm represents as-designed model, which includes geometric information, such as three-
dimensional geometric dimensions, machining precision, etc. Stepi includes detailed processing step
information of each operation, such as the cutting method, processing parameters, and tool path.
The processing steps are organized in units of processing features, which can be expressed as:

Step =
n

∑
i=1

GeoStep
i ∪

m

∑
j=1

AnoStep
j ∪

s

∑
k=1

CamStep
k (3)

where GeoStep
i means to geometric information of the machining feature corresponding to the

processing step. AnoStep
j means to the accuracy requirements of the machining features. CamStep

k
represents the manufacturing information of the processing step, which mainly includes the cutting
mode, cutting parameters, and tool path (G code or CAM post-processing program) information.

Phy means to physical state information of the part, considering the influence of materials,
temperature, vibration, and other factors on the processing quality of parts. Phy needs to include
not only surface quality inspection information, but also force, temperature, noise, vibration, and
other information.

Definition 3. The digital twin equipment model (DTEM) includes the machine tool, fixture, cut-
ting tool, presetter, disassembly device, AGV, and more. In order to reflect the dynamic processing
information of equipments, DTEM should include the elements and behaviors related to the ma-
chining process of multiple types, time scales, and granularities. These contents are complex and
numerous, and it is difficult to express them comprehensively through a single information model.
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Usually, different information models need to be constructed, according to different process types
and application fields. This article establishes DTEM model for CNC machining as Formula (4):

DTEM = emGeo ∪ Task ∪ Cap ∪M f g (4)

where emGeo means to the three-dimensional geometric model of the process equipment, which is
consistent with the actual physical size. Task means to the machining tasks, which reflects the current
machining tasks of the equipment in real-time and is used for workshop scheduling and calculating
of tool changing time. Cap represents the processing capacity information of the equipment, such as
the maximum part size that can be processed by the machine tool, maximum diameter of the drill
bit, and maximum clamping force of the fixture, thus providing a basis for selecting the process
equipment and optimizing process scheduling. Mfg represents real-time manufacturing information
of devices (machine tool, cutting tool, and fixtures) and includes processing time, personnel status,
production progress, etc.

The above information models can be divided into three categories, in terms of data
expression and storage type: structured, unstructured, and semi-structured data. Structured
data refers to row data, which is stored in a database and can be expressed logically using a
two-dimensional table structure. The structured process data in DTPP models is composed
of text, numbers, and characters, such as the contents of process operations and steps,
machine tool information, tooling information, etc. Unstructured data refers to data that
cannot be expressed using a two-dimensional logical table in the database, which mainly
refers to the geometric element information in the three-dimensional solid model, real-time
information (such as force, torque, and voltage) collected by the sensors, motion simulation
animation, or AR file/picture. These data are generally composed of some independent
data formats, and the data format files of this type are processed by special software. In
addition, semi-structured data is between structured and unstructured, and it is composed
of unstructured data and structured data or multiple structured data in a special form. The
semi-structured data in DTPP models mainly refers to dimensional tolerance, geometric
tolerance, and roughness, which are usually composed of special symbols and numbers.

According to different data type structures, a variety of information-expression meth-
ods need to be adopted, and the DTPP models shown in Figure 1 are taken as examples
to illustrate. Structured data, such as process content “rough turning cylindrical surface”
and other textual process information, is usually associated with the three-dimensional
model, by means of three-dimensional annotation or attribute addition. Unstructured data
is usually expressed by means of model format conversion and “model-data” association.
For example, the tool path information needs to be converted from the CAD model to the
CAM model. Real-time manufacturing data, in different formats, collected by sensors, can
be associated with 3D models through intermediate format conversion files (such as XML)
to provide data support for finite element analysis and machining motion simulation.

The DT process model uses the DT design model and DT in-process models as carriers,
which can completely define the “static” process (geometric dimensions, surface roughness,
positioning clamping, processing requirements, and others) and “dynamic” information
(real-time data collected by sensors, workshop logistics information, machine tool status
information, etc.). Each DT in-process model responds to each process operation and
multiple processing step. Combined with model-based definition (MBD) technology, the
DT in-process model can visually express the process operation or specify the machining
area corresponding to the processing step.

The DT process model combines MBD, IoT, and other technologies to realize the
association of manufacturing information (including “static” and “dynamic” process in-
formation) with the 3D solid model. Compared with the traditional process model, the
DT process model can not only reflect the hierarchical structure relationship between the
process route, process operations, and processing steps, but can also realize machine tool
failure prediction, tool wear assessment, and workshop scheduling by analyzing real-time
manufacturing data. Therefore, the scope covered by the process planning is extended to
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the production in the downstream workshop. The connection between process planning
and workshop manufacturing is much closer.
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4. DTPP Framework

As the carrier of DTPP, DTPM carries most of the information related to the process
planning. The “static” process information and “dynamic” manufacturing data attached to
DTPM advances the evolution (according to the time sequence), drives the generation of
new DT models, and completes the process planning and iterative changes. Based on the
geometric correlation between DTPM models, this paper proposes a DTPM-based process
planning mode, as shown in Figure 2.
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Figure 2. A Digital twin in-process model (DTPM)-based process planning mode.

4.1. Process Route Design

In the process route design stage, the information of machining features and design
requirements are obtained from the DT design model, and the top-level process route is
designed by the knowledge database and an artificial intelligence algorithm. In the research
of traditional CAPP technology, the decision and optimization of the process route mainly
depends on the detailed summary and classification of process knowledge and relies more
on manual experience. On the basis of summarizing the typical processes, new process
routes are generated through human–computer interaction revision [1]. However, this
method mainly establishes the association between the static machining feature and process
knowledge. Since once a static machining feature is recognized, its associated process data
is unchanged during the machining process.

In order to make up for this defect and improve the flexibility of process route design,
DTPP technology considers the real-time operation status of the devices and overall re-
source scheduling of the workshop. Compared with the former, the arrangement of the
processing sequence is more in line with the actual production conditions of the workshop.
Therefore, the design of the process route, under the DTPP mode, needs to be integrated
with CAM and MES systems. It can timely adjust the processing allowance and cutting
parameters of the predetermined process, according to the detection data fed back by
sensors, or adjust the processing route in real-time, according to the busy and idle status of
machine tools. The workflow of DTPP system is shown in Figure 3.
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The overall objective for this framework is to feed back dynamic DT data that change
the process route by dealing with them via a fully automated method via a decision-making
algorithm. The detailed workflow is as follows:

• The process route, designed before product machining, is completed in the DTPP
system. It takes the DT design model as input, analyzes the machining features, and
uses the static process database and decision algorithm to design the process route.

• Whether this decision result can guide the actual production needs to be judged in
conjunction with the dynamic DT data of the workshop. This process integrates
DTPP, CAM, and MES systems. If the production conditions meet the processing
requirements, the process command is executed by the devices. If not, the MES system
feeds back the DT data to the DTPP system to modify the process route.

• In the MES system, it is divided into the physical and cyber layers, according to
functions. The main function of the physical layer is to provide real-time data for the
DT models and execute machining command. At the same time, the cyber layer is
responsible for identifying error conditions and predicting equipment failure [18].

In Figure 3, we can grasp the product processing status and equipment working status
in real-time and use “dynamic” process data to improve DTPP’s flexible design capabilities.
In this case, it is particularly important to build digital twin models that can reflect the state
of the product and devices in the process.

4.2. DT In-Process Models Design

During the machining process, the machining features and surface quality of the
part are constantly changing. In order to truly depict this changing process, the DT in-
process model needs to constantly “evolve”, according to the processing process. From
the perspective of digital manufacturing, this “evolution” process can be described as
the continuous superposition of multi-scale and -dimensional real-time manufacturing
information (which is defined as Phy in Definition 2) on the as-designed model, so that it
has the dual function of guiding the processing operation and feeding back the processing
effect of the process. According to the chronological order of process planning and part
processing, this information superposition process is divided into two stages: the digital
definition stage before processing (pre-processing stage) and real-time manufacturing
information superposition stage during processing (in-processing stage).

1. Pre-processing stage

The digital definition before processing includes establishing an ideal three-dimensional
geometric model of the process, defining the processing size and accuracy requirements,
selecting processing methods and devices, and planning processing steps. The processing
steps include: determining the processing area, setting cutting parameters, and planning
the tool path. The role of this stage is to guide the actual processing operation. The
three-dimensional geometric model of the process carries all the static process information
related to the processing operation. The DTPP system uses the process knowledge base and
decision rules to automatically select the processing parameters and devices. The CAM
system provides the processing steps of the NC program for tool cutting.

2. In-processing stage

The as-designed model in the virtual environment cannot truly reflect the real topog-
raphy changes during the processing of parts. Normally, researchers obtain inspection data
through measuring instruments to reflect the real effects of parts after processing. However,
the inspection data is not related to the as-designed model. The three-dimensional model
in the virtual environment still expresses the ideal processing effect. The errors generated
during the processing are not supervised and controlled in the virtual environment. There-
fore, in order to truly map the microscopic changes of the surface topography of the parts
in the physical world, the machining inspection system needs to be integrated with the
virtual simulation system to feed back the machining inspection data to the virtual world.
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On this basis, DTPM in the virtual world needs to undergo modal changes. According to
the Delaunay triangulation theory [19], the as-designed model evolves into a discrete point
cloud or triangular mesh model, corresponding to the location of the inspection point.

This evolution process is shown in Figure 4. The part is measuring online, and the
measurement data should be fed back to an intelligent controller, which is composed of a
comparator, knowledge library, rule library, and memory. The comparator contains two
inputs and one output. DTpmi−1, before processing, provides the desired dimension as one
input and measurement data as another input. The comparator feeds the processing error
to adaptive compensation module, which is composed of a knowledge library, memory, and
rule library. The knowledge library contains the processing parameters (such as spindle
speed, feed rate, and cutting depth) corresponding to different processing conditions.
The memory stores the historical processing parameters relating to same parts, providing
big data samples for deep learning. The rule library adjusts the processing parameters
according to the change of machining allowance.
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The results of compensation contain the dimensional value and modified processing
parameters, which will feed back to the cyber and physical words. In the cyber world, using
MBD technology, the DTPM will be given new size information or processing parameters
after the inspection process. In the physical world, the modified cutting parameters are fed
to servo motor driver, thus adjusting the cutter moving for the next procedure operation.

In the above feedback mechanism, DTPM can be applied to the application criteria
required by digital twins; that is, the information required for processing is related to
physical entities, multivariate data is integrated with digital twin models, dynamic real-
time interaction is compatible with digital twin models, and the requirements of the multi-
system integration applications is matched with the digital twin information model [20].

4.3. Refined the Machining Simulation, Based on Digital Twin In-Process Model (DTPM)

From the perspective of expressing the surface data of the part, DTPM, which is contin-
uously updated through the above feedback mechanism, has a higher fidelity and is closer
to the actual physical part. Therefore, in the abstract world, DTPM can be used not only for
the simulation of CNC machining programs but also for deeper refined simulation. The for-
mer is to use the principle of image science to correct the numerical control program, and the
latter is to simulate the process mechanism using scientific calculations, such as materials
science, heat transfer theory, solid mechanics, and fluid mechanics, to judge the feasibility
of the process and predict the processing effect. Refined simulation strives to simulate the
surface morphology of the part, close to the real machining state, from the mesoscopic or
microscopic scale, so as to achieve the purpose of replacing physical experiments.

Therefore, the infinite description is required to be able to consider all kinds of geomet-
ric deviations from a macro- to a nano-scale and capture these different variations [21]. It is
not possible to clearly define all of the geometric specifications of the machining process of
part. However, a finite description can be used for calculations and simulations, such as
assembly analysis or tolerance simulations, for predicting the subsequent manufacturing
processes. In general, the finite descriptions of DTPM can be wire frames, point clouds, sur-
face meshes, volume models, and cell models. The point cloud representation method has
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many advantages in the precise expression of the geometric deviations of the part. Further-
more, point coordinates can be obtained by 3D scanners in the manufacturing inspection
applications. This provides the possibility to improve the accuracy of the simulation results.
The flowchart of this procedure is shown in Figure 5, as follows.
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However, for a point cloud model, its measurement data will be very huge, even if it
is an extremely small size model. In order to reduce the workload of the calculation, it is
necessary to filter out unnecessary measurement data and extract points that will affect
the subsequent simulation results. For this purpose, it is necessary to model deviations
for the finite point cloud model. Different approaches for modelling deviations can be
found in the literature, such as wavelet analysis, which is used to filter out white noise in
scanning [22]. The commonly used filtering methods mainly include Fourier transform-
based filtering [23,24], one-dimensional wavelet transform filtering [25], and Bayesian
post-processing [26,27]. In general, the 1D Gaussian and muti-Gaussian methods are
considered to be able to reasonably sample points from point cloud model to establish
random deviation model [26,28].

Based on the real-time measurement data, the reconstructed DTPM is closer to the
actual surface of the part. This model is used to replace the ideal model in the DTPP system,
which makes the simulation results in the virtual world more authentic and instructive.

4.4. DTPP-Integrated System Framework

In order to realize the above functions, this paper proposes a DTPP-integrated applica-
tion framework, as shown in Figure 6.
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DTPP extends the scope of the traditional process design by linking process planning
to the real-time execution of the shop floor using technologies such as IoT/RFID. The DTPP
framework, shown in Figure 6, includes six layers. The meaning and content of each layer
are as follows:

1. application layer DTPP’s application range includes process design, tooling design,
machining, assembly, and inspection. Its potential applications are the real-time
optimization of process routes/parameters, tool life prediction, equipment status
monitoring, processing plan evaluation, processing quality control, and more.

2. service layer The biggest advantage of DTPP is to make full use of real-time industrial
big data to achieve dynamic process planning. In order to meet computational
efficiency and reduce the cloud computing load, telecom standards organizations and
operators are studying how to deeply integrate with mobile internet and IoT services
in future 5G networks, thereby increasing the value of mobile network bandwidth.
Mobile edge computing (MEC), proposed by the European Telecommunications
Standards Institute, is a technology based on 5G evolution architecture and deeply
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integrating mobile access networks with Internet services [29]. On the one hand, MEC
can improve the user experience and save bandwidth resources. On the other hand,
by sinking computing power to mobile edge nodes, it provides third-party application
integration, which provides unlimited possibilities for service innovation of the mobile
edge portal. The seamless integration of mobile networks and applications will
provide a powerful weapon for dealing with various DTPP applications.

3. smart devices layer Closed-loop control is the main feature that distinguishes the
DTPP system from the traditional CAPP system. The hardware that performs informa-
tion feedback mainly includes various types of sensors, RFID tags, and communication
equipment. Therefore, the DTPP system is no longer a pure process design software
system, but an integrated application system that combines software and hardware.

4. system layer DTPP requires the synergistic response of multiple systems, including
product design, process design, manufacturing, inspection, operation and mainte-
nance systems, etc. Each system needs to be open and easy to integrate between
different systems.

5. platform layer The DTPP platform refers to the software operating platform used by
process personnel when designing the process. In addition to the process operation
function of the traditional CAPP system, the platform also integrates the real-time
process simulation function based on the digital twin model. For the machining
process, simulation mainly includes the real-time simulation of mechanical equipment
(machine tools, tools, and fixtures) and pre-simulation of the parts.

6. technology layer The technology supporting the above applications can be divided
into two parts: model-based process planning and digital twin technology. Model-
based process planning technologies support process route planning, machine and
cutting tool selections, tool path planning, etc. Digital twin technology functions
mainly focus on real-time big data acquisition, processing, and analysis. DTPP
has higher requirements for communication technology. Currently, 5G technology
defines the next three application scenarios: enhance mobile broadband (eMBB),
massive machine type of communication (mMTC), and ultra-reliable low latency
communications (uRLLC). In the future, with the support of 5G technology, it is
possible to make DTPP easier to implement.

The dynamic process design mode is the main difference between the DTPP system
and traditional CAPP system; the scope of process knowledge is further expanded (in-
cluding real-time manufacturing data), and the simulation technology is easy to exert
greater advantages. In addition, the DT models, contained in the DTPP system, are also
an important part of the digital twin workshop. The DTPP system can provide more accu-
rate real-time manufacturing data for the workshop’s APS advanced planning, logistics,
and warehousing.

5. Cased Study

This section presents an implementation of prototype DTPP system. Section 5.1 uses
this framework to build a DTPP prototype system in the Cyber physical system (CPS)
environment of a machining workshop. Section 5.2 presents a comparative experiment of
refined simulation.

5.1. A Prototype System of DTPP

According to the above framework, a DTPP prototype system, based on the workshop
CPS system, has been designed. Figure 7 shows the CPS system interface, DT equipment
model, and machine tool in the IoT environment. The DTPP system is a secondary develop-
ment of the NX8.5 system using Visual Studio 2010. As a part of the Siemens PLM system
(TeamCenter10 (TC)), it is integrated with the CPS system to realize dynamic process design,
based on DTPM.
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Based on the real-time status data of the workshop equipment, acquired by the CPS,
a digital twin process model is constructed through the transmission of the processing
data between the different systems, and its implementation is shown in Figure 8. The
CNC machine tool adopts the Shenyang i5 intelligent CNC milling machine and Jiangsu
Dongqing CNC wire cutting machine DK7732; additionally, an open EtherCAT bus is
used for real-time data transmission between the master control system. It can receive
DTPM geometry model from NX8.5 system through PLM/MES integration. The detection
instrument is the ZeGagage Plus optical profiler from the ZYGO company. Since the
instrument does not have networked data transmission, the detection data is manually
entered in the experiment, and the data is stored in the Oracle database file and fed back to
the DTPP system to achieve refined simulation. A standard communication protocol, such
as OPC UA, is used between the heterogeneous control and DTPP system to realize the
transmission of field data.

Considering the timeliness and consistency of product data transfer, the manufactur-
ing process planner (manufacture structure editor (MSE)) module and DTPP module in
TeamCenter are used to build the process structure synchronously. The synchronization
function of DTPP and MSE ensures the consistency of data updates. The system realization
scheme is shown in Figure 9.

Process designers obtain process design tasks in TC, which include: part models, pro-
cessing requirements, real-time status information of workshop and equipment, and so on.
In order to realize the automatic acquisition and update of DTPM model objects, the DTPP
navigator and process route planning interface are established by using the MFC frame-
work of Visual Studio 2010 and NX/Open (an application programming interface provided
by NX to customize and extend NX). Using model-based definition (MBD) technology to
define DTPM models in NX, these models are ideal in the process design stage.
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5.2. A Case Study of Refined Simulation Based on DTPM

In order to verify the superiority of DTPM in refined processing simulation, this paper
takes the simulation of the barrel finishing process of a satellite part, as shown in Figure 10,
as an illustrative example. After the part is processed by heat treatment and drilling, the
cross groove in the center of the part and 12 circumferentially distributed through-hole
grooves are processed by wire EDM, with a groove width of 0.8 mm. Because, after wire
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EDM, the cutting boundary and surface of the part will be burnt and damaged, as shown
in Figure 10c. The last process of the process plan uses the barrel grinding method to polish
the part. The EDEM discrete element simulation method is used to predict the effect of
barrel grinding. By comparing the simulation results of DTPM and the ideal model, the
superiority of the refined simulation method based on DTPM is verified.
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Figure 10. Damaged state of the part before finishing. (a) Part before finishing. (b) Surface corrosion.
(c) Edge burning.

1. Surface sampling

For a point cloud model, even a small area contains a huge number of points. On
the premise that the physical experimental results corresponding to the simulation can
be observed, the sampling area of this experiment is 1 square millimeter, and the three-
dimensional shape data of a 1024 × 1024 lattice is obtained. Using Matlab to visualize the
measurement data in three dimensions, the results are shown in Table 1.

Table 1. Example of 3D coordinate data of part surface topography.

Reconstruction of 3D Topography in Matlab Z (µm) X (µm) Y (µm)

1.046103 × 10−1 0 0
1.250018 × 10−1 0.814815 0
1.065271 × 10−1 1.629630 0
1.438948 × 10−1 2.444445 0
1.140261 × 10−1 3.259260 0
1.114373 × 10−1 4.074075 0
6.302840 × 10−2 4.888890 0
6.135895 × 10−2 5.703705 0
9.818698e × 10−2 6.518520 0
1.2412273 × 10−1 7.333335 0
1.4751230 × 10−1 8.148150 0
2.0934136 × 10−1 8.962965 0

··· ··· ···

2. DTPM reconstruction

The wavelet transform method [24] is used to denoise the measured data. The selected
wavelet basis function is db1, three-layer wavelet decomposition is performed, and soft
threshold is selected for calculation. The threshold is selected using adaptive Stein’s
unbiased risk estimation principle [29], and the threshold is calculated by Matlab software
to obtain the threshold thr = 0.0478.
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The obtained 1024 × 1024 three-dimensional space sampling point sequence is ex-
panded to obtain 1024 sets of lateral height data for denoising processing. Firstly, the
original height signal is flattened to obtain 1,048,576 data points of one-dimensional sig-
nal data, which is reconstructed by wavelet decomposition. The reconstruction process
is shown in Figure 11, where S is the initial signal, a3 is the high-frequency signal after
the decomposition of the third layer, and d1, d2, and d3 are the low-frequency signals of
the first, second, and third layers, respectively. Compared with the original signal, the
denoised, one-dimensional signal data can clearly show that the denoised signal elimi-
nates outliers, as shown in Figure 12. Calculating the signal-to-noise ratio (SNR) before
denoising is 31.57 dB, and the proportion of noise signal is 0.69%, which is less than 1%.
It can be considered that the denoising did not damage the topographical features of the
original surface.
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Through the above steps, a 3D visualization model of the sample area can be obtained,
as shown in Figure 13b. However, such a model has no closed boundary and cannot be
directly applied to simulation software to simulate the physical processing process. In
order to establish a DTPM that can be used for refined simulation, the obtained surface
height matrix is used to reconstruct the three-dimensional process geometric model, using
the Poisson reconstruction algorithm in MeshLab. The set parameters are shown in Table 2.
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Table 2. Setting parameters of shielded Poisson reconstruction.

Structural
Depth/µm

Adaptive Octree
Depth/µm

Conjugate Gradient
Depth/µm

Scale
Factor

Minimum Number
of Samples

Interpolation
Weight

Gauss-Seidel
Relaxation Factor

10 5 0 1.1 1.5 4 8

The basic idea of Poisson reconstruction is to convert the discrete point information of
the surface topography into a continuous, integrable surface function, thereby constructing
an implicit indicator function surface, derived from the object, and the normal vector of the
point cloud represents the inner and outer directions [30].

The Poisson reconstruction process of the surface model is shown in Figure 13. Import
the original surface topography data after denoising, that is, the three-coordinate data
file, shown in Figure 13b, into Meshlab. The normal vector of the discrete point cloud
on the surface is calculated in Meshlab to obtain the 3D point cloud data with vectors,
and then the Poisson reconstruction function is used to construct the surface model, as
shown in Figure 13c. The generated surface is exported to Obj format, through the Meshlab
software; the Boolean sum operation is performed on the exported 3D surface topography
sheet model and 3D model of the part in the UG/NX software, and the result (shown in
Figure 13d) is obtained.

3. Simulation in EDEM

The EDEM discrete element simulation software is used to simulate the machining
process of the example part in the BJL-LL05 vertical centrifugal barrel polishing and
finishing equipment. The machining principle is shown in Figure 14. The part, media,
abrasives, water, etc., are loaded into the drum. The four drums are evenly distributed
in the base and move in a planetary motion. The revolution speed is N, rotation speed is
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n, and speed ratio is n/N. The media achieves surface finishing by collision, rolling, and
micro-grinding on the surface of the part [31].
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Figure 14. Schematic diagram of centrifugal barrel finishing. (a) 1. Pedestal; 2. barrel; 3. media.
(b) 1. Barrel head; 2. inner barrel; 3. part; 4. silicone pad; 5. barrel. (c) Simulation using ideal model.
(d) Simulation using DTPM.

The Hertz–Mindlin with the Archard wear model was selected as the contact model
for analysis in EDEM. The wear constant is 1× 10−10 Pa−1 (select the alumina media with
an average diameter of 3 mm), filling rate is 70%, barrel speed is 300 r/min, speed ratio is
−1, and revolution radius is 135 mm. Set the simulation time to 30 s, in which the media is
generated within 0~1s, and the barrel makes planetary movements in 2~30 s. The time step
is set to 20% of the Rayleigh time, and the calculated time step is ∆t = 1.5× 10−5 s. Taking
the polishing and finishing of a single barrel as an example, the processing parameters are
shown in Table 3.

Table 3. The main parameters of the sample model in the EDEM simulation.

media part barrel

material Al2O3 Aluminium alloy Photosensitive resin

poisson ratio 0.36 0.33 0.4

elastic modulus/Pa 1.26 × 107 2.632 × 1010 9.246 × 108

density/(kg ·m−2) 2675 2700 1150

media–media part–media barrel–media

modulus of resilience 0.35 0.5 0.35

coefficient of static
friction 0.15 0.45 0.3

coefficient of kinetic
friction 0.46 0.15 0.15

The wear depth cloud diagram, with a time interval of 5 s, was selected to analyze
the wear of the part. The wear results of the ideal surface model and DTPM in the EDEM
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simulation are shown in Figures 15 and 16. Comparing the two sets of pictures, it can be
seen that Figure 15 reflects the disordered scratches of the media on the ideal surface. On
the other hand, the scratches in Figure 16 reflect a certain regularity.
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4. Simulation results

In order to analyze the effectiveness of the simulation results, the simulated grayscale
images of t = 30 s in the two sets of experiments were compared with the actual processing
results, and the results are shown in Figure 17.
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The similarity between Figure 17a,c, denoted as SIM1, and SIM2, represents the simi-
larity between Figure 17b,c. The similarity value is obtained by calculating the normalized
correlation coefficient of the two images [32], as shown in Formula (5).
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where Amn and Bmn are the value of the mth row and nth column in the gray value matrix
A and B of the two images. A and B are the average of the pixels of the matrix.

Using Formula (5), SIM1 = 0.0128 and SIM2 = 0.5986 are obtained. That is, compared
with the ideal surface model, DTPM is more in line with the wear situation in actual
machining, which verifies the advantages of DTPM in the refined simulation.

6. Conclusions and Future Work

This paper proposed and validated a novel DTPP mode, based on digital twin technol-
ogy. Some of the contributions of this research are listed below.

• A process information model, based on digital twin technology, is proposed. Its
main innovation is that it takes DTPM as the process object and integrates the pro-
cessing process information and real-time machining information into the three-
dimensional model.

• A new DTPM reconstruction method is proposed. The surface topography data,
measured during the processing, is attached to the ideal 3D model surface; on this
basis, the refined processing simulation is realized.

• A set of simulation comparison experiments, based on the ideal model and DTPM,
were designed. The simulation results of the two were compared with the actual pro-
cessing effect, and the superiority of refined simulation based on DTPM was verified.

The research in this article also has some shortcomings. It can be seen from the
comparison of simulation results in Figure 16 that, although the result of SIM2 was much
higher than that of SIM1, SIM2 was much smaller than 1, which means that the simulation
results based on DTPM still have a large gap with the actual results. The main reason
for these results is that, due to the huge amount of simulation calculation, the processing
simulation time was set to 30 s, and the simulation calculation time was 48.354 h. The
simulation computer was an Intel i7-10700 processor with a main frequency of 2.9 GHz
and 32 GB memory; the EDEM simulation used a CPU with 16 cores. The processing time
of the actual part is 5 min, so the value of SIM2 is much less than 1.

In order to make up for this shortcoming, in future research work, we consider
adopting simplified sampling points and combining mathematical statistics to process
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simulation calculation data, so as to achieve the purpose of shortening the simulation
calculation time.
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