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Abstract: Although the small-scale effect and nonlinear damping on the nonlinear vibration of
microbeam electrostatic resonators are important, they have been overlooked by researchers. We
use the slender beam model including the small-scale effect and nonlinear damping to investigate
the nonlinear vibrations of the electrostatic resonators in the present paper. We apply the Galerkin
method on a nonlinear partial differential equation to obtain the nonlinear ordinary differential
equations for the first and third modes. The two equations include constant terms. The multiple-scale
method is used to obtain the approximate analytical solutions of the two equations. The approximate
analytical solutions discover the effects of driving electric field, small-scale effect, and nonlinear
damping on structural vibrations. The results suggest that the small-scale effect, the direct current
(DC) voltage, and the alternating current (AC) voltage have some critical effects on the vibrations
of microresonators.

Keywords: microbeam resonators; electric actuation; scale effect; nonlinear vibration; primary
resonance; multiple-scale method

1. Introduction

Currently, microresonators are widely used in micro-electro-mechanical systems
(MEMS) to perform the sensing and driving functions of MEMS [1]. Given the fast dy-
namic response, small power consumption and high driving efficiency of electric actua-
tion [2], this study focuses on an electrostatic microresonator. According to the existing
results, the large displacement [3], material nonlinearity, damping nonlinearity [4], and
scale effect [5] all have noticeable effects on the vibration of microbeam. Therefore, it
is necessary to profoundly research these effects on nonlinear vibrations of microbeam
electrostatic resonators.

With the advancement of MEMS, there has been more and more attention paid to the
impact of complex environments on MEMS dynamics [6]. To optimize the design of these
MEMS devices, it is essential to fully understand the statics/dynamics of the system [7–9].
Abdel-Rahman applied the multiple-scale method to study the response of a microbeam-
based resonant sensor to superharmonic and subharmonic electric actuations. Through
discussion about the dynamic bifurcation characteristics of the system, it was found out that
there are multiple steady-state solutions for the given parameters [10]. Younis proposed to
generate reduced-order models in a different way for electrically actuated microbeam-based
MEMS. The model accounts for the nonlinear elastic restoring forces and the nonlinear
electric forcing [11]. Hu applied the energy method to develop a mechanical model of a
micro-cantilever beam and explored the impact of DC voltage on the static deformation of
the micro-cantilever beam [12]. Najar performed a simulation to investigate the dynamics
and global stability of a beam-based electrostatic micro-actuator [13]. It was revealed
that the basin of attraction depends on the amplitude and frequency of the AC voltage.
Furthermore, the smoothness of the boundary on the basin of attraction can be lost and
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replaced by fractal tongues, which increases the sensitivity of the microbeam to the initial
conditions significantly. Younis et al. [14,15] adopted the Galerkin method, differential
orthogonal method, and target method to study the static pull-in behavior and dynamic
pull-in behavior of microbeams with electric actuation. Han suggested research on the
dynamic evolution of the primary frequency response from a prebuckling microbeam-
based resonator with Z2 symmetry. It was shown that primary frequency response can
be divided into two parts: low-energy branch and high-energy branch. As AC excitation
increases, they get close to each other along the backbone curve [16]. Younesian applied
the Galerkin method to construct the single-degree-of-freedom model of clamped–clamped
microbeam resonator and the multi-scale method to analyze the primary and secondary
resonances of the beam [17]. Li dealt with the design of some MEMS device motions, such
as monostable motion, by avoiding the hardening to softening switch of the low-energy
frequency response branch. As a result, dynamic bifurcation was eliminated, and the
stability of the system was improved [18].

In MEMS, the size of beams can reach the micron level, and the mechanical properties
of materials are closely related to the scale. Since small-scale effect is not considered by the
classical continuum mechanics [5], the modified strain gradient theory [19] and the modi-
fied couple stress theory [20,21] were proposed in some research to capture the scale effect
of the continuum constitutive model. When the dynamic response of micro/nanomaterials
is studied, the impact of nonlinearity is a significant factor [22–24]. However, the non-
linear term caused by damping is ignored in most studies of micro/nanobeam vibration.
For example, Kahrobaiyan only considered the linear term of damping [19], and Xia ig-
nored it [25]. The occurrence of energy dissipation is related to the vibration frequency
of the structure. Since the vibration frequency of the microbeam is significantly higher
compared to the macrobeam, nonlinear damping plays a major role in the vibration of
the microbeam [26,27]. Despite the significant impact of small-scale effect and material
nonlinearity on the mechanical properties of micro/nanobeams, their combined effects are
discounted by researchers. Huang proposed two new nonlinear non-local Euler–Bernoulli
theories by considering the material nonlinearity and the small-scale effect to model the
mechanical properties of extensible or inextensible nanobeams [28]. In addition, the new
model was also used to analyze the static bending and forced vibration of single-walled car-
bon nanotubes (SWCNTs). The results show that the material nonlinearity and scale effect
can have a significant impact on the mechanical properties of SWCNT. Huang proposed
a new Bernoulli–Euler theory of microbeams for the consideration of small-scale effects
and nonlinear terms [27]. His research shows that nonlinear damping scarcely affects the
small-amplitude vibrations if the frequency of the load is greater than the modal frequency,
while nonlinear damping can significantly change the bifurcation points of the load and
strongly affects the vibrations under the primary resonance condition.

This paper attempts to study the effects of small-scale effect and nonlinear damping
on the microbeam resonator. We added a load actuated by the monopolar plate electrode
to the model established by Huang [27]. We first use the Galerkin method to discrete the
partial differential equation, and then analyze the resonator’s static bending. We will also
use the multiple-scale method to solve the forced vibration equation containing constant
terms for the primary resonance case. The effects of nonlinear damping, small-scale effect,
DC voltage, and AC voltage on the microresonator will be profoundly discussed. This may
help people better understand the nonlinear vibration behavior of microresonators and
provides some theoretical basis for practical application.

2. Methods

Herein, a hinged–hinged slender microbeam is considered. Based on the Euler-
Bernoulli displacement hypothesis, Huang established a nonlinear dynamic equation
to model the mechanical properties of the microresonator [27], as shown in Figure 1. This
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model takes into account the small-scale effect and nonlinear terms as induced by the axial
elongation and Kelvin-Voigt damping, as shown in Equation (1).

m ∂2w̃
∂t̃2 + Ẽ ∂

∂t̃

[
I ∂4w̃

∂x̃4 − 3S
2

(
∂w̃
∂x̃

)2
∂2w̃
∂x̃2

]
+ P0

∂2w̃
∂x̃2

+
(
EI + GSζ2) ∂4w̃

∂x̃4 − 3ES
2

(
∂w̃
∂x̃

)2
∂2w̃
∂x̃2 = F.

(1)

where w̃ is the vertical deflection. G = E/[2(1 + v)], and E and ν are the Young’s modulus
and Poisson’s ration, respectively. Ẽ is the viscous damping coefficient, ζ is the material
length scale parameter obtained from experiments, P0 is the initial axial load, and m refers
to the mass per unit length. S and I are the cross-sectional area and moment of inertia,
respectively. S = bh and I = bh3/12, where b and h are referred to as the width and
thickness of the beam, respectively. From Equation (1), it can be found out that the small-
scale effect has a significant impact on the static bending of microbeams [27]. In Ref. [27], the
Kelvin–Viogt damping model is used to describe the energy dissipation of microstructures.
Although, it is an open question how to describe the microstructure’s energy dissipation.
Recent studies have shown that the Kelvin–Viogt damping model is qualitatively suitable
for the vibration of microbeams. For example, Ref. [26] shows that nonlinear dissipation
has a significant impact on the dynamics of micromechanical systems, and the Voigt–Kelvin
viscoelastic constitutive law can obtain consistent results with the experiments.
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Figure 1. Microresonator model: (a) Schematic drawing of the resonator; (b) structural characteristic
drawing of microbeam.

A uniform parallel electrode lying under the beam is used to excite a generalized
electric force F(x, t). The load comprises a DC component (polarization voltage) VDC and a
small AC component VAC, and can be expressed as [15]:

F(x, t) =
ε0b
[
VDC + VAC cos

(
Ω̃t
)]2

2(d− w̃)2 . (2)

where VDC is the DC polarization voltage; VAC and Ω̃ are the amplitude and frequency
of the AC voltage, respectively; ε0 is the dielectric constant of the gap medium; d is the
distance between the beam and the electrode.
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In order to better deal with Equation (1), it may be written in the non-dimensional form.
This process can be conducted by introducing the following non-dimensional variables:

x =
x̃
l

, w =
w̃
d

, t = ω0 t̃, Ω =
Ω̃
ω0

, ω0 =

√
EI + GSζ2

ml4 . (3)

By substituting Equation (3) into Equation (1), we obtain

∂2w
∂t2 + ∂4w

∂x4 + P ∂2w
∂x2 + C1

∂5w
∂t∂x4 − D

(
∂w
∂x

)2
∂2w
∂x2

−C2
∂
∂t

[(
∂w
∂x

)2
∂2w
∂x2

]
= Q [VDC+VAC cos(Ωt)]2

(1−w)2 .
(4)

where the new parameters in Equation (4) are expressed as

P =
P0

ml2ω2
0

, C1 =
ẼI

ml4ω0
, C2 =

3ẼSd2

2ml4ω0
, D =

3ESd2

2ml4ω2
0

, Q =
ε0b

2md3ω2
0

. (5)

For a hinged–hinged beam, the boundary conditions are expressed as

w(0, t) = w(1, t) = 0,
∂2w
∂x2 (0, t) =

∂2w
∂x2 (1, t) = 0. (6)

It is difficult to obtain an accurate analytical solution because Equation (4) is a nonlinear
differential equation. Therefore, a reduced-order model is constructed by discretizing
Equation (4) into a finite-degree-of-freedom system that consists of ordinary differential
equations in time [29,30]. Suppose that the solution of Equation (4) can be written as

w =
∞
∑

j=1
sin(jπx)uj(t). Since the second mode of Galerkin discrete loses the square terms,

only the first and third modes are studied in this paper. Thus, we have

w1 = sin(πx)u1(t), w2 = sin(3πx)u2(t). (7)

According to Younis’ research, the neglected higher-order terms will make difficult
of the Taylor-series expansion for the electric-force term [11]. Therefore, Equation (7) is
substituted into Equation (4) and, multiplied by (1− w)2 sin(nπx) at both sides of the
equations and integrated in the interval [0, 1]. If the fourth and fifth higher-order terms are
removed from the equation, we have

..
u + ω2

j u = 2c1j
.
u + c2j

.
uu2 + c3j

.
uu + k1ju3 + k2ju2

+k3j
..
uu2 + k4j

..
uu + F1j + F2j cos(Ωt) + F3j cos(2Ωt), j = 1, 2.

(8)

where j = 1 means the first mode and j = 2 means the third mode. The parameters of the
first mode are expressed as follows.

ω2
1 = π4 − Pπ2 , c11 = −π4C1/2, c21 = − 3π4(C1+C2)

4 , c31 = 16π3C1
3 ,

k11 = 3Pπ2

4 − Dπ4

4 −
3
4 π4, k21 = 16

3 π3 − 16Pπ
3 , k31 = − 3

4 , k41 = 16
3π ,

F11 = 2Q
π

(
2VDC

2 + VAC
2), F21 = 8Q

π VDCVAC, F31 = 2Q
π VAC

2.

(9)

The parameters of the third mode are expressed as follows.
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ω2
2 = 81π4 − 9Pπ2, c12 = −81π4C1/2, c22 = − 243π4(C1+C2)

4 , c32 = 144π3C1,

k12 = 27Pπ2

4 − 81Dπ4

4 − 243
4 π4, k22 = 144π3 − 16Pπ, k32 = − 3

4 , k42 = 16
9π ,

F12 = 2Q
3π

(
2VDC

2 + VAC
2), F22 = 8Q

3π VDCVAC, F33 = 2Q
3π VAC

2.

(10)

From Equations (8)–(10), we can find that although the microbeam’s model comes
from Ref. [27], there are two new crucial features induced by the electrical load. One is that
some nonlinear terms with scale effects appear in Equation (8). These coupling terms will
have a remarkable effect on the structure’s vibrations, as shown in the next section. Second,
the constant terms F1j appear in Equation (8). It has not been profoundly studied to solve a
nonlinear ordinary differential equation with constant terms. In this paper, we will solve,
for the first time, the equations using the multiscale methods.

Notably, the structure will undergo buckling if π4 − Pπ2 = 0. Therefore, we restrict
P < π2 and P0 < π2ml2ω2

0 to avoid the beam’s buckling. In this paper, we refer to Li’s
article to set the material of the MEMS resonator as an alloy for study [31]. The following
physical parameters in Table 1 are used.

Table 1. Geometric and material parameters of MEMS resonator [27,31].

Quantity Values Quantity Values

Length, L 500 (µm) S = bh 200 (µm2)
Thickness, h 20 (µm) I = (bh3)/12 6.670 × 103 (µm4)

Width, b 10 (µm) m = ρS 4.600 × 10−7 (kg/m)
Young’s modulus, E 165 (Gpa) G 58.750 (Gpa)

Density, ρ 2300 (kg/m−3) Initial axial load, P0 0.205 (N)
Capacitor gap width, d 1 (µm) c1 1.000 × 10−2

The dielectric constant, ε0 8.85 × 10−12 (F/m) c2 1.568 × 10−4

Material length scale parameter, ξ 20 (µm) c3 −3.395 × 10−4

For simplicity, the following four models are considered: the scale-dependent model
with nonlinear damping (SDND) for ξ 6= 0, c2 6= 0, and c3 6= 0; the scale-independent
model (SIM) for ξ = 0, c2 6= 0, and c3 6= 0; the nonlinear damping-independent model
(NDIM) for ξ 6= 0, c2 = 0, and c3 = 0; the scale-independent model without nonlinear
damping (SIND) for ξ = 0, c2 = 0, and c3 = 0.

3. Static Response of Microbeam

We can obtain the static equation of the microresonator if
..
u and

.
u in Equation (8) are

removed, as in the following:

ω2u = k1u3 + k2u2 + F. (11)

where

F =
4Q[VDC + VAC]

2

π
. (12)

Here we use VDC = 1.5 V and VAC = 0.08 V to study the impacts of the scale effect
and the initial axial load, as shown in Figure 2. The figure shows that the microresonator
does not buckle when 0 < F < 30, and the small-scale effect reduces the deformations of
static bending. Conversely, the initial compressed force will increase the deformation. This
influence will increase when the beam is subjected to the combined of the scale effect and
the initial load.
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Figure 2. Impact of small-scale effect and initial axial load on the static bending of the microbeam for
VDC = 1.5 V and VAC = 0.08 V.

4. The Approximate Solution for the Primary Resonance

The multiple-scale method is used to solve Equation (8). The aim is to find an approxi-
mate solution of the equation for small but finite deformations [32]. We suppose

u = εu1(T0, T1, T2) + ε2u2(T0, T1, T2) + ε3u3(T0, T1, T2). (13)

where ε = 0.1 is a small parameter and Tn = εnt (n = 0, 1, 2). We perturb the electric-force
constant term F1 to the linear differential equation at ε, and the excitation term F2 and F3 at
ε3, so let

F1 = ε f1, F2 = ε3 f2, F3 = ε3 f3. (14)

In order to make the damping terms appear in the same perturbation equations as the
nonlinear terms, it is assumed that c1 = ε2c1. A detuning parameter σ is introduced, and it
is supposed that Ω = ωn + ε2σ [32]. Then Equation (14) is substituted into Equation (8),
the superscript of c is removed, obtaining

..
u + ω2u = 2ε2c1

.
u + c2

.
uu2 + c3

.
uu + k1u3 + k2u2 + k3

..
uu2

+k4
..
uu + ε f1 + ε3 f2 cos

(
ωt + ε2σt

)
+ ε3 f3 cos

(
2ωt + 2ε2σt

)
.

(15)

Substituting Equation (13) into Equation (15) and equating coefficients of powers of ε,
we obtain that

ε : D0
2u1 + ω2u1 = f1. (16)

ε2 : D0
2u2 + ω2u2 = −2D0D1u1 + k4u1D2

0u1 + c3u1D0u1 + k2u2
1. (17)

ε3 : D0
2u3 + ω2u3 = −2D0D1u2 − 2D0D2u1 − D2

1u1 + 2c1D0u1

+ k1u3
1 + 2k2u1u2 + c2u2

1D0u1 + c3u1D1u1 + c3u1D0u2

+ c3u2D0u1 + k3u2
1D2

0u1 + k4u1D2
0u2 + k4u2D2

0u1 + 2k4u1D0D1u1

+ f2 cos(ωT0 + σT2) + f3 cos(2ωT0 + 2σT2).

(18)

where Dn = ∂/∂Tn,n = 0, 1, 2 and the differential operator Dn indicates the derivative with
respect to the timescale Tn. The general solution of Equation (16) is

u1 = A1(T1, T2)eiωT0 + A1(T1, T2)e−iωT0 +
f1

ω2 . (19)

By substituting Equation (19) into Equation (17), we obtain

D0
2u2 + ω2u2 =

(
−2iωD1 A + 2 f1k2 A

ω2 + i f1c3 A
ω − f1k4 A

)
eiωT0

+
(
k2 A2 + ic3ωA2 − k4ω2 A2)e2iωT0 + 2k2 AA− 2k4ω2 AA +

f 2
1 k2
ω4 + cc.

(20)
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where cc denotes the complex conjugate of the preceding terms. To avoid secular terms in
Equation (20), it is supposed that

D1 A = − i f1k2 A
ω3 +

f1c3 A
2ω2 +

i f1k4 A
2ω

. (21)

Then we obtain

u2 =
(

k2 + ic3ω− k4ω2
)−A2e2iωT0

3ω2 +

(
k2

ω2 − k4

)
2AA +

f 2
1 k2

ω6 + cc. (22)

By substituting Equations (19), (21), and (22) into Equation (18), it can be known that

D0
2u3 + ω2u3 = [2iω(−A′ + c1 A + 1

2 c2 A2 A) + (3k1 +
10k2

2
3ω2 + 1

3 c2
3 − 3k3ω2

+ 1
3 k2

4ω2 + ik2c3
ω − 11

3 k2k4)A2 A + (
ic2 f 2

1
ω3 +

3 f 2
1 k1

ω4 +
3 f 2

1 k2
2

ω6 +
f 2
1 c2

3
4ω4 −

f 2
1 k3
ω2

− 3 f 2
1 k2

4
4ω2 +

i f 2
1 k2c3
ω5 +

i f 2
1 c3k4
ω3 )A + 1

2 f2eiσT2 ]eiωT0 + cc + NST.

(23)

where the prime denotes the derivatives with respect to T2, and NST denotes non-secular
terms. To avoid secular terms in Equation (23), it is assumed that

2iω(−A′ + c1 A + 1
2 c2 A2 A) + (3k1 +

10k2
2

3ω2 + 1
3 c2

3 − 3k3ω2 + 1
3 k2

4ω2

+ ik2c3
ω − 11

3 k2k4)A2 A + (
ic2 f 2

1
ω3 +

3 f 2
1 k1

ω4 +
3 f 2

1 k2
2

ω6 +
f 2
1 c2

3
4ω4 −

f 2
1 k3
ω2

− 3 f 2
1 k2

4
4ω2 +

i f 2
1 k2c3
ω5 +

i f 2
1 c3k4
ω3 )A + 1

2 f2eiσT2 = 0.

(24)

We take A in polar form as

A(T1, T2) =
1
2

a(t)eiθ(t), A(T1, T2) =
1
2

a(t)e−iθ(t), (25)

and introduce Equation (25) into Equation (24). By separating the result into real and
imaginary components and introducing γ = θ − σT2, we obtain that

a′ = ac1 +
a3c2

8 + a3k2c3
8ω2 +

ac2 f 2
1

2ω4 +
a f 2

1 k2c3
2ω6 +

a f 2
1 c3k4
2ω4 −

f2 sin γ
2ω

γ′ = − 3a2k1
8ω −

5a2k2
2

12ω3 −
a2c2

3
24ω + 3

8 a2k3ω− 1
24 a2k2

4ω + 11a2k2k4
24ω

− 3 f 2
1 k1

2ω5 −
3 f 2

1 k2
2

2ω7 −
f 2
1 c2

3
8ω5 +

f 2
1 k3

2ω3 +
3 f 2

1 k2
4

8ω3 −
f2 cos γ

2ωa − σ

. (26)

Therefore, the second approximation is as follows:

u = ε f1
ω2 + εa cos(θ + ωt) + ε2 f 2

1 k2
ω6 + ε2a2k2

2ω2 − 1
2 a2ε2k4 − a2ε2k2 cos(2θ+2ωt)

6ω2

+ a2ε2c3 sin(2θ+2ωt)
6ω + 1

6 a2ε2k4 cos(2θ + 2ωt) + O
(
ε3). (27)

The steady-state motions occur when a′ = γ′ = 0, which corresponds to the singular
points of Equation (26). In this case, the vibration amplitude can be obtained from the
following equation as

f 2
2

4ω2 = [(c1 +
a2c2

8 + a2k2c3
8ω2 +

c2 f 2
1

2ω4 +
f 2
1 k2c3
2ω6 +

f 2
1 c3k4
2ω4 )

2

+(−σ− 3a2k1
8ω −

5a2k2
2

12ω3 −
a2c2

3
24ω + 3

8 a2k3ω− 1
24 a2k2

4ω

+ 11a2k2k4
24ω − 3 f 2

1 k1
2ω5 −

3 f 2
1 k2

2
2ω7 −

f 2
1 c2

3
8ω5 +

f 2
1 k3

2ω3 +
3 f 2

1 k2
4

8ω3 )2]a2.

(28)

By assuming a 6= 0, Equation (28) is rewritten as



Micromachines 2023, 14, 170 8 of 16

σ =
(
− 3k1

8ω −
5k2

2
12ω3 −

c2
3

24ω + 3
8 k3ω− 1

24 k2
4ω + 11k2k4

24ω

)
a2 +

(
− 3k1

2ω5 −
3k2

2
2ω7

+− c2
3

8ω5 +
k3

2ω3 +
3k2

4
8ω3

)
f 2
1 ±

[
f 2
2

4ω2a2− (c1 +
a2c2

8 + a2k2c3
8ω2 +

c2 f 2
1

2ω4 +
f 2
1 k2c3
2ω6 +

f 2
1 c3k4
2ω4 )

2] 1
2

.
(29)

Equations (28) and (29) represent the amplitude of vibration as a function of the electric-
force term, taking into account the influence of scale effect and nonlinear damping for
primary resonance. These equations can be used to analyze the vibration of microresonators.
The amplitude of the third mode is much smaller than that of the first mode, as shown
in Figure 3. In this paper, the amplitude of the third mode excited by electric force is
excessively low, so that only the first mode is considered.
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Figure 3. Amplitude of the response as a function of the load’s amplitude of primary resonance for
σ = 0.

In order to verify the results of theoretical analysis, the time evolution and phase por-
traits of primary resonance are calculated using the Runge–Kutta method for VDC = 1.5 V
and VAC = 0.08 V, as shown in Figures 4 and 5. The multiple-scale method is compared
with the Runge–Kutta method, as shown in Figure 6. The figure indicated that the results
of theoretical analysis are accurate.
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5. Impact of Small-Scale Effect, Nonlinear Damping and Driving Electric Field

It can be seen from Equation (28) that the scale effect has a significant effect on the
amplitude of vibration, as shown in Figure 7. These effects are shown that the scale effect
and the nonlinear damping not only increase the amplitude near the jump point but also
cause the shift of jump points.
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Figure 7. Amplitude of response as a function of the amplitudes of load’s for microbeam for
VDC = 4 V, P0 = 0.01 N, and σ = 0.05.

According to Equation (9), VAC and VDC have similar effects on the vibrational am-
plitude, so we will discuss them. As shown in Figures 8 and 9, the small-scale effect leads
to a significant reduction in the amplitude of vibration. As an example shown in Figure 9,
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when c1 = 0.01, the jump will occur at VAC = 0.095 V for the SDND, while the jump
will occur at VAC = 0.007 V for the SIM. This indicates that the small-scale effect causes
the outstanding shift of jump points, and the vibration amplitudes will decrease with the
increase of damping coefficient.
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Figure 9. Amplitude of the response as a function of the load’s amplitude of primary resonance for
VDC = 4 V, P0 = 0.01 N, and σ = 0.05.

According to Equation (9), the damping coefficients c1, c2, and c3 will increase with
the viscous damping coefficient Ẽ. As shown in Figure 10, the nonlinear damping makes
little difference to amplitude vibration when the load’s frequency is less than the modal
frequency of the microbeam. As shown in Figure 11, given a small external excitation, which
means the values of VAC and VDC are small at the jump point, the amplitude-frequency
response curves of SDND and NDIM are similar, namely, the nonlinear damping barely
affects amplitude vibration.

Figure 12 shows that the impact of nonlinear damping on primary resonance is
reflected mainly in two aspects as follows. Firstly, when the frequency of the load exceeds
the modal frequency, the nonlinear damping causes the left bias. Greater nonlinear damping
has a more significant influence on jump points. Secondly, when the values of VAC and
VDC exceed the values of the jump point, the nonlinear damping may outstandingly affect
the amplitude.
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Figure 10. Amplitude of the response as a function of the load’s amplitude of primary resonance for
VDC = 4 V, P0 = 0.01 N, and c2 = 0.03.
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P0 = 0.205 N.
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Figure 12. Amplitude of the response as a function of the load’s amplitude of primary resonance for
VDC = 4 V, P0 = 0.01 N, and σ = 0.05 given several damping parameters.

It can be seen from Equation (9) that the coefficient C2 in the cubic nonlinear damping
term is worthy of particular attention among the three damping terms. From Equation (5),
we have

C2 =
18d2

h2 C1, (30)

so C2 = 0.045C1, c2 = 1.5c1, and c3 = 3.4c1. Table 2 gives three sets of damping parameters
that will be used in the present paper.
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Table 2. Damping parameters [27].

c1 c2 c3

1.000 × 10−2 1.568 × 10−4 −3.395 × 10−4

2.000 × 10−2 3.135 × 10−4 −6.791 × 10−4

3.000 × 10−2 4.703 × 10−4 −1.000 × 10−3

The nonlinear damping terms are smaller than these of Huang [27] because the beam’s
length in this paper is greater than that of Huang’s. This may explain why nonlinear
damping has little effect on vibrations in this study. According to Equation (30) and
Figure 13, both linear damping c1 and cubic nonlinear damping c2 are positive, which
usually decreases vibration amplitude and shifts jump points towards the right. Particularly,
the quadratic nonlinear damping c3 has an inverse effect that increases the vibration
amplitude and makes the jump point shift to the left. As shown in Figures 12 and 13, c2 and
c3 play crucial roles. According to Huang’s conclusion [27] and Equation (30), the effect of
nonlinear damping can be enhanced by increasing the distance d or reducing the thickness
of the beam h.
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Figure 13. Comparison in amplitude of the response as a function of the load’s amplitude by
considering different nonlinear damping terms.

In summary, the small-scale effect has a significant impact on the mechanical properties
of microbeam resonators. If the small-scale effect is ignored, the load may excite a larger
amplitude than that with the small-scale effect. In fact, by neglecting the small-scale
effect, the nonlinear damping may lead to wrong results. Therefore, small-scale effect
and nonlinear damping must be considered for the accurate description of microbeam
resonators’ vibration.

Now, we focus on the effects of the small-scale effect and the nonlinear damping on
the first mode. So, the electric-force term in Equations (8) and (9).

F = F1 + F2 cos(Ωt) + F3 cos(2Ωt). (31)

Here, F1 = 2π−1Q
(
2VDC

2 + VAC
2), F2 = 8π−1QVDCVAC, F3 = 2π−1QVAC

2. This
means that the external excitations depend on the DC voltage VDC and AC voltage VAC. F3
may be neglected from Equations (28) and (29) due to VDC � VAC.

As shown in Figures 14–16, if other parameters are fixed, the larger VDC and VAC
lead to the bigger vibration amplitude. When the exciting frequency reaches above the
modal frequency, the external excitation and the nonlinear terms cause the response curve
to bend, thus resulting in multi-values of amplitude. This induces the jump of the vibration
amplitude at the bifurcation points.
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Figure 16. Amplitude of the response as a function of the load’s amplitude of primary resonance.

We can use a surface to show the combined effects of VDC and VAC on the vibrational
amplitude, as shown in Figures 17 and 18. The two figures indicate two main conclusions.
Firstly, the effect of VDC and VAC have about equal influence on the amplitude of vibration.
Secondly, when the load’s frequency exceeds the modal frequency, the jump will occur in
the primary resonance.
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Figure 17. The 3D plot of amplitude of the response as a function of the load’s amplitude of primary
resonance for σ = 0.
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resonance for σ = 0.05.

The magnitude of the load is determined not only by the DC and AC voltages but
also by the material parameter Q = ε0b/2md3ω2

0. The sensitivity of the resonator (a small
external load produces a big amplitude) can be improved by increasing the length of the
microbeam. Moreover, reducing the distance d is an effective way to improve the sensitivity
of the device. For example, for the given VAC, a smaller d will lead to a greater amplitude
of vibration, as shown in Figure 19.
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Figure 19. Amplitude of the response as a function of the load’s amplitude of primary resonance
with VDC = 4 V and σ = 0.05 for d.
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6. Conclusions

In the present paper, we propose a new partial differential equation to model nonlin-
ear oscillations of the microbeam resonator with the electric force. This model includes
the small-scale effect and the nonlinear damping terms. We obtain nonlinear ordinary
differential equations for first and third modes by the Galerkin method. Then, their ap-
proximate analytical solutions are obtained by the multiple-scale method for the primary
resonance. And the solutions are used to study the influences of the driving electric field,
small-scale effect, and nonlinear damping on the vibrations of the structure. The results
suggest the following:

(1) Under the same excitation voltage, the amplitudes of the third mode are much
smaller than these of the first mode.

(2) The small-scale effect has a significant impact on both static loading and dynamic
vibration. The nonlinear damping has a small effect on the vibration amplitude when the
load’s frequency is less than the modal frequency. However, when the load’s frequency
is greater than the modal frequency, nonlinear damping will change the jump points of
the load.

(3) Both VDC and VAC have a significant effect on the vibration amplitude for the
primary resonance. When the exciting frequency is greater than the modal frequency of
the microbeam, the external excitation terms and the nonlinear damping terms cause the
response curve to bend and result in the multi-value amplitude and jumping phenomena.
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K.H. and W.X.; formal analysis, D.M. and W.X.; investigation, D.M. and K.H.; resources, K.H.;
writing—original draft preparation, D.M.; writing—review and editing, K.H.; supervision, K.H.;
project administration, K.H.; funding acquisition, K.H. All authors have read and agreed to the
published version of the manuscript.
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