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Abstract: Improper foot biomechanics associated with uneven bodyweight distribution contribute
to impaired balance and fall risks. There is a need to complete the panel of commercially available
devices for the self-measurement of BMI, fat, muscle, bone, weight, and hydration with one that
measures weight-shifting at home as a pre-specialist assessment system. This paper reports the
development of the Early Notice Pointer (ENP), a user-friendly screening device based on weighing
scale technology. The ENP is designed to be used at home to provide a graphic indication and
customised and evidence-based foot and posture triage. The device electronically detects and maps
the bodyweight and distinct load distributions on the main areas of the feet: forefoot and rearfoot. The
developed platform also presents features that assess the user’s balance, and the results are displayed
as a simple numerical report and map. The technology supports data display on mobile phones and
accommodates multiple measurements for monitoring. Therefore, the evaluation could be done at
non-specialist and professional levels. The system has been tested to validate its accuracy, precision,
and consistency. A parallel study to describe the frequency of arch types and metatarsal pressure in
young adults (1034 healthy subjects) was conducted to explain the importance of self-monitoring
at home for better prevention of foot arch- and posture-related conditions. The results showed the
potential of the newly created platform as a screening device ready to be wirelessly connected with
mobile phones and the internet for remote and personalised identification and monitoring of foot-
and body balance-related conditions. The real-time interpretation of the reported physiological
parameters opens new avenues toward IoT-like on-body monitoring of human physiological signals
through easy-to-use devices on flexible substrates for specific versatility.

Keywords: screening posture; foot arch; POCT; prophylaxis; IoT; personalised medicine

1. Introduction

Approximately 1.71 billion people are diagnosed with musculoskeletal disorders
(MSD), limiting mobility and dexterity, causing disability, and leading to a low qual-
ity of life worldwide. The highest prevalence of lower back pain among MSD patients,
568 million people, is the leading contributor to MSD-related disability in 160 countries,
raising concerns mainly because the prevalence increases with age, although young people
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are also affected, and the incidence increases more rapidly in low-income and middle-
income countries. Moreover, it is generally acknowledged that pronated (over-pronated,
low arch) or supinated (high arch) feet are among the leading causes of pain and injury
in the foot and ankle area [1] and, over time, in the rest of the body [2,3]. The improper
biomechanics [4,5] are progressive and alters the gait, load on foot [6], walking speed,
body posture, and balance [7]. Overexertion injuries to the musculoskeletal system, static
postures, repetitive movements at work, and pain are reported as a financial burden [8,9].

Regrettably, people of all ages present for clinical assessment only when irreversible
changes and chronic conditions have occurred [10] when diagnosis procedures are so-
phisticated and the therapeutic approaches are tardive, complicated, or only palliative.
Generally, clinical assessment methods of body balance include static, quasi-mobility, and
mobility tasks. The Berg Balance Scale (BBS), Dynamic Gait Index (DGI) [11,12], Clin-
ical Test of Sensory Integration and Balance (CTSIB) [13], Functional Obstacle Course
(FOC) [14], Performance-Oriented Mobility Assessment—gait (M-POMA) [15], Postural
Stress Test (PST) [16], Solid Ground, Balance Board, Rotating Platform, Horizontal Transla-
tional Platform, Treadmill, and Computerised Dynamic Posturography are complementary
and depend on the specific technology. The Computerised Dynamic Posturography Sen-
sory Organisation Test (CDP-SOT), the gold standard [17], supported the validation of
postural control measurements [18] in healthy adults [19,20] and patients with multiple
sclerosis [21], stroke [22], transtibial amputation [23], and low back pain [24].

Specialised literature acknowledged that other non-standard balance assessment meth-
ods have their equivalent numerical assessment parameters, and there is little similarity
between these parameters and between different methods of corresponding evaluation [17].
Some platforms equipped with force transducers recorded the ground reaction forces, a
centre of pressure (COP) and a centre of gravity (COG), on assessed subjects while they
stood on them. In foot-ankle biomechanics, strain gauges are often used to measure the

Strain of joints, muscles, ligaments, and plantar soft tissues [25]. Clinicians may use
scored balance performance of body sway on a platform for patients [26,27] and healthy
individuals from various age groups [28,29] to diagnose postural stability and evaluate the
related risks. However, using these devices successfully depends on patients’ compliance
because the testing, interpretation, and follow-ups require repeated trips to specialists’
clinics that are not always readily available. Furthermore, it is difficult to compare the
results between the studies using various methods due to the lack of standardisation. For
instance, examining working posture could be inconsistent because of the nature of the
tasks performed which influences the decision about the assessment method. In the case
of observation-based examinations, the postural assessment includes the observation of
static images or single video frames for diagnosis and preventive decisions. There are
in place methods for musculoskeletal disease assessment accompanied by posture cate-
gories that partition posture ranges for the trunk, shoulder, elbow, forearm, and wrist [30].
Consequently, remote and virtual posture analysis have emerged as proactive ergonomic
assessment programs to consolidate the clinical applications of the microtechnological pro-
cesses [31]. One ergonomic assessment based on Internet of Things (IoT) wearable devices
was designed to identify, analyse, prevent, and control risk factors for manual material han-
dling. The device acquires real-life data that translates into measures to maintain a quality
posture [32]. Meanwhile, the Industrial Internet of Things was used to assess ergonomic
indexes in near-real-time and avoid classical procedures which involve time-consuming
analysis [32,33]. IoT has also been applied for remote medical monitoring [34]. A super-
vised learning approach was built to acquire, process, and store data for posture analysis
during sleep studies [35]. Asymmetric sitting biomechanics has been overviewed with the
help of a seat cover that employed novel pressure sensing architecture as an endpoint ap-
plication. Using this device to monitor sitting posture can help correct posture and prevent
health problems while transforming the usually expensive and time-consuming method
into a 30 min IoT-based procedure [36]. IoT-type devices that comprise thin sensors are the
next step in point of care testing (POCT) and personalised medicine [37] for tailored diag-
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nostics and therapy that addresses each patient’s needs based on their specific background,
disease prognosis, and assessed risks [38]. Despite complex and multifactorial difficul-
ties [39], considerable progress has been made: the Federal Drug Administration (FDA)
has approved drugs labelled on specific genomics biomarkers [40], tests for the long-term
genetic-based management of breast cancer [41], emerging titration schemes tested for spe-
cific medication [42], and dispensing devices designed for diabetic or Parkinson’s Disease
patient support [43]. Nowadays, e-skin sensors are designed and developed to measure
and display physiological variables such as heart rate, blood oxygen saturation, glucose, or
moisture. Moreover, the capabilities of transparent [44] or semitransparent [45] layer-based
devices extends to most of the sensing organs of the human body [46] to detect colourless
and odourless gasses [47] and vibration-, respiration-, sound-, and pulse changes [48]. The
analysis of biomarkers and stimuli occurs in a network of e-skin sensors. For instance, a
flexible sensor tag can noninvasively monitor surface temperature for precise diagnostics
and feedback treatment in the longterm [49–52]. They are cheaper than commercially avail-
able inertial Measurement Unit (IMU)-based systems as well as non-invasive and highly
stretchable which makes them more comfortable for long-term use and thus, a suitable
sensing technology for developing continuous, out-of-hospital, real-time monitoring and
management systems for lower back pain [53,54]. Frediani et al. described a system consist-
ing of two dielectric elastomer (DE) sensors arranged on shoulder straps and custom-made
wireless electronics designed to measure the capacitance of the sensors and calibrate them
when the user wears them for the first time [55]. However, the evolving measurement tech-
nology relevant for posture-related diagnostics and prevention is based on environmental,
cultural, and economic backgrounds [56]. The preference for existing formats can affect the
compatibility of the vast technology available for examination methods and be costly and
time-consuming. Merging the existing features of various technologies and methods is the
criterion of a modern approach. A cost-effective and simple-to-use scanner at home would
allow remote electronic device-based assistance for real-time evaluation, continuous moni-
toring, and altering of therapeutic approaches. Personal electronic communication devices
connected to a scanner and supported by software-based technology would allow rapid
measurements for timely postural analysis. Furthermore, users of various professional and
cultural backgrounds could also follow simple instructions to conduct the assessment with
or without face-to-face supervision if they do not need special training.

We, therefore, report the development of a wireless platform—Early Notice Pointer
(ENP) for the self-assessment of bodyweight, body load distribution on both the right and
left forefoot and rearfoot, and early detection of body imbalance. The designed and devel-
oped system can measure and map the weight shifting of users as pre-assessment data. The
prototype comprises pressure sensors coupled with specific electronic elements to detect
and transmit data to a mobile phone and, based on a predetermined setpoint, to display
results graphically and numerically for straightforward interpretation and distant commu-
nication with the specialists. The prototype has been internally validated against available
marketed devices for clinical compliance. The ENP determines user weight distribution and
can alert the user when the weight distribution is above or below average level. Therefore,
it assists its users with an informed decision regarding their presentation for specialist
consultation and specific treatment. Furthermore, the ENP is designed for everyone who
wishes to monitor their bodyweight, posture, and plantar pressures: healthy individuals
who may detect any affected biomechanics before any clinical signs and symptoms begin
and patients who wish to monitor and detect any complications of their biomechanics-
related conditions in a timely manner. Since it offers wireless data transmission and emits
an early warning regarding the bodyweight distribution cum balance, it could work as an
IoT-like device for point of care testing (POCT) for personalised medicine. In conclusion,
the ENP is a potential screening device for the home-based evaluation of bodyweight,
balance, and plantar pressure for effective prophylaxis of biomechanics-related conditions.
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2. Materials and Methods

Methodology refers to the design of the prototype and the testing for validation.
Additionally, a study of foot arch and balance discusses variables such as bodyweight,
body height, and carrying bags concerning foot arch and posture.

2.1. The Design of the Prototype

The ENP resembles normal weighing scale functions complemented by the capability
to compare the load distributions on a person’s feet and calculate the relative imbalance
of the load distributions. Figure 1 describes the working principle and the essential com-
ponents of the ENP. The user steps on the platform comprised of load cells to measure
the force applied corresponding to the distributed weight. The sensors’ placement allows
readings that define eight regions to describe the entire foot. The load was observed to set
up the average profile for the prototype (green colour in Figure 1) against MatScan. The
system uses Wi-Fi technology to send signals to a backend database for further analysis
and accommodate multiple measurements. The display on the user’s mobile phone and
computer provides a practical and valuable platform for easy analysis and transmission
of the results. Moreover, it can issue an early warning if readings are outside the pre-
established thresholds and help the user correct their posture and bodyweight or call for
specialist advice.
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2.1.1. Materials Used to Design the Prototype

• Force Sensor Plates: Two identical force plates with compression load cells (ISVASIA
SINGAPORE PTE LTD), used for measuring the left and right foot weight loads.

• Signal Processing: PCB with 8 INA125P (a 16-pin Instrumentation Amplifier) (Texas
Instruments) to filter, amplify, and remove noise.

• Arduino Mega Development board with Wireless transmitter: uses 8 out of 16 analogue
inputs (Arduino LLC).

• Cellphone/tablet Display: User interface for the measurement, analysis, and display
of results.

• Remote Raspberry Pi for MySQL Databased: A pocket PC for hosting Database
services for storage records for post-analysis (Adafruit Industry).

2.1.2. The Procedure to Design the Prototype

Figure 2 shows the assembly of the electronic and mechanical elements.
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Figure 2. (a) The simple architecture prototype used for standing and measuring bodyweight load
distribution on both feet: (1) inter-plate connection; (2) area of the platform that corresponds to
the right forefoot that corresponds to pressure sensor cells; (3) electronics; (4) area of the platform
that corresponds to the right rearfoot that corresponds to pressure sensor cells; (5) electronics;
(6) area of the platform that corresponds to the left rearfoot that corresponds to pressure sensor cells;
(7) area of the platform that corresponds to the left forefoot that corresponds to pressure sensor cells;
(8) electronics; and (b) the testing process that starts with the user checking their feet size using the
measuring template on the plate.

The screening platform is designed as a flat plate that displays the measurement
results in a simple and direct manner. The eight sensory cells collect point weight readings
and are distributed symmetrically over the four corners of each foot to collect pressure
data from corresponding areas of the right and left foot. The circuits and sensory cells were
joined for stability since the platform is transportable. The ENP has a specific workflow
(Supplementary Materials: Figures S1 and S2) for users’ guidance, correct data acquisition,
and analysis to ensure consistent and accurate results. Monitoring the procedure will
be under the direct supervision of users or helpers, and the results will be available via
mobile phone to both the users and the specialists either locally or at the remote clinics. The
proposed sensitive and easy-to-use screening platform has been prototyped (Figure 2) and
tested for consistent data acquisition. A mobile application (App) and a website display
were developed to present the testing results. Figure 3 illustrates the mobile App-based
and website-based displays. The colour code display is advanced and allows the results
recorded by the device to be easily interpreted by the user and specialists.

The software can be used in website and mobile phone modes. The website mode
starts once the sensing platform and the computer are connected. Premeasurement setup
checks are performed automatically to ensure the sync with the database. Furthermore,
manual inputs via Home Tab are allowed to correct the initiation. Once the initiation is
performed, the Home page displays the twelve most recent user data, as weight chart,
percentage by the part chart, weight table, and percentage table (Figure 3a,b). Data is also
displayed on Data Chart and Table pages as charts and tables with an option to Load more
data for both Charts for weight and percentage by location to explain the load distribution
for the forefoot and rearfoot on both the right and left sides and the overall values.

The Mobile phone mode starts upon installing the App, pairing with the Bluetooth,
and initialising the check to display the weight and percentage distributions. The platform
was programmed using a prototype development board that provided connectivity and a
battery shield and enabled easy troubleshooting, fast prototyping, and proof-of-concept.
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2.2. The Testing of the Prototype

The prototype evaluation followed internal and external validation which involved
human subjects. To be eligible to participate in the validation study, participants had to
be healthy with no known foot biomechanics-related problems. The study was approved
by the Republic Polytechnic Singapore Institutional Review Board (IRB), written informed
consent was obtained from all participants, and IRB guidelines were followed in all proce-
dures with human participants (IRB approval for MOE2013-TIF-2-G-036; Assigned HSR
Code: SAS-F-2016-002).

2.2.1. Demographics

The cutoff was set to determine the level of distribution based on the data collected
from 150 subjects (normal distribution in a healthy population, the sample size is sufficient
for the statistical significance of the pilot study). The group studied was a population aged
19 to 70 years with no orthopaedical or podiatric medical history, including no injuries and
no deviation of the foot arch.
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2.2.2. Data Acquisition

The design ensures that demographic and anthropometric parameters do not in-
fluence the results. First, the ENP has a specific workflow (Supplementary Materials:
Figures S1 and S2) and uses physiological parameters such as age- and gender-standardised
bodyweight and foot arch charts to ensure the consistency of the interpretation of collected
data. Second, testing the collected bodyweight readings at 55 kg, 58 kg, 70 kg, and 83 kg
against the voltage changes was performed. The linear relationship (R2 = 1) showed the
consistency of the signal and confirmed the final placement of sensors and circuit process-
ing units. From the users’ perspective, monitoring the procedure will be under the direct
supervision of users or helpers, and the results will be available via mobile phone to both
the users and specialists.

Two stages of testing and validation (as a proof-of-concept study) were conducted
to compare the prototype’s performance with commercial low to high-end equipment for
internal and external validation. The newly created prototype has been tested for validation
against specific equipment: two commercial, personal weighing scales (max 150 kg) and
two foot scanners (MatScan from Tekscan and RSscan pressure plate foot scanners from
RSscan International).

The first stage was the internal validation to compare the weight output given by the
prototype with the one given by validated weight scales. The first stage of validation on
multiple commercial weighing scales was performed to calculate and compare the standard
deviation of the weight output from the prototype. A user’s bodyweight was measured
50 times. Further tests were conducted to reduce the variance in weight with multiple types
of scale. Eventually, the testing compared the prototype with the most stable scale.

In the second stage, testing for external validation was conducted to validate the
weight distribution accuracy against two commercially available professional feet scanning
equipment. Therefore, the prototype was used to measure plantar pressure and body sway.
Three measurements were performed for each of the enrolled subjects upon informed
consent. The foot arches were observed to set up the average profile and the setpoint for
the prototype (green colour in Figure 1) against MatScan. The data from 30 tests on both
prototype and commercial equipment for foot and balance scans were used.

2.2.3. Data Analysis

Data were collated and analysed for significance using a t-test (the measure of a differ-
ence between the scanners compared) to validate our product’s performance against the
two validated foot scanners (Matscan and RS FootScan). The significant preliminary vari-
ance was corrected with further fine-tuning to stabilise the device. The measurements were
compared with the developed prototype’s results and modifications were implemented to
improve the prototype.

The topmost added functionality resides in implementing a particular software devel-
oped in parallel with the theoretical research and screening for analysing and correlating
the measurements. The developed prototype includes a more sophisticated method of
analysis: the load distribution is measured not only as a difference between the right and
left leg but was distinguished, for instance, through a limited number of pressure sensors,
specifying the load on the different areas of the foot, the outside and inside edge load.
Setpoints were established based on the existing standards for bodyweight and plantar
pressures and the mean values of the data collected during the validation testing. The
analytical algorithm (Table 1, Figure 3) enables the ENP system to calculate a segregated
percentage for each load cell, self-calibrate before measurements, compare the recorded
values with the established threshold, and display the results in a user-friendly manner for
optimal evidence-based screening, early warning, and indication. Furthermore, the ENP
can be used offline. This feature allows the use of the ENP by either patients or medical
professionals in rural and remote settings with no access to the internet to measure their
body balance for ad hoc evaluation. The cutoff point for all the cells was set to establish the
screening’s colour codes. The mean values of the measurements by each pressure cell in
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the system were considered. A variation of 3% from the calculated average was further
introduced for the upper and lower limits to set the warnings for above (red colour) and
below (blue colour) levels, respectively. The colour codes are based on the average values
obtained for each load cell upon tests performed three times for each subject for 50 subjects
(e.g., the average for the right heel after 3 × 50 measurements is 9.8%).

Table 1. The colour codes are based on the threshold for bodyweight percentage distribution detected
by the load cells inside the platform.
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This highly sensitive platform can screen for body imbalances possibly caused by the
foot arch type as a home use device. Therefore, it can issue a timely warning message
to the user and indicate the need for specific tests to rule out possible foot arch- and
posture-related conditions.

2.3. The Foot Arch and Balance Study

Since the structures within the musculoskeletal system, bones, muscles, ligaments, and
tendons, maintain the correct posture and respond to external factors such as footwear and
loaded bags, monitoring these factors could trigger early awareness in young individuals
before any related anatomical changes become permanent.

2.3.1. Demographics

The parallel study regarding the foot arch and balance was conducted in a population
of 1034 healthy young adults (18–23 years old) with no orthopaedical or podiatric medical
history, including no injuries and no deviation of the foot arch.

2.3.2. Data Acquisition

This study describes the frequency of foot arch types and metatarsal pressure on both
right and left feet. It also investigated the relationships between a few anthropological
parameters such as the bodyweight, height, pressure distribution on forefoot and rearfoot,
and body posture in 54 subjects of the same age (20 years old). Three foot arch scans (IStep
foot scanner; Aetrex technology) were performed for each subject enrolled to identify the
foot arch types (high, medium, or low foot arch). A wall-mounted Posture Chart was
used to analyse the subjects’ body postures before and while carrying schoolbags. Three
measurements were performed for each subject and each school bag type used. The three
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school bag styles used were the most popular among students (backpack, tote bag, and sling
bag). Figure 4 describes the protocol of the study. The pressure sensors within the iStep
electronic platform measured the amount of pressure one exerted on the contact surface
and identified the foot arch type (low, high, or medium), while the wall-mounted posture
chart and the Posture ScreenTM mobile phone application provided the measurements
for the posture evaluation. The anatomical landmarks observed to evaluate posture are
presented in Figure 4. The study implied proper informed consent from the subjects and
ethical approvals, which assured strict confidentiality of information and data.
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Figure 4. The investigation protocol for foot arch and posture evaluation.

2.3.3. Data Analysis

Observational and inferential statistical analysis was used to evaluate the frequency of
higher metatarsal pressures and the correlations between the shoe size and the type of foot
arch, the loaded torso and the anatomical landmarks’ deviations, and the changes in the
front and back plantar pressures.

3. Results

The ENP relies upon the Working Principle of the Weighing Scale and

• compares the load distribution between the two feet of a user,
• calculates the relative imbalance of the load distribution,
• issues an early warning if measurements exceed certain thresholds (the range of

acceptable norms derived from the research data),
• ensures transmission of data in an IoT manner.

3.1. The Prototype

Figure 5a presents the results of a simulation performed at a specific date and time
transferred on a mobile phone and explains a colour-coded imbalanced weight distribution.
The red and blue colours represent the warning given by the calculated imbalance. Even
though the average is balanced, the detailed measurement describes the unevenness and
raises awareness. Since the colour code is the most explicit reading (Figure 5a), the results
on mobile applications allow for the rapid identification of the direction of the body sway
towards the left.
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Figure 5. The software displays for (a) the mobile App-based display, indicating an unbalanced
distribution of bodyweight loads right-left and front-back; (b) the website display in weight chart;
and (c) the percentage chart for various sections (1) Right and (2) Right Toes, (5) Left and (6) Left Toes,
(3) Right and (4) Right Heel, and (7) Left Heel and (8) Heel.

The alternative display of weight and percentage charts is from the website. These
diagrammatic representations in Figure 5b,c detail the distribution of the user’s weight at a
specific date and time and explain the charts of weight and percentage. For instance, for (3)
in Figure 5b, the software shows a weight distribution of 40 kg out of a total bodyweight of
77.7 kg. This point (3) is on the Toe section, and a similar reading method applies to the
other sections (e.g., Heel). There are eight points of weight distribution showing a purple
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colour indicating a deviation towards the left: the Left Toe and the Left heel points and the
overall deviation (Right and Left points, Toe and Heel points).

This chart is a per point display based on the total weight measured, and the accuracy
is verified following the summations:

Left + Right = Total Weight; (1)

Toes + Heel = Total Weight; (2)

L. Toes + L. Heel + R. Toes + R. Heel = Total Weight (3)

The formulas above describe the working principle of the ENP: it is a two-weight scale
concept with eight-point load cells compared with the four points in a classic weight scale.
The measurement result includes the values from the left and the right scales as in Formula
(1). Similarly, Formula (2) shows that the total weight can be extrapolated from the loads
measured by the cells at the Toes and Heels. Further analysis of the values corresponding
to both sides of Toes and Heel (left and right) also leads to the total weight as presented
by Formula (3). Figure 5c explains the website display in a percentage chart for the same
subject, according to the sections Toes (forefoot) and Heel (rearfoot) and the right and
left sides (Left, Right). The outer circle represents the sections corresponding to the Toes
(forefoot) and Heel (rearfoot) and the sections depicting the right and left feet (Right, Left),
while the inner circle shows the right toes, right heel, left toes, and left heel. For instance,
(5) shows a shift towards the left side as its area is larger than (3), and (7) shows a shift on
the left heel as it is larger than (4), the right heel.

The colour code is for each section corresponding to the right and left toes, heels, and
right and left sides. For instance, if more than the average + 1.5% was recorded by a cell,
the result was considered a warning for that pressure cell (Figure 5a: Left Heel). A value
more than average + 3% for two cells on the same side (e.g., left) also triggers the awareness
(Figure 5a: Left). Similarly, the blue areas indicate a warning if an average −1.5% for one
pressure cell and an average −3%) for two pressure cells on the same side are measured
(Figure 5a: Right Heel and Right, respectively). The values were used to set the threshold
for the system to be a warning indicator and help the user recognise the deviations and
decide whether to check for early specialised advice. (Table 1) Repeated measurements
using the ENP and the commercial scales and the calculated Standard Deviation (SD) for the
scanners showed a 0.14 deviation for the ENP compared to the commercial weighing scale
stated at 0.1 deviations (SD 0.10). We proved that our prototype is off by 0.03 compared
to the commercial weight scales in this testing. We found that some scales significantly
differed in weight output by about 1.3 kg+/− during the testing with multiple commercial
weighing scales.

The relationship between the prototype and commercial equipment demonstrated
via t-test indicated the measurement stability, with no significant differences in the mea-
surements between the prototype and the commercial scanners (Supplementary Materials:
Table S1).

The device uses the load cell to measure the weight distribution of the force applied.
Bluetooth technology allows the data display on a mobile phone, and Wi-Fi technology
ensures the data transfer to a backend database for further analysis and adaptation for
multiple data monitoring. With a proper industry fabricated PCB, the final prototype
achieved 0.1–1 kg deviation readings.

The results show that the ENP makes at-home monitoring of bodyweight and load
distribution possible. Since the ENP can work as both a screening and disease monitoring
tool, its use may vary from one user or patient to another. For instance, the user will
follow the specialists’ instructions on how frequently to run the measurements based on the
diagnostic and therapeutic schemes. Otherwise, if the ENP is employed as a prophylactic
tool, users without any related medical conditions will measure their bodyweight and load
distribution monthly.
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3.2. The Foot Arch and Balance Study

The study conducted in parallel on foot arch and balance described the frequency of
foot arch types and metatarsal pressures in a population of young adults (1034 healthy
subjects). This study introduces data to support the need for early balance monitoring and
supports the observation that daily tasks such as standing or carrying bags can influence
posture. Therefore, in the long run, these effects could be related to improper posture and
biomechanics-related locomotor diseases. Figure 6 presents the foot arch types in a young
population and the metatarsal pressures. Furthermore, the study showed that smaller shoe
size is related to the metatarsal pressure.
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Figure 6. (a) The frequency of foot arch types; (b) The presence of metatarsal (MT) pressure in subjects
in a young population.

The bodyweight distributions on the right and left feet were measured and no sig-
nificant difference between the right and left feet was observed in the studied population
(t = 0.9 for 0.05 significance level).

Independent measurements presented the relationship between the type of school bag
and the change in body posture in a population of 54 young, healthy subjects (18–23 years
old) to strengthen the importance of screening and analysis of body posture in a population
at the personal level, and to reinforce self-monitoring and healthy habits. Figure 7 depicts
the linear regression models to indicate the relationship (regression analysis) between body
height, weight, and pressure distribution on the forefoot and rearfoot while standing on
the pressure mat.
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Figure 7. (a) The correlation of forefoot pressure (kPa) and weight (R = 0.13); (b) the correlation of
rearfoot pressure (kPa) and weight (R = 0.16); (c) the correlation of forefoot pressure (kPa) and height
(R = 0.16); (d) the correlation of rearfoot pressure (kPa) and height (R = 0.13); and (e) the tendency of
weight bearing on rearfoot and forefoot (R = 0.12).

The observations in Figure 7 show no strong correlations (weak correlation with R
values close to zero) between the anthropological parameters (body height and weight) and
posture (forefoot and rearfoot pressures). Figure 7a shows a weak negative correlation and
explains an inverse relationship between the two associated parameters: the bodyweight
increases while the forefoot pressure decreases. Therefore, a lower forefoot pressure tends
to be associated with higher bodyweight. Figure 7b–e shows the weak positive correlations
and the direct relationships between the variables observed. For instance, there is a direct
association between the rearfoot pressure and bodyweight and height, respectively, as
seen in Figure 7b–d. Furthermore, the slight body inclination towards the higher rearfoot
weight-bearing percentile means that the subjects placed more weight on their rearfeet than
on their forefeet.

Similarly, body posture was analysed by observing the load shift in the torso and
pelvic balance on the posture chart. The measurements were conducted in correlation with
school bag wearing of a backpack, tote bag, or sling/crossbody bag. The results indicated
the positive correlations between the shift in the torso and pelvis while carrying the bags.

Similar to Figures 7 and 8 shows direct relationships between the variables observed.
However, the correlations are stronger. For instance, the change in torso posture is strongly
associated with the change in the pelvis posture; therefore, there is a strong tendency, when
carrying either a tote or sling bag, for a high degree of posture change in the torso associated
with the high degree of posture change in the pelvis. The stronger the correlation, the
stronger the relationship and deviation induced by carrying the bag which acts as a trigger.
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Figure 8. (a) The correlation between torso and pelvis when carrying a backpack (R = 0.82); (b) the
correlation between torso and pelvis when carrying a tote bag (R = 0.49); and (c) the correlation
between torso and pelvis when carrying a sling/crossbody bag (R = 0.94).

4. Discussion

Generally, assessing body balance includes static, quasi-mobility, and mobility tasks.
Since they often complement each other, numerous assessment methods have been de-
veloped in recent decades with complex and corresponding balancing devices and mea-
surement tasks. However, most of them, which serve as diagnostic tools, are complex
and require professional skills for interpretation [17,25,26,57,58]. Others may serve as
balance training and rehabilitation with incorporated personalised tasks of varying difficul-
ties [28,56,59–61]. The presented prototype was designed to help consumers self-measure
their body balance in the same way a simple bodyweight scale helps. Several factors may
influence the results when a scanner is used at home. For instance, the subjects’ ability to
follow instructions during testing significantly affected the data collection. Therefore, a sim-
ple process to guide the user was created. The User manual comprises simple instructions
for the subject: “(1) Step on the platform as shown in the user manual (the middle of your
right and left foot over the crosslines and your toes at the drawn lines that show your feet
size), and (2) Stand still and relaxed, arms parallel to the body while the scanner measures
you.” The established guideline allowed the user to understand where to place the feet
while standing on the platform. For instance, Figure 3b shows a line to guide and centre
the subject as much as possible for the measurement. This step-by-step procedure was
validated and the subjects quickly followed it, improving the accuracy of the measurements
significantly. The user guide assists with a correct log in into the system for data privacy
and protection: the user will login into the system with a username and password set
previously for a virtual private network (VPN).

Furthermore, a clear display and easy access to data makes the scanner user-friendly.
The ENP resembles a standard bathroom scale with additional functionality, mainly read-
ings on the display window with Bluetooth or Wi-Fi data communication to a personal
electronic device. The design of the ENP is straightforward to address patients’ immediate
and easy measurement needs, compared with the complex and multifunctional analytical
instrumentation available which is used in specialised clinics for professional investigation.
The ENP distinguishes the distributed weight through a limited number of pressure sensors
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outside and inside edge load, repetitive tests, or tests with a determined position of the feet
(e.g., standing position). Moreover, it specifies the fore- and rearfoot loads and displays
them in various forms for easy reading and understanding of their significance. The colour
codes establish fast recognition of the body balance status, so the user immediately ascer-
tains any changes and decides to either store and monitor locally or transmit the data to
a specialist.

Meanwhile, the map displayed shows the weight shifts and guides the user towards
instant readjustment. For instance, the user will visualize the weight distribution on both
sides, right and left or forward and backwards. This distribution directly indicates an
imbalanced body and signals risks of falling and injuries [62–64]. Therefore, by indicating
such changes, the developed prototype provides a home triage system for personal use, in
combination with its standard weighing scale functions, to issue the recommendation to
see a specialist and to monitor the impact of corrective measures (e.g., use of orthopaedical
insoles/foot orthotics, specific fitness programs, or kinesiotherapy) [65,66]. Therefore,
due to the main added functionality that resides in the analysis of the measurements, the
scanner can be either a fast-screening tool (e.g., in the context of school health services
for students), a simple therapeutic aid (e.g., to monitor the progress due to rehabilitation,
physiotherapy, use of orthopaedical insoles, or other more complex chiropractic treatment),
or both.

Another factor influencing healthcare is how data is transmitted and processed. The
ENP prototype as an IoT-like device connects the user to healthcare providers for real-
time monitoring and therapeutic decisions. The recorded data transmission is secured via
protected channels. For instance, the users will activate a virtual private network (VPN)
when they create a password-based login into the system prior to starting any measurement
with the ENP. Furthermore, the medical systems are protected by special software to ensure
the confidentiality of the data. Therefore, when using these channels, the medical specialists
in the clinical settings will secure patient registration and medical information. This belongs
to the larger group of remote healthcare assistance which support personalised diagnosis
and treatment and specialised medical programs for remote areas or during at-home
isolation imposed by epidemiological surveillance (e.g., the COVID-19 pandemic).

Since monitoring posture is one simple observational method, it is a task that, once
performed at home, could teach healthy individuals or patients with biomechanical-related
conditions about any changes in body balance and possible causes such as the foot arch
type. The foot arch and posture study highlighted that 31% of subjects were high archers
and 15% were flat footers in the young, healthy population. However, the results showed
slight backwards leaning to maintain balance at the expense of body stability. Therefore, the
posture trends (the regression model) in the observed population stress the need of knowing
the type of foot arch. For instance, young and healthy people with a deviation from a neutral
foot arch who are aware of the consequences of this foot type (e.g., tendonitis and plantar
fasciitis) can improve the mechanics in the ankle with adequate footwear to maintain the
correct posture and musculoskeletal system homeostasis [67]. Such examination opens
new avenues for a clearer understanding of how daily tasks can influence the body posture
immediately or over time.

The regression models presented the correlation between the bodyweight and the two
main plantar foot pressures, forefoot and rearfoot, under observation. When a correlation
is measured, the two observed variables develop in ways that may explain the body’s
responses to changes in the body balance and the tendency to adapt; the deviation from
a balanced posture may be in the same or opposite direction. For instance, the negative
correlation in Figure 7a, even though weak, shows no necessary tendency to readjust the
weight distribution and load the forefoot pressure (kPa) when the bodyweight increases.
This observation could be discussed in the context of the load distribution between the
forefoot and rearfoot, concerning the bodyweight. The positive correlation, even though
weak, in Figure 7b,e presents the tendency to load the bodyweight on the rearfoot, which
could affect the body balance and thus walking. Such relationships conclude the importance
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of monitoring the bodyweight and posture for timely and adequate measures under medical
supervision, as, over time, any small deviations within the locomotor system may lead to
structural changes and impaired balance and gait. Postural and dynamic instability could
increase the risk of falls, especially in an ageing population [68,69]. Falls are among the
most common causes of injury, severe health problems, and even death in older adults.
Numerous studies have revealed a relationship between falls and risk factors such as
advanced age, declined cognitive function, strength deficit, gait abnormalities, and reduced
balance [70–73]. Therefore, the causes of falls must be identified to predict their risk.
Furthermore, it is necessary to quickly identify the leading factors causing falls through
gait and posture tests and use the data to prevent falls. Novel methods are required to
overcome the limitations of existing studies.

Furthermore, the relatively strong positive correlations between schoolbags and the
plantar pressures in Figure 8 showing that the heavier the schoolbag is, the higher the plan-
tar pressure is, present incipient information regarding the influence of wearing schoolbags
on the body posture of young, healthy individuals. It has been observed that long-term
incorrect posture may affect the morphological development of the spine with systemic
severe consequences such as thoracic deformities and impaired lung function [74–76].

The observed tendency of leaning backwards while standing and the relationship
between the metatarsal pressure and the type of foot arch [77–79] emphasize the importance
of monitoring body posture to prevent pain and disability while ageing [80–82]. Therefore,
the younger a person is, the higher the awareness should be through constant monitoring
of the posture and metatarsal pressure, and the more positive the consequences on the
general health status will be in respect to physical abilities while ageing [83,84].

Even though the significance of the correlation varies, the information transmitted
contributes to a person’s knowledge and decisions regarding the maintenance of a healthy
posture by carrying adequate types of bags correctly. Demonstrating the influence of carry-
ing bags on body posture also contributes to better education of young individuals [85].
Medicine, and the concept of personalised care, are tailored to the individual patient’s
needs based on their clinical background, disease prognosis, or assessed risks. Despite
complex and multifactorial difficulties, considerable progress has been made in IoT and
personalised medicine fields to improve and consistently manufacture reliable and stable
systems that integrate sensing modalities [34,86,87]. The presented features could embed
the developed platform into the emerging domain studies, aiming to capture human physi-
ological parameters through wearable systems developed on flexible substrates (e-skin) [88].
Skin-like tactile sensing detects various stimuli such as pressure, strain, temperature, vibra-
tion, and sliding, and it can be used to monitor physical activity and position or to detect
vital signs, such as blood pressure and respiratory rate. Other applications for monitoring
coughs, abdominal breathing, elbow or finger [89] bending, walking, body motions, foot
pressure, and body heat can be recorded via flexible sensors which are battery-free and
interconnected to a wireless reader to permit remote health detection [90]. The unique
features of e-skin contribute to the developing potential as an in situ diagnostic tool for
further implementation in clinical practice at patient levels. Therefore, a robust interdisci-
plinary approach that combines micro-/nanoelectronics, material science, biotechnology,
data transmission, and data processing technologies can develop alternatives to bulky
diagnostic devices and is the next target in human health and prophylaxis [90,91]. In this
direction, the developed ENP belongs to the systems that continuously investigate the
risk factors and introduce IoT-based new devices to help monitor biomechanics-related
conditions within populations at risk.

Therefore, cost-effective scanners for easy, effective at-home monitoring of bodyweight
and weight distribution for the fast understanding of any slight imbalances are crucial for a
timely clinical examination, diagnosis, and adequate intervention.
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5. Conclusions

Determining the abnormal postural sway associated with an increased risk of falls
requires access to laboratory equipment for diagnostics and monitoring. The newly created
ENP as a proposed screening platform for the at-home measurement and monitoring
of bodyweight and foot load distributions separated right from left, adds value to the
current procedural and therapeutic aspects from the consumer perspective. The easy-to-use
platform was designed with a self-check calibration error function that runs during its
start-up to ensure that every measurement is accurate and provides reliable information
to the users at home and to professionals who monitor the condition’s progress and
amend the treatment. The developed platform also presents features that assess the user’s
balance and bodyweight to permit a straightforward representation of the user’s weight
distribution and load distribution on the right-left, front-back foot. Since the data collected
is displayed as a simple numerical report and a map, the evaluation could be done at
two levels for non-specialists and professionals. Moreover, the possibility of the real-time
interpretation of the reported physiological parameters opens new avenues toward IoT-like
on-body monitoring of human physiological signals through easy-to-use devices on flexible
substrates for specific versatility. Clinicians also may exploit distance communication to
monitor their patients’ body-worn postures via at-home, low-cost alternatives, miniaturised
or not. Such solutions may be the next generation of user-friendly at-home devices designed
for early diagnosis and personalised treatment and monitoring. Furthermore, posture-
related data is the key to developing artificial intelligence in the field and personalised
medicine. Therefore, the Early Notice Pointer is an IoT-like platform for point-of-care feet
and body balance screening for early postural changes and fast data sharing that allows
timely and accurate medical decisions, easy monitoring, and prophylaxis of locomotor
system-related diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13050682/s1, Figure S1: The workflow of ENP to explain the
feedback loops for measurement consistency Figure S2: The workflow of ENP to explain the feedback
loops to users; Table S1: The T-test results to indicate differences between the data acquired with the
prototype and the foot scanners.
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