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Abstract: In this paper, we report on an enhancement of mm-wave power performances with a
vertically scaled AlN/GaN heterostructure. An AlGaN back barrier is introduced underneath a
non-intentionally doped GaN channel layer, enabling the prevention of punch-through effects and
related drain leakage current under a high electric field while using a moderate carbon concentration
into the buffer. By carefully tuning the Al concentration into the back barrier layer, the optimized
heterostructure offers a unique combination of electron confinement and low trapping effects up
to high drain bias for a gate length as short as 100 nm. Consequently, pulsed (CW) Load-Pull
measurements at 40 GHz revealed outstanding performances with a record power-added efficiency
of 70% (66%) under high output power density at VDS = 20 V. These results demonstrate the interest
of this approach for future millimeter-wave applications.
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1. Introduction

In recent decades, remarkable progress has been achieved with GaN high electron
mobility transistors (HEMTs) for use in high frequency power amplification and switching
applications. Recent progress has allowed the demonstration of high RF performance up
to Ka-band [1–6]. However, at a higher frequency, the efficiency and robustness of GaN
HEMTs, especially under high drain bias above 15 V, are still limited due to enhanced
trapping effects, reduced electron confinement and self-heating when downscaling the
device size. Currently, the most matured GaN HEMTs are based on a AlGaN/GaN het-
erostructure [6–10]. More recently, Al-rich ultrathin sub-10 nm barrier heterostructures have
received much attention for millimeter-wave applications [11–22]. This is because they can
deliver significantly higher 2DEG sheet carrier density compared to AlGaN/GaN HEMTs
while offering the possibility to highly scale the epitaxial structure as needed when using
short gate lengths [23–25]. Therefore, further reducing the gate length to reach a higher
frequency of operation requires significant changes of standard epitaxial materials and
device design, such as self-aligned gates and an AlGaN back barrier [26,27]. Breakthrough
technologies are needed to achieve simultaneously high efficiency under high output power,
together with high reliability. A number of new device designs have been developed in
this frame, including graded channel HEMTs [28,29] and N-polar HEMT [30–32] showing
attractive performances in Ka-band and above. In order to further push the performance
limits of mm-wave ultrashort GaN transistors, the electron confinement and trapping
effects under a high electric field must be optimized. This requires extensive buffer engi-
neering. Recently, we evaluated the impact of various carbon-doping concentrations into
the buffer with different undoped GaN channel thickness on the device performance [33].
It was shown that a thin GaN channel, typically below 150 nm, combined with a high
carbon concentration into the buffer leads not only to a high electron confinement under
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high drain bias for 100 nm GaN transistors, but also low leakage current at the expense of
trapping effects.

In this work, we insert a thin AlGaN back barrier between a moderately carbon-doped
buffer and an undoped GaN channel with the aim of overcoming the trade-off between
the electron trapping and the electron confinement, enabling superior bias operation and
performances for 100 nm AlN/GaN HEMTs. An extensive Al-content variation has been
performed in the back barrier with the aim of optimizing the related polarization and
preventing punch-through effects under a high electric field.

2. Device Technology

Figure 1a shows a schematic cross-section of HEMT structure grown by metal organic
chemical vapor deposition (MOCVD) on 4 in. SiC substrates. A total of four structures have
been realized, consisting of an AlN nucleation layer and a 5 × 1018 cm−3 carbon-doped
GaN buffer allowing significantly reduced trapping effects when located away from the
channel [33]. This is followed by a 100 nm AlGaN back barrier layer with an Al-content
varying from 4% to 25% in order to evaluate the impact on the electron confinement. A
150 nm undoped GaN channel and a 3 nm AlN barrier layer are then used to benefit from
both a high polarization and a favorable aspect ratio gate length to gate-to-channel distance
in order to mitigate the short channel effects with short gate lengths. Finally, the structures
were capped with a 6 nm in situ SiN layer to passivate the surface states and thus avoid
DC to RF dispersion.
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Figure 1. Schematic cross-section of the AlN/GaN HEMT structure based on a thin AlGaN back
barrier with various Al-content (4% to 25%) (a), TEM view of the device showing the epitaxial stack
as well as the ohmic and Schottky contacts (b) and the energy band diagram of the structures with
different Al-content (c).

The source drain ohmic contacts have been formed by a Ti/Al/Ni/Au metal stack
annealed at 850 ◦C directly on top of the AlN barrier by etching the in situ Si3N4 layer.
Ni/Au T-gates with various gate lengths from 100 nm to 250 nm were then defined by
e-beam lithography. Figure 1b shows a Transmission Electron Microscopy (TEM) view of
the HEMT structure depicting the epitaxial stack as well as the ohmic and Schottky contacts.
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A 200 nm PECVD Si3N4 layer was deposited as final passivation. Hall measurements
at room temperature show a 2DEG concentration ns ∼ 2 × 1013 cm−2 with an electron
mobility ∼ 950 cm2 V−1·s−1 and a sheet resistance Rsheet∼ 300 Ω/�, which is similar for
all structures.

The structure variation of the Al-content from 4% to 25% in the AlGaN back barrier is
labelled as follows: Al-4%, Al-10%, Al-18% and Al-25%. The energy band diagrams of the
structures appear in Figure 1c, showing the increased polarization resulting from a higher
Al-content into the back barrier.

3. DC and RF Characterization

DC measurements have been performed using a Keysight A2902A static modular and
source monitor. Figure 2 shows the output and transfer characteristics of each structure,
with a compliance fixed at 150 mA/mm and swept from VDS = 2 V up to 20 V in order
to extract the drain bias-induced barrier lowering (DIBL), which is a key parameter for
evaluating the 2DEG electron confinement. This required 2 × 50 µm transistors with a
gate length of 100 nm and a gate-to-drain distance (LGD) of 0.5 µm to be measured on the
different structures, Al-4%, Al-10%, Al-18% and Al-25%. The output characteristics show
a maximum rain current of approximately 1 A/mm on all structures, which confirms the
similarity of the 2DEG density. For the structure Al-4%, we observed a severe degradation
of the electron confinement, which is reflected by a large DIBL of 600 mV/V as well as a
strong increase of the off-state leakage current. The degradation of the electron confinement
is attributed to the low Al-content of 4% in the AlGaN back barrier, for which the back
polarization is not high enough to prevent electron injection into the buffer layers under
such a high electric field. Therefore, similar structures with a higher Al-content in the
back barrier have been tested in order to enhance the electron confinement with short
gate lengths. The structure Al-10% indeed shows a drastic improvement of the electron
confinement, by a factor of 4, in terms of the DIBL parameter decreasing from 600 mV/V
for the structure Al-4% to 130 mV/V for the structure Al-10%. As expected, further
increasing the Al-content in the AlGaN back barrier up to 18% and 25% results in a gradual
enhancement of the electron confinement, especially the Al-25% structure with a much
lower DIBL of less than 30 mV/V for 100 nm gate lengths while maintaining low drain
leakage current and high robustness up to VDS = 20 V.
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HEMTs for LGD = 0.5 µm and LG = 100 nm with various Al-content in the AlGaN back barrier.

It can be noted that larger gate lengths were measured in the same way. Figure 3a
depicts the DIBL as a function of the gate length for each structure. The systematic degrada-
tion of the electron confinement is clearly confirmed with short gate lengths (sub-150 nm)
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when using low Al-content in the AlGaN back barrier (e.g., 4% and 10%). On the other hand,
the structures with sufficient Al-content (e.g., >18%) show excellent electron confinement
down to 100 nm gate length while maintaining low leakage current and high robustness
under a high electric field (VDS > 15 V).
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the AlGaN back barrier (a) and open channel pulsed ID–VDS output characteristics of 2 × 50 µm
AlN/GaN HEMT (Al-25%) with LG = 100 nm and LGD = 0.5 µm (b).

Pulsed ID–VDS characteristics at room temperature revealing the current collapse when
using various quiescent bias points appear in Figure 3b. The specific pulsed I–V protocol
based on I–V characteristics has been settled with the following quiescent bias points: cold
point at (VGQ = 0 V, VDQ = 0 V), gate lag at (VGQ = −4 V, VDQ = 0 V) and drain lag at
(VGQ = −4 V, VDQ = 10 V, 15 V and 20 V) using a pulsed width of 1 µs and a duty cycle
of 1%. This required 2 × 50 µm transistors with LG of 100 nm and LGD of 0.5 µm to be
measured, which showed low trapping effects owing to the moderate carbon concentration
of 5 × 1018 cm−2 located 250 nm away from the 2DEG as well as the excellent electron
confinement. Indeed, a correlation between an enhanced electron confinement owing to
the use of a back barrier and a reduction of electron trapping has been demonstrated [34].

Figure 4 shows S-parameters measured on the structure Al-25% from 250 MHz to
67 GHz using a Rhode and Schwarz ZVA67GHz network analyzer. The current gain
extrinsic cut-off frequency (FT) slightly decreases with VDS as expected. On the other
hand, the maximum oscillation frequency (Fmax) increases as a function of VDS, which
further confirms the reduced trapping (Figure 4b). FT/Fmax of 60/270 GHz is achieved at
VDS = 20 V for a 2 × 50 µm with LG of 100 nm and LGD of 0.5 µm (Figure 4a). The small
signal power gain measured at 40 GHz is as high as 17 dB.
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4. Large Signal Characterization

In order to further validate the benefit of low trapping effects combined with an
excellent electron confinement under a high electric field, continuous-wave (CW) and
pulsed Load-Pull measurements have been performed on 100 nm transistors from the
structure A1-25% at 40 GHz. Details of the power bench used for these measurements can
be found in [35]. Figure 5a shows CW PAE and POUT as a function of the injected power
(Pinj) of a 2 × 50 µm AlN/GaN transistor with LG = 100 nm and LGD = 0.5 µm measured in
deep class AB at VDS = 20 V and 25 V. A state-of-the-art PAE above 65% associated with
a POUT of 3.5 W/mm is obtained for an optimum matching PAE. At VDS = 25 V, POUT
increases as expected up to 4.8 W/mm with a peak PAE of 57.5%. It can be noted that the
drop of PAE as a function of VDS is mainly due to self-heating.
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Figure 5. Typical large signal performances at 40 GHz for a 2 × 50 µm AlN/GaN HEMT (Al-25%)
with LG = 100 nm and LGD = 0.5 µm in CW mode up to 25 V (a) and pulsed mode up to 30 V (b).

Figure 5b shows the power performances using the same device in pulsed mode
(pulse width of 1 µs and duty cycle of 1%). An outstanding PAE of 70% is measured with
a corresponding POUT of 4.2 W/mm at VDS = 20 V. This heterostructure enables superior
drain bias operation up to VDS = 30 V while maintaining high PAE of approximately 60%
under a significant POUT of 7.1 W/mm.

Figure 6a shows a summary of the power performance as a function of drain bias,
revealing a rather small gap between CW and pulsed mode. This translates the low trapping
effects and enhanced electron confinement under high drain bias at 40 GHz. Figure 6b
depicts a benchmark of GaN HEMTs representing the PAE as a function of POUT from Ka to
Q-band. Both CW and pulsed RF power performances appear to be favorably comparable
to state-of-the-art GaN HEMTs, reflecting the significant interest in this technology for
millimeter-wave applications. For instance, to the best of our knowledge, a PAE > 65%
combined with a POUT > 3 W/mm at 40 GHz in CW is demonstrated for the first time.
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5. Conclusions

In this work, we evaluated the insertion of a thin AlGaN back barrier with an extensive
Al-content variation (from 4% to 25%), with the aim of pushing the limits in terms of drain
bias operation of AlN/GaN HEMTs with short gate lengths (down to 100 nm) while
maintaining low trapping effects. A higher Al-content in the AlGaN back barrier shows an
excellent electron confinement together with low trapping effects despite the significant
electric field generated by the short gate length under high drain bias (>20 V). Large signal
performances at 40 GHz revealed state-of-the-art power performances for the structure
using 25% Al-content in the AlGaN back barrier combined with a moderately carbon-doped
GaN buffer. This technology paves the way for highly efficient mm-wave GaN HEMTs
delivering superior output power density as needed for next-generation RF power devices.
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