
Citation: Jang, C.-H.; Atmaca, G.;

Cha, H.-Y. Normally-off β-Ga2O3

MOSFET with an Epitaxial Drift

Layer. Micromachines 2022, 13, 1185.

https://doi.org/10.3390/

mi13081185

Academic Editors: Alessandro Chini

and Nicolò Zagni

Received: 28 June 2022

Accepted: 26 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Normally-off β-Ga2O3 MOSFET with an Epitaxial Drift Layer
Chan-Hee Jang, Gökhan Atmaca and Ho-Young Cha *

School of Electrical and Electronic Engineering, Hongik University, Mapo-gu, Seoul 04066, Korea;
booj0429@nate.com (C.-H.J.); gokhanatmaca@kuark.org (G.A.)
* Correspondence: hcha@hongik.ac.kr; Tel.: +82-2-320-3062

Abstract: A normally-off β-Ga2O3 metal-oxide-semiconductor field-effect transistor (MOSFET) is
proposed using a technology computer-aided design (TCAD) device simulation, which employs an
epitaxial drift layer grown on an n-type low-doped body layer. The low-doped body layer under
the MOS gate enabled normally-off operation, whereas the epitaxial drift layer determined the on-
resistance and breakdown characteristics. The effects of the doping concentration of each layer and
thickness of the drift channel layer on the device characteristics were investigated to design a device
with a breakdown voltage of 1 kV. A threshold voltage of 1.5 V and a breakdown voltage of 1 kV
were achieved by an n-type body layer with a doping concentration of 1 × 1015 cm−3 and an n-type
drift layer with a doping concentration of 3 × 1017 cm−3, a thickness of 150 nm, and a gate-to-drain
distance of 9.5 µm; resulting in an on-resistance of 25 mΩ·cm2.

Keywords: accumulation channel; β-Ga2O3; epitaxial drift layer; metal-oxide-semiconductor
field-effect transistor; normally-off

1. Introduction

Wide bandgap (WBG) semiconductors, such as GaN, SiC, and Ga2O3, have been
intensively studied to overcome the limitations of Si technology [1–3] for the develop-
ment of next-generation power switching devices. Ga2O3 has a wider energy bandgap
(4.5–4.9 eV) than GaN and SiC, with a significantly higher critical electric field of approx-
imately 6–8 MV/cm [2–5]. Among the various polymorphs, monoclinic β-Ga2O3 is the
most stable polymorph [6–10]. Furthermore, Baliga’s figure of merit (BFOM) of β-Ga2O3
is significantly higher than those of GaN and SiC, making it a promising material for
high-power switching applications [10]. However, the absence of p-type doping technology
for β-Ga2O3 is disadvantageous for the implementation of power switching devices [11–17].
Although several studies have reported the normally-off operation of β-Ga2O3 field-effect
transistors (FET), the experimental results are still far off from the theoretical limits of the
material [15–18].

Chabak et al., demonstrated enhancement-mode FETs using a wrap-gate fin structure
in 2016 [15] and a gate recess process in 2018 [16]. In 2017, Wong et al., reported that the
utilization of an unintentionally doped β-Ga2O3 channel in MOSFET was able to completely
deplete the channel electrons at a gate voltage (VGS) of 0 V, resulting in a positive threshold
voltage [19]. In 2019, Singh et al., proposed a T-shaped recessed gate β-Ga2O3 MOSFET to
achieve a normally-off operation [16]. The T-shaped recessed gate depleted the channel
at a gate bias of 0 V, where the gate oxide (Al2O3) thickness was 20 nm, gate recess depth
was 250 nm, and thickness of the active channel under the recess region was 30 nm [17].
The maximum drain current was 40 mA/mm at VGS = +8 V due to the limited channel
thickness required to achieve a positive threshold voltage [17].

In this study, we propose a recessed β-Ga2O3 MOSFET with an epitaxial drift layer
on top of a low-doped body layer to overcome the trade-off relationship between the
threshold voltage and on-current density. The proposed structure does not require precise
control of recess depth. Moreover, the threshold voltage could be independently controlled

Micromachines 2022, 13, 1185. https://doi.org/10.3390/mi13081185 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13081185
https://doi.org/10.3390/mi13081185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-8138-6632
https://orcid.org/0000-0002-1363-3152
https://doi.org/10.3390/mi13081185
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13081185?type=check_update&version=3


Micromachines 2022, 13, 1185 2 of 11

by the drift layer. The output and transfer characteristics of the proposed device were
validated using Silvaco ATLAS technology computer-aided design (TCAD) simulation.
After investigating the effects of doping concentration on the body layer and additional
design parameters of the drift layer, a normally-off MOSFET structure was designed to
achieve a breakdown voltage of 1 kV.

2. Simulation and Device Structure

Two-dimensional (2D) device simulations were performed in a Silvaco ATLAS TCAD
environment using several physical models, including a drift-diffusion transport model,
Fermi–Dirac statistics, concentration and temperature-dependent analytical mobility model,
Shockley–Read–Hall recombination model, and an impact ionization model [20–26]. The
material and physical model parameters used in the TCAD simulations are presented in
Table 1. Although the simulation process could have been further optimized by employing
more comprehensive models [27], the classical models provided by TCAD are sufficient to
validate the proposed concept.

Table 1. Material and physical model parameters used for TCAD simulations [20–26,28,29].

Material Parameters

Affinitivity 4.0 eV
Band gap (300 K) 4.8 eV

Permittivity 10.2

Mobility Model

µmin 20 cm2/Vs
µmax 155 cm2/Vs

α 0
β 0
γ 0
δ 0.8

Nref 1.0 × 1018 cm−3

TL 300 K

Impact Ionization Model

AN 2.16 × 106 cm−1

BN 1.77 × 107 V/cm

Shockley–Read–Hall Recombination Model

τn0 1.2 × 10−8 s
τp0 1.2 × 10−8 s

2.1. Mobility Model

The mobility model used in the simulation included concentration and temperature-
dependent relationships based on an analytical function of Caughey–Thomas’ work [25],
which is given by:

µn0 = µmin

(
TL
300

)α

+
µmax

(
TL
300

)β
− µmin

(
TL
300

)β

1 +
(

TL
300

)γ( ND
Nre f

)δ
(1)

where α, β, γ, and δ are material-dependent coefficients [20], ND is the impurity concen-
tration, and TL is the temperature in Kelvins. Using the experimental data [28,29], these
parameters were determined to be α = 0, β = 0, γ = 0, δ = 0.8, Nref = 1.0 × 1018 cm−3, and
TL = 300 K.
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2.2. Impact Ionization Model

Selberherr’s model, which is a modification of Chynoweth’s law, has been widely
used to predict the breakdown characteristics of wide-bandgap semiconductors [20,21].
The impact ionization coefficient (αn) is given by

αn = AN exp
[
−BN

E

]
(2)

where AN and BN are the material coefficients and E is the electric field. In this study,
AN = 2.16 × 106 cm−1 and BN = 1.77 × 107 V/cm were used while considering the crystal
direction of β-Ga2O3 in the [010] direction and a critical electric field of approximately
5 MV/cm [11,20,21].

2.3. Shockley–Read–Hall Recombination

In our simulations, the recombination rate was obtained using the Shockley–Read–Hall
recombination model [26]:

RSRH =
pn − n2

ie

τp0

[
n + niee(

Etrap
kTL

)

]
+ τn0

[
p + niee(

−Etrap
kTL

)

] (3)

where n, p, and nie are the electron, hole, and intrinsic carrier concentrations, respectively,
and k and TL are the Boltzmann constant and lattice temperature, respectively. Etrap is the
difference between the trap energy level and the intrinsic Fermi level, and τn0 and τp0 are
the electron and hole lifetimes, respectively, which are used as 1.2 × 10−8 s.

2.4. Device Structure

Figure 1 shows a cross-sectional schematic of the β-Ga2O3 MOSFET proposed in this
study. The epitaxial structure consisted of a 20 nm thick ohmic contact layer with an n-type
doping concentration of 1 × 1020 cm−3, an n-type drift layer, a 300 nm thick low-doped
n-type body layer, and a 1 µm thick buffer layer with an n-type doping concentration of
1 × 1012 cm−3. In this study, a highly doped ohmic contact layer was employed instead of
an ion-implantation process. The structural variables investigated in this study were the
thickness (tDRIFT) and doping concentration (ND.DRIFT) of the drift layer and the doping
concentration (ND.BODY) of the body layer. A highly doped ohmic contact layer is etched
between the source and drain contacts. The gate region was etched down to the body layer
to achieve normally-off characteristics. A 20 nm-thick gate oxide (Al2O3) layer was used,
and its interface charges were considered during the simulation.
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Figure 2a,b show the electron density distributions at VGS = 0 V and +3 V, respectively,
which were simulated using the variables ND.DRIFT = 3 × 1017 cm−3, tDRIFT = 300 nm,
and ND.BODY = 1 × 1015 cm−3. For VGS = 0 V, the electrons in the region under the gate
were completely depleted, which blocked the flow of current, confirming the normally-off
characteristics. For VGS = +3 V, the depletion region under the gate disappeared, creating
an electron accumulation channel layer and allowing for current flow.
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Figure 2. Electron density distributions simulated with a gate voltage of (a) VGS = 0 V and
(b) VGS = +3 V.

3. Results and Discussions
3.1. Effects of Al2O3/β-Ga2O3 Interface Charge

Previous studies have reported the presence of negative interface charges at the
Al2O3/β-Ga2O3 interface with a density in the range of 1 × 1012 to 4 × 1012 cm−2 [18,21,23,30,31].
In this section, the effects of charge density at the Al2O3/β-Ga2O3 interface are investigated,
where the negative interface charge density varied from 0 to 2 × 1012 cm−2. The transfer
characteristics simulated at a drain voltage (VDS) of 5 V as a function of the interface charge
density are shown in Figure 3. A positive shift in the threshold voltage was observed with
a reduction in drain current density as the negative interface charge density increased.
Therefore, based on these prior experimental reports [18,20], a negative interface charge
density of 1 × 1012 cm−2 was selected for the simulations.
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3.2. Effects of Doping Concentrations in Body and Drift Layer

Initially, the effects of the doping concentration of the body layer (ND.BODY) on the
threshold voltage were investigated. ND.BODY varied from 1 × 1013 cm−3 to 1 × 1017 cm−3,
while the drift layer had a thickness of tDRIFT = 300 nm and a doping concentration of
ND.DRIFT = 3 × 1017 cm−3. Figure 4a,b show the linear and logarithmic transfer characteris-
tics at VDS = 5 V as a function of ND.BODY, respectively. A significant negative shift in the
threshold voltage was observed when ND.BODY was equal to or greater than 1 × 1016 cm−3,
resulting in normally-on characteristics, whereas only a negligible difference was observed
when ND.BODY was equal to or less than 1 × 1015 cm−3. Therefore, to design a normally-off
device, ND.BODY = 1 × 1015 cm−3 was selected for the simulations.
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Additionally, the effects of the doping concentration of the drift layer (ND.DRIFT) on
the drain current density were investigated, where ND.DRIFT varied from 1 × 1017 cm−3

to 9 × 1017 cm−3 with a fixed body doping concentration of ND.BODY = 1 × 1015 cm−3.
The drift layer thickness was tDRIFT 300 nm. The transfer characteristics as a function of
ND.DRIFT are shown in Figure 5a,b. It is evident that the drain current density increases
with an increase in ND.DRIFT, whereas the threshold voltage remains the same because it is
determined by the recessed MOS region on the body layer. The normally-off characteristics
were maintained even at ND.DRIFT = 9 × 1017 cm−3. The threshold voltage was 0.8 V at
1 µA/mm and 1.5 V at 1 mA/mm. Figure 5c shows the conduction band energy diagrams as
a function of ND.DRIFT along the vertical direction below the gate metal, and it is obvious that
increasing ND.DRIFT does not change the conduction band energy such that the threshold
voltage remains the same regardless of ND.DRIFT. On the other hand, Figure 5d shows the
conduction band energy diagrams as a function of ND.DRIFT along the vertical direction
in the region between the gate and drain. It can be seen that the depletion width in
the β-Ga2O3 drift layer is reduced when increasing the ND.DRIFT, leading to a higher
drain current.
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3.3. Effects of Drift Layer Thickness
3.3.1. Transfer and Output Characteristics

To investigate the effects of the thickness of the drift layer (tDRIFT), the doping con-
centrations of the body and drift channel layers were fixed as ND.BODY = 1 × 1015 cm−3

and ND.DRIFT = 3 × 1017 cm−3, respectively. The tDRIFT was varied to 75, 150, and 300 nm.
As shown in Figure 6, the drain on-current density decreased with a decrease in tDRIFT,
while the threshold voltage remained constant as the series resistance of the drift layer
increased with a decrease in the thickness. The output current–voltage characteristics are
compared in Figure 7. The maximum drain current density (ID.MAX) and on-resistance (Ron)
for the thicknesses of tDRIFT = 300, 150, and 75 nm were ID.MAX = 190, 136, and 80 mA/mm,
respectively, and Ron = 12.7, 25, and 61.7 mΩ cm2, respectively.
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3.3.2. Breakdown Characteristics

Breakdown characteristics with different drift layer thicknesses were simulated at
VGS = 0 V, and the results are compared in Figure 8. The catastrophic breakdown volt-
ages were 680, 1012, and 1380 V for the thickness values of tDRIFT = 300, 150, and 75 nm,
respectively. With the same doping concentration of the drift layer, the breakdown volt-
age exhibited a significant dependence on tDRIFT. The electron density and electric field
distributions for different tDRIFT values were examined to investigate the reasons for this.
Figures 9 and 10 show the electron density and electric field distributions simulated at
VDS = 600 V for different tDRIFT values, and the electron concentration and electric field
distributions along the cutline from a to a’ are plotted in Figures 9d and 10d, respectively.
As shown in Figures 9d and 10d, the depletion region extended towards the drain side
with decreasing thickness, resulting in a lower peak electric field near the gate. This is
because the total number of electrons depleted by a given gate voltage is the same for all
cases. Therefore, the thinner drift layer had a longer depletion edge. Consequently, a higher
breakdown voltage can be achieved with a thinner drift layer. The tradeoff relationship
between Ron and the breakdown voltage as a function of the drift layer thickness is shown
in Figure 11.
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Figure 11. On-resistance and breakdown voltage characteristics as a function of drift layer thickness.
The drift layer has a doping concentration of 3 × 1017 cm−3.

In summary, using a body layer with a doping concentration of 1 × 1015 cm−3 and
a drift layer with a doping concentration of 3 × 1017 cm−3, a thickness of 150 nm, and a
gate-to-drain distance of 9.5 µm resulted in a threshold voltage of 0.8 V at 1 µA/mm, a
breakdown voltage of ~1 kV, and an on-resistance of 25 mΩ·cm2.
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4. Conclusions

A normally-off β-Ga2O3 MOSFET structure was proposed, which employed an epi-
taxial drift layer in conjunction with a recessed MOS gate. A positive threshold voltage
was achieved by employing a low-doped n-type body layer, which led to the formation of
an electron-accumulation channel layer. An additional drift layer grown on top of the body
layer is crucial for determining the on-resistance and breakdown voltage characteristics.
The proposed dual epitaxial structure enables normally-off operation without employ-
ing an ion implantation process. Considering the difficulty of p-type ion implantation or
epitaxial growth with β-Ga2O3, the proposed structure is a promising candidate for the
implementation of a normally-off β-Ga2O3 FET.
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