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Abstract: Aptamers are important materials for the specific determination of different disease-related
biomarkers. Several methods have been enhanced to transform selected target molecule-specific
aptamer bindings into measurable signals. A number of specific aptamer-based biosensors have been
designed for potential applications in clinical diagnostics. Various methods in combination with a
wide variety of nano-scale materials have been employed to develop aptamer-based biosensors to
further increase sensitivity and detection limit for related target molecules. In this critical review, we
highlight the advantages of aptamers as biorecognition elements in biosensors for target biomolecules.
In recent years, it has been demonstrated that electrode material plays an important role in obtaining
quick, label-free, simple, stable, and sensitive detection in biological analysis using piezoelectric
devices. For this reason, we review the recent progress in growth of aptamer-based QCM biosensors
for medical diagnoses, including virus, bacteria, cell, protein, and disease biomarker detection.

Keywords: aptamer; aptasensor; biosensor; label-free detection; diagnosis; medical applications;
quartz crystal microbalance

1. Introduction

Aptamers have attained popularity as a promising molecular recognition element
bearing values of the dissociation constant (Kd) from picomolar to nanomolar ranges
in sensing applications such as environmental safety, food safety, and healthcare [1–5].
Aptamers were first reported in 1990 [6]. They are short-chain oligonucleotides of RNA
or single-stranded DNA commonly chosen via in vitro operation, namely, systematic
evolution of ligands by exponential enrichment (SELEX) [7]. As such, they are described as
artificial antibodies due to their high affinity and high-resolution molecular discrimination
to their target analytes [8]. Unlike antibodies, aptamers are formed through chemical
synthesis, and compared with natural antibodies their high surface density leads to less
steric hindrance, enhancing their efficiency in recognizing targets [9]. In addition, aptamers
maintain their properties during storage at room temperature and in different reactionary
environments, are readily labeled with various reporters [3,10], and costs for their synthesis
are relatively low, which is an important feature in diagnostic analysis [11]. A diverse
type of aptamer has been reported to recognize targets such as metal ions [12], small
organic compounds [13], toxins [14], nucleotides [15], peptides [16], amino acids [17],
enzymes [18], proteins [19], hormones [20], bacteria [21], and whole cells [22] with high
sensitivity and affinity.

Aptamer biomolecules consist of short single-stranded DNA/RNA nucleic acid/
oligonucleotide sequences chosen from random nucleic acid libraries by a SELEX pro-
cess [23–27]. Nucleic acids are more resistant to changes in physical conditions, including
pH differences and high temperature, than proteins, and they have smaller sizes than anti-
bodies. In addition, chemical modifications can be made easily. Finally, when considering
obtaining antibodies, the preparation of aptamers has several advantages including quicker
synthesis [28,29]. Aptamers are one of the most employed biorecognition materials for pro-
teomics, medical diagnostics, and applications. They are of great interest as an alternative

Micromachines 2022, 13, 1441. https://doi.org/10.3390/mi13091441 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13091441
https://doi.org/10.3390/mi13091441
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-2245-8074
https://orcid.org/0000-0001-7548-5741
https://doi.org/10.3390/mi13091441
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13091441?type=check_update&version=1


Micromachines 2022, 13, 1441 2 of 18

biomolecular recognition element to create an ideal detection system via rapid and robust
response, high specificity, sensitivity and biostability, and cost-effectiveness. Aptamers
selected and designed with SELEX technology are short single nucleic acid sequences with
fascinating features involving recognition of their target analytes. In general, the process of
the SELEX technique contains four steps (Figure 1): (i) incubation with target; (ii) selection;
(iii) elution of aptamers; and (iv) amplification of eluted aptamer. First, aptamers are chosen
from a large range of random nucleic acid libraries. After a few selection steps, aptamers
become enriched for binding to their related molecule with high specificity and affinity [30].
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Herein, unique features such as higher chemical stability, easy low-cost mass manu-
facturability, and longer self-time compared to natural biorecognition elements, namely,
antibodies, enzymes, and proteins, enable the use of aptamers in biosensors as excellent
biorecognition elements in sensing applications [7]. Biosensors are analytical tools em-
ployed to detect target analytes in biological or chemical reactions via measurable signals
proportional to the analyte level in an interested medium in a wide range of concentrations
at the ng/mL or even fg/mL level. They combine a biorecognition material with a chemical,
physical, or physicochemical transducer [32–36]. The target analytes may be of various
kinds, including ions [37], gases [38], drugs [39], oligonucleotides [40], or proteins [41],
and there may be different kinds of transducer as well, such as plasmonic-optical [42],
mass-sensitive piezoelectric [43], thermal calorimetric thermometric [44], and chemical–
electrochemical–electrical [45]. Biosensors offer comparable sensitivity and selectivity while
enabling online monitoring and real-time detection [46,47]. In recent years, use of such
sensors has played a noteworthy role in critical research topics [48]. Different types of
aptamer-based biosensors, namely, aptasensors, are classified differently according to their
transduction mechanisms, including electrochemical, optical, field effect transistor, calori-
metric, and piezoelectric [5,49–51]. A quartz crystal microbalance as a mass-sensitive based
sensor (QCM) establishes the mass per unit area by measuring the change in frequency
(∆ƒ), which is related to the mass accumulated on the quartz crystal resonator electrode [52].
The rapid, accurate, real-time, label-free, and even on-site detection capability of the QCM
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technology, and especially its high sensitivity, have gained attention in the design of novel
diagnostic tools integrating the significant advantages of aptamers [53]. In this review, we
briefly point out several typical aptamer biosensors used for medical diagnostic analysis.
We focus on introducing novel methods for improving the potential of current analytical
sensing approaches in terms of sensitivity and specificity.

2. QCM Biosensor

Biosensors are tools that detect and determine specific target molecules and convert
recognition of target molecules into the measurable signals [42,54,55]. This detectable
signal is easily induced by specific molecular interactions between target molecules and
recognition materials (i.e., receptors) [56]. Typically, a biosensor contains two major units, a
receptor and a transducer, as shown in Figure 2. The optimal recognition material must
be highly sensitive and specific for the target analyte of interest. It should adequately
recognize and specifically capture the target analyte, resulting in a quick reply and strong
performance. Recognition elements, including nucleic acids, antibodies, cells, and enzymes,
can now be easily produced in an experimental laboratory. A transducer converts the
biomolecular binding events into measurable signals, including optical and electrochemical
signals as well as mass changes [57,58]. The label-free surface-sensitive technique is perfect
for monitoring interaction processes in liquid samples without the need to label related
molecules, as they only generate signals by their physical existence on the recognition
surface [59]. In addition to the low cost of the label-free technique, it offers the capability
of detecting the kinetic behavior of biological interactions even at the submolecular level,
providing real-time monitoring [60]. Several label-free transduction-based studies have
been reported and have proven suitable in medical areas such as the pharmaceutical
industry or healthcare for point-of-care testing and applications in basic research [61].
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Figure 2. Working principle of a biosensor.

The piezoelectric crystal materials of an electromechanical transducer are fitted for
employment as biosensors and actuators in devices and structures [62–64]. These piezo-
electric devices provide quick and label-free detection of the target molecules, resulting
in specific and/or non-specific binding on the resonator surface. QCM biosensors are
an effective analytical platform, and have been broadly applied to monitor interactions
between biomolecules [65–68]. Compared to traditional methods, they provide label-free
and real-time detection, easy use with modern technologies, portable size, high sensitiv-
ity, low cost, and basic data analysis [69–72]. QCM is nanogram-sensitive, and physical
technologies can determine changes in resonance frequency (∆f ) of the electrically driven
quartz crystal by changes in thickness or mass per unit field (∆m). A relationship between
the mass loaded on the quartz crystal surface and the resonant frequency is derived by the
Sauerbrey Equation (1):
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According to Sauerbrey effect [73,74],

∆ f = − 2 f0
2

A√ρqµq
∆m (1)

where f 0 is the resonant frequency, ∆f is the change in resonant frequency (Hz) due to mass
loaded per unit area (∆m) on the surface, ρ is the quartz density (2.648 g/cm3), and µ is the
shear modulus of quartz (2.947 × 1011 g·cm−1·s2).

Quartz is the acoustic resonator and experiences the piezoelectric effect that induces
acoustic waves by applying an alternating current to the quartz crystal. The QCM is known
as a thickness shear mode resonator or bulk acoustic wave transducer [75]. A typical AT-cut
quartz crystal with gold electrode photographs is shown in Figure 3. The sole design
criterion of thickness–shear mode resonators for frequency control is frequency stability.
The AT-cut is most suitable [76,77]. AT-cut quartz crystals are typically employed as sensor
components, although the needs of sensor applications are more complicated [78,79]. The
full physical definition of a viscoelastic charge in contact with a quartz crystal resonator
has allowed the study of the mechanical characteristics of different materials coated on
the sensor surface, such as the viscoelastic characteristics of polymers. The “acoustically
thin” or “acoustically thick” coatings are of main significance [76,78]. AT-QCM sensors
are becoming a good alternative analytical technique in numerous applications. They
are widely used as QCM sensors in gaseous mediums [80,81]. Following the first studies
showing that QCM can be used for the liquid phase, the use of crystal resonators has
been reported for a great number of applications in various areas [82]. Biorecognition
materials undergo important changes in physical or chemical features in response to
surrounding stimuli, including solvents, temperature, pH, magnetic fields, chemical agents,
and electrical fields. Recently, pH-responsive materials have increasingly been used in
different fields [83–85].

On the other hand, QCM technology provides use to the physical parameters of the
sample by measuring the dissipation factor or another equivalent electrical parameter [86].
Quartz crystals have been broadly employed to analyze mass, molecular interaction, mem-
brane structure, and viscoelasticity changes on the surface of the electrodes [87]. Viscoelastic
and conformational properties of the sample are monitored depending on the dispersion
parameter [86]. QCM with dissipation monitoring (QCM-D) is a powerful device employed
to sensitively analyze the real-time and label-free responses of polymer films to external
responses. The QCM-D technique is widely utilized to monitor film growth, material
adsorption, thin film swelling, and ion exchange. QCM-D, similar to a QCM tool, utilizes
the inverse piezoelectric effect, which results in vibrational oscillations of a quartz crystal
when an alternating potential is applied. The difference between these two methods is that
QCM-D measures the change in both the resonant frequency (∆f ) and the dissipation of os-
cillations (∆D), while QCM only measures the change in the resonant frequency [84,88,89].
QCM-D has the ability to sensitively monitor mass changes on small time scales [90].
Recently, there have been many reports of the QCM-D technique being employed as a
powerful device to understand a variety of phenomena such as fouling [91], swelling [92],
adsorption [93], and ion exchange [94].

QCM is a highly nanogram-sensitive technology of mass variations on the electrode
surface. In this technique, a specific bioreceptor (for example, an antibody or aptamer)
for the target biomolecule can be attached to the electrode surface. Thus, bioreceptors on
the QCM electrode surface can interact with target molecules, which can be detected as
a result of the detectable frequency changes [28]. Several methods can be applied to the
design of QCM-based biosensor surfaces for various application areas. Many uses of QCM
biosensors have been published for detection of various molecules, such as amino acids [95],
proteins [96], enzymes [97], drugs [98], vitamins [99], metals [100], pesticides [101], biomark-
ers [102], antibiotics [103], bacteria [104], etc. Mass-sensitive QCM biosensors are commonly
utilized for the detection of biomarkers.
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permission from Ref. [105] 2010, Biemmi.

It is very important to utilize accurate and timely diagnostic methods to prevent the
progress of a disease and stop the chain of transmission through early detection. Traditional
devices are often time-consuming and costly. It is necessary to develop clinically sensitive,
quick, and cost-effective clinical diagnostic methods. QCM biosensors are one of these
technologies. QCM technologies are used as strong sensing devices because of their
label-free properties, which provide the detection and determination of a large variety of
biomolecules [53]. It is quite useful to combine aptamers with QCM as a transducer. The
relatively small size of aptamers is a positive advantage for mass-based sensing devices
and other transducer applications [106]. QCM devices have been broadly employed
in several fields [107], such as analytical chemistry [108], immunology [109], and drug
development [110], because of their high-quality features and high sensitivity [111]. The
following critical review of recent progress on QCM aptasensors for the medical diagnosis
is intended to present researchers with a detailed understanding of their development and
design while providing useful foundations for further practical biomedical applications.

3. Application of QCM Aptasensors for Medical Diagnostics

This section reviews QCM aptasensors for the selective recognition and detection
of various biological molecules such as viruses, bacteria, proteins, and cells. In addition,
immobilization techniques of aptamers, preparation of QCM detection electrodes/chips,
and performance in terms of detection limit, selectivity, and sensitivity are examined.

3.1. Viruses

Viruses are pathogenic microorganisms that are the reason for many infectious diseases.
Viruses can live and multiply in the human body and spread easily and rapidly from
infected people to healthy people. Therefore, timely detection of disease-causing viruses is
the most important way to prevent the unwanted spread of infectious diseases and ensure
timely medical treatment [107]. Aptamers are produced for a broad variety of viruses such
as EBOV, HIV, HBV, severe acute respiratory syndrome (SARS), influenza viruses. dengue
virus, rabies virus, norovirus, and vaccinia virus.

Avian influenza viruses (AIV) have created worldwide concern because of their po-
tential pandemic threat to public health and major economic losses [112,113]. Wang et al.
developed an ssDNA crosslinked polymeric hydrogel-coated QCM aptasensor for quick
and selective detection of AIV H5N1. The chosen specific aptamer and single-stranded
DNA (ssDNA) were used to form the crosslinker in a polymeric hydrogel. The aptamer-
attached polymeric hydrogel was coated homogeneously onto a QCM electrode’s gold
surface using a self-assembled monolayer (SAM) technique. The different molar ratios of
three polymeric hydrogels were synthesized with acrylamide and aptamer. The hydrogel
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swelling was monitored with a QCM device of decreasing frequency. The authors reported
that the 1:1 hydrogel-aptamer coated QCM electrode provided the best sensitivity. The
limit of detection (LOD) was found to be 0.0128 HAU. The detection time for detection of
AIV H5N1 was only 30 min with the designed aptamer-attached hydrogel-coated QCM
aptasensor [114]. The preparation of this QCM sensor design and sensorgram is shown
in Figure 4.
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A label-free QCM aptasensor based on nanowell material for quick and sensitive
detection of H5N1 AIV was designed by Wang et al. The design process of the nanowell-
based electrode for the nanoporous gold film included immobilization onto the gold
electrode surface through a bifunctional dithiol 1,6-hexanedithiol (Figure 5a). For this
purpose, a mixture solution was prepared of 1% dithiol 1,6-hexanedithiol (HDT) and
20 mM MHDA (16-mercaptohexadecanoic acid) at a ratio of 1:1. The thickness of the
nanofilm was reported as 120 nm. The pore size of the nanoporous film synthesized using
a metallic corrosion technique was ~20 nm. After characterization studies, nanoporous
film was coated onto a nanowell-based QCM gold chip surface using the SAM technique
(Figure 5). Then, the specific aptamer was attached to a QCM aptasensor through covalent
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bonding. The mechanism of the NH2-aptamer immobilization is displayed in Figure 5b.
QCM gold electrode characterization was carried out through scanning electron microscopy
(SEM). The linear concentration range was obtained from 2−4 to 24 hemagglutination units
(HAUs)/50 µL. The limit of detection was found to be 2−4 HAU/50 µL for AIV H5N1.
No signal was observed for non-target AIV subtypes, including H1N1, H2N2, H7N2, and
H5N3. The authors reported that further development of this aptasensor could be applied
to detect different viruses [115].
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Reprinted with permission from Ref. [115] 2017, Wang.

Another AIV H5N1 QCM aptasensor platform to enhance the signal produced for
detection of the AIV H5N1 was reported by Brockman et al. First, streptavidin was coated
onto the QCM electrode’s gold surface after binding biotin-labeled aptamers. Afterwards,
QCM aptasensor response was enhanced by adding aptamer-attached magnetic nanoparti-
cles. The magnetic nanoparticles’ amplification of the aptasensor response was effective
at low AIV H5N1 concentrations. The LOD value for this aptasensor was calculated as
1 HAU [116].

In another study, a QCM aptasensor for label-free detection of HepBV virus was
established by Giamblanco et al. They designed a system for sensing HepBV DNA by
immobilizing a thiol-ssDNA aptamer on the surface of the QCM gold electrode. QCM
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electrode gold surfaces thus functionalized with thiolated ssDNA were characterized using
atomic force microscope (AFM) measurement. The QCM aptasensor was able to detect
fmol/cm2 target HepBV virus with an ssDNA probe without using any amplification steps
or labeling method. The authors were able to perform more sensitive determination by
controlling the ssDNA density on the electrode surface. They reported that these results
facilitated the basic use and portability of the developed POC biosensor device for label-free
and quick detection of HepBV [117].

A biotinylated-DNA immobilized QCM aptasensor for detecting hepatitis C virus
(HCV) in serum was developed by Skladal et al. The functionalization process of the
QCM electrode surface included the immobilization of cysteamine and activation with
glutaraldehyde followed by addition of either avidin or streptavidin; 10 MHz AT-cut gold
electrode (diameter 5 mm) quartz crystals were used in this work. The authors reported
results showing significantly higher immobilization efficiency with avidin as compared
to streptavidin. The piezoelectric aptasensor was able to perform real-time monitoring
of hybridization in 10 min. The biotinylated-DNA–avidin-immobilized aptasensor was
reused 30 times. From the economic point of view, the reusability of QCM aptasensors is
quite promising [118].

3.2. Bacteria

The quick, reliable, accurate, and highly sensitive detection of bacteria is a focus of
diverse areas, particularly public health [119]. Therefore, the progress of novel quick,
specific, and sensitive biosensors for the determination of pathogens is of remarkable
importance [120]. Salmonella typhimurium is a pathogen bacteria that causes outbreaks of
diseases [121]. S. typhimurium infection causes fever, diarrhea, abdominal cramps, and
even death. It is important to develop a quick, selective, and sensitive system to detect S.
typhimurium pathogen bacteria. Wang et al. designed a novel QCM aptasensor for label-free
and real-time detection of S. typhimurium employing an AT-cut 7.995 MHz quartz crystal
gold electrode. The LOD value was calculated as 103 CFU/mL of S. typhimurium within
one hour [106]. The preparation of the QCM aptasensor process is shown in Figure 6.
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Escherichia coli (E. coli) O157:H7 infection causes various symptoms including severe
abdominal cramps, acute hemorrhagic diarrhea, and hemolytic uremic syndrome. The
design of a highly sensitive and specific technique is critically important for controlling
outbreaks and disease progression in infected individuals. Yu et al. developed a single-
stranded DNA aptamer-attached QCM aptasensor for real-time detection of E. coli O157:H7.
Whole cells of E. coli O157:H7 bacteria were employed using the SELEX process. The
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detection limit was 1.46 × 103 CFU/mL of E. coli O157:H7 within 1 h. The presented
results show that the specific ssDNA aptamer chosen by means of whole-bacterium SELEX
possesses high affinity [122].

3.3. Proteins

The detection of proteins can provide valuable information for clinical diagnosis
applications [123]. Thrombin is a significant biomarker, and its rapid and selective detection
is very important for diagnosis and prevention of related diseases [124,125]. Xi et al.
designed a target-triggered delivery of cargo molecules-based QCM aptasensor. Gold
nanocages (AuNCs) were characterized using a transmission electron microscope (TEM).
Empty nanocages were loaded with ssDNA molecules, capped with specific aptamers, then
coated on a QCM chip gold surface for real-time detection of thrombin [126], showing a
broad linear concentration dynamic range of 0.0086 nM−86 nM. The LOD values were
calculated as 7.7 pM and 1.2 nM in PBS buffer and a human serum sample, respectively.
The preparation of this QCM aptasensor design for the detection of thrombin is shown
in Figure 7.
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Hianik et al. developed a novel QCM aptasensor device for the detection of thrombin.
The electrode was covered by DNA aptamers of the electrochemical indicator methylene
blue (MB), which was bonded to thrombin They reported that MB can be used to detect
thrombin with high sensitivity and selectivity. The lower limit of the detection QCM
method was 1 nM [127].

Iijima et al., developed a thrombin-binding DNA-aptamer attached QCM aptasensor.
They used DNA-aptamer in their previously developed ~30 nm bio-nanocapsules (ZZ-
BNC). ZZ-BNC was modified by replacing the ZZ domain with a DNA-binding single-chain
lambda Cro (scCro) domain to expand the versatility of ZZ-BNC. The nanocapsule-coated
scCro-BNC-QCM aptasensor chip immobilized with thrombin-binding DNA aptamers
showed ~5.5-fold higher thrombin binding capacity and ~6000-fold higher detection sen-
sitivity compared to a QCM aptasensor chip directly coated with DNA aptamers. They
reported that the number of bound thrombin molecules per DNA aptamer molecule in-
creased ~7.8-fold with scCro-BNC coating [128].

Deng et al. developed a first-time combined QCM and surface-enhanced Raman
spectroscopy (SERS) platform for detection of thrombin. The functionalization process of
the QCM electrode included a 1,6-hexanedithiol (HDT) monolayer with gold nanoparticles
(20 nm AuNPs) assembled on immobilized HDT with stable Au–S linkage. Then, thiol-
modified aptamers were assembled on this electrode surface. AuNPs were used to amplify
the frequency signal significantly. The limit of detection for thrombin was 0.1 µM. In
the concentration range of 0.1 to 1.0 µM, a good linear correlation was obtained for the
determination of thrombin. This presented combination could further develop the progress
and application of QCM and SERS in protein analysis with aptamers [129].

Aptasensor platforms for analysis of HIV-1 Tat protein by immobilizing a specific RNA
aptamer on a QCM electrode were reported by Tombelli et al. This QCM aptasensor was
compared with a surface plasmon resonance (SPR)-based aptasensor. The biotin–avidin
linking was immobilized onto the gold surface of the quartz crystal chip. Both devices
displayed similar reusability, sensitivity, and specificity. The linear detection range of the
QCM was from 0 to 1.25 ppm [130].

Minunni et al. developed a specific RNA aptamer-immobilized QCM aptasensor for
the trans-activator of transcription (Tat) protein of HIV-1. In this work, a specific RNA
aptamer was utilized as a biological recognition element. The antibody was immobilized
on a layer of carboxylated dextran previously deposited on the QCM gold chip surface.
The linear range with the antibody was from 0 to 2.5 ppm, and the limit of detection was
0.25 ppm [131].

Yao et al. developed a QCM aptasensor for fast sensing of Immunoglobulin E (IgE) in
human serum samples. Aptamers were immobilized non-covalently using a monolayer of
avidin on the QCM gold surface. They reported this sensor to be suitable for the detection
of IgE within 15 min. It showed a linear detection range between 2.5 µg/L and 200 µg/L
in buffer solution and human serum, respectively. This QCM aptasensor was suitably
designed for label-free and selective detection of proteins, and represents an innovative
device for future proteomics [132].

3.4. Cells

Recently, investigations of the interaction of whole cells with QCM sensors have been
reported [133,134]. Leukemia is one of the most common deadly cancers [135]. It is caused
by blood or bone marrow cancer [136]. A sensitive and accurate diagnosis is important for
efficient treatment of this disease. The methods employed today for analysis of leukemia
cells are polymerase chain reaction [137], flow cytometry [138], and fluorescence measure-
ment [139]. There is a need to produce simple and cost-effective technologies for rapid,
label-free, and selective detection of leukemia cells. Shan et al. developed a new method for
specific detection of leukemia cells. They first prepared aminophenylboronic acid-modified
gold nanoparticles (APBA-AuNPs) which could bind to cell membranes. Then, these APBA-
AuNPs were employed for labeling of cells. Signal amplification was achieved via silver
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enhancement. A good linear relationship was obtained between 2 × 103–1 × 105 cells/mL.
The limit of detection was calculated as 1160 cells/mL. This QCM aptasensor offers a quick,
rapid, label-free, and cheap technology for sensitive detection of leukemia cells [140]. The
QCM detection process is shown in Figure 8a.
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In another study, a label-free QCM aptasensor for selective detection of the hepatocel-
lular carcinoma cell line (HepG2) was reported by Kashefi-Kheyrabadi et al. A sandwich
architecture was used on the electrode surface. The related HepG2 cells were captured by a
TLS11a aptamer covalently attached to a gold surface (Figure 8b). This QCM aptasensor
showed a broad linear range between 1 × 102 and 1 × 106 cells/mL, and the limit of
detection was 2 cells/mL. The authors reported that this method offers a simple, cheap, and
stable technology for sensitive detection of liver cancer as well as other cancel cell [141].
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4. Conclusions and Future Perspectives

QCMs are highly reliable for sensing the mass of deposited target samples in both
liquid and gas matrices. Moreover, they allow real-time monitoring and have relatively
low manufacturing and processing costs. These properties make mass-sensitive devices
feasible for numerous nanoscale applications such as detection of cells, viruses, antibody
interactions, and DNA hybridizations. While QCM biosensors are mostly used owing to
their low cost, they are limited to the operating temperature of quartz, ~350 ◦C, although
high-temperature piezoelectric sensors resisting up to 1250 ◦C have been reported for differ-
ent applications [68,142]. The limit of detection of a QCM biosensor is lower compared to a
surface acoustic wave (SAW). However, QCMs can provide access to physical parameters
of samples by measuring the dissipation factor or another equivalent electrical parameter,
providing a more detailed analysis of the surface and interactions thereon that is not limited
to measurement of the mass per unit area. The viscoelastic and conformational characteris-
tics of a sample are monitored based on the dissipation parameter. The application of the
QCM technique in biomedical applications can be very helpful.

Many different biosensors have been developed based on diverse transducers, in-
cluding optical, electrochemical, and mass-sensitive varieties. Among these techniques,
aptamer-based mass-sensitive biosensors have been comprehensively characterized owing
to their high sensitivity, high stability, cost-effectiveness, and simplicity of fabrication. It
is well known that early determination of diseases and epidemics is essential to ensuring
efficient treatment, and aptamers are highly promising biomolecules in this critical area.
The selection of aptamers for biorecognition of related viruses, cancer cells, and proteins
has already been achieved. Table 1 summarizes different advantages and challenges of the
QCM biosensor concept.

Table 1. The advantages and major challenges of QCM biosensors prepared by various techniques.

Method and Materials Advantages Challenges Ref.

Aptamer

label-free detection,
specific recognition,

online, rapid, highly sensitive analysis,
simple to functionalize,

non-aggregating,
very stable in dehydrated form, more

resistant to thermal degradation

anchoring to the surface of QCM
electrode, low reproducibility,

costly
[143–145]

Antibody
selective affinity to target molecules,

sensitive assays,
reproducible results,

substantial decrease in bioactivity
owing to the denaturation and random

orientation, costly production
[146]

Molecular imprinting
polymer (MIP)

high selectivity to template molecule,
long-term storage stability,

potential re-usability,
cheap

creates wide cavities, template
molecule may covalently bound to the

polymer, difficult target removal
[147]

Metal-organic frameworks
(MOFs)

high sensitivity to target,
low power consumption,

easy modification

Large-scale manufacturing, improved
selectivity, enhancing reproducibility,
miniaturized manufacturing methods

[148]

When compared to antibodies, aptamers are an especially good match for the recogni-
tion of small molecules with high specificity and affinity. Therefore, the improvement of
aptamer-based biosensors of macromolecules, even small molecules, could be an efficient
way to expand the range of easily measurable analytes. Another potential advantage of
aptamer sensors is that they can be stored at variable temperatures and are reusable for
certain time periods. Aptamers are thus suitable as miniaturized and portable biosensors
that can be kept for extended time periods.

Due to their potential applications, aptamer production has increased significantly
over the past few years. Aptamers are convenient for use in biosensors as sensitive and
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selective recognition elements with a variety of transducer technologies that allow them
to be highly sensitive. It is quite beneficial to unite aptamers with QCM as the transducer.
Quartz crystal microbalance has emerged as one of the most popular biosensing devices
over the past fifteen years. QCM devices are capable of fast, label-free, real-time, and on-site
detection of analytes that are of great public health importance, including influenza and
hepatitis B virus (HBV), among others, as well as bacteria and proteins. As such, their use
in medical diagnostic applications has increased significantly. It is most important that
the QCM is evenly distributed over the entire electrode surface when the target analyte is
delivered to the recognition surface. The repeatability of measurements made by QCM in
practical applications is limited largely by the unevenness of the sensitivity distribution.

In this review, we have examined QCM biosensors and indicated the applicability
of establishing aptamer-attached QCM biosensors for quick, high affinity, sensitive, and
label-free detection of biological analytes. We have presented and discussed a considerable
amount of research on the use of aptamer-based quartz crystal microbalance technology.
We have divided these studies into various sections according to analyte and technique,
summarizing aptamer-based QCM platform information in Table 1. By developing more
aptamers, new aptasensors can be designed which can play a significant role in the de-
velopment of future diagnostic methods. The design of aptamers with QCM devices has
been successful for both quantitative and qualitative medical applications. Aptamers are
considered smart receptors for specific binding of target molecules, including viruses, cells,
proteins, bacteria, and biomarkers. Several methods have been advanced to transform
target molecule−aptamer binding combinations into physically detecTABLE Signals. The
progress of QCM biosensing based on aptamers holds great prospects for the development
of new medical applications and analytical platforms. Advanced research, particularly that
dedicated to the precision, accuracy, and robustness of the reviewed techniques, is needed
in this area.
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18. Senturk, H.; Eksin, E.; Işık, Ö.; İlaslan, Z.; Mısırlı, F.; Erdem, A. Impedimetric aptasensor for lysozyme detection based on carbon

nanofibres enriched screen-printed electrodes. Electrochim. Acta 2021, 377, 138078. [CrossRef]
19. Chen, Y.; Deng, N.; Wu, C.; Liang, Y.; Jiang, B.; Yang, K.; Liang, Z.; Zhang, L.; Zhang, Y. Aptamer functionalized hy-

drophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin. Talanta 2016,
154, 555–559. [CrossRef]

20. Liu, X.; Deng, K.; Wang, H.; Li, C.; Zhang, S.; Huang, H. Aptamer based ratiometric electrochemical sensing of 17β-estradiol
using an electrode modified with gold nanoparticles, thionine, and multiwalled carbon nanotubes. Microchim. Acta 2019, 186, 347.
[CrossRef]
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