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Abstract: When the free end of a microcantilever is modified by a genetic probe, this sensor can be
used for a wider range of applications, such as for chemical analysis, biological testing, pharmaceutical
screening, and environmental monitoring. In this paper, to clarify the preparation and detection
process of a microcantilever sensor with genetic probe modification, the core procedures, such
as probe immobilization, complementary hybridization, and signal extraction and processing, are
combined and compared. Then, to reveal the microcantilever’s detection mechanism and analysis,
the influencing factors of testing results, the theoretical research, including the deflection principle,
the establishment and verification of a detection model, as well as environmental influencing factors
are summarized. Next, to demonstrate the application results of the genetic-probe-modified sensors,
based on the classification of detection targets, the application status of other substances except
nucleic acid, virus, bacteria and cells is not introduced. Finally, by enumerating the application
results of a genetic-probe-modified microcantilever combined with a microfluidic chip, the future
development direction of this technology is surveyed. It is hoped that this review will contribute to
the future design of a genetic-probe-modified microcantilever, with further exploration of the sensitive
mechanism, optimization of the design and processing methods, expansion of the application fields,
and promotion of practical application.

Keywords: microcantilever; genetic probe; sensitive modification; detection principle; environmental
impact factors; application field

1. Introduction

As a basic microelectromechanical system (MEMS) device, the microcantilever was
researched as early as the 1960s [1,2]. With the invention and development of the atomic
force microscope (AFM) in the 1990s [3], microcantilevers have gradually become a hotspot
of MEMS research over the past two decades. When used for measuring force or mass
changes, the microcantilever is not only a sensitive component that can perceive directly
but also a conversion component that can transfer measurement results into mechanical
deformation [4,5]. When used in biological, medical, or chemical applications, the micro-
cantilever becomes a single-function conversion component. The modification layer coated
on the free end of a microcantilever acts as a sensitive component [6]. The modification
layer can react with or adsorb the samples and generate a corresponding original signal.
The modification layer is an important element that expands the microcantilever’s function
and determines the sensor linearity, response time, reproducibility, and service life.

In 1995, Thundat et al., evaporated a golden film on the surface of a silicon nitride
cantilever for the first time [7,8]. They studied the resonance frequency regularity of a
microcantilever by using the specific adsorption between golden film and mercury vapor,
while obtaining the quantitative relationship between them. Since the early days of micro-
cantilever sensitive modification technology, many scholars have used sputtering, coating,
grafting, molecular self-assembly, and the other methods to modify the microcantilever
in order to further expand the sensor’s application range, explore the detection limit, and
improve detection resolution [9,10].
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Among these modification techniques, due to the high sensitivity, accuracy, and fast
response, the genetic probe has gradually become an important choice for the sensitive
modification of a microcantilever sensor. After genetic probe modification, the micro-
cantilever sensor can convert the molecular recognition signal into nanoscale mechanical
displacement, which can realize high-resolution, high-throughput, and real-time detection
without a label. In many research fields, such as target DNA sequence and protein molecule
analysis, bacterial and virus identification, and compound and heavy metal ion detection,
traditional detection cannot be achieved or has a poor effect, but the genetic-probe-modified
microcantilever sensor achieves fruitful results [11,12]. In this paper, the main genetic probe
modification steps for a microcantilever, including probe immobilization, complementary
hybridization, signal extraction, and signal processing, are introduced in detail. Then, the
detection principle of a microcantilever that uses a genetic probe as a sensing element, the
environmental impact factors of the detection results, and the improvement methods are
summarized. Finally, according to the application progress in nucleic acid, viruses, bacteria,
cells, compounds, and heavy metal ions, the development direction of the genetic probe
modification of microcantilever sensors is discussed. This review is expected to contribute
to the promotion of microcantilever sensor technology.

2. Detection Procedure of Genetic-Probe-Modified Microcantilever

The genetic probe is a known nucleic acid sequence with a detection label, which
can form a stable double-stranded structure with the sample sequence by complementary
binding [13]. The genetic probe can determine the homology degree with a sample sequence
by analyzing the optical, electrical, and other generated signals during the complementary
binding process. There are four basic conditions for a nucleic acid sequence to be used as a
genetic probe [14]:

1. Moderate length. The length of a nucleic acid sequence is generally between 18
and 50 bases. If the sequence is too long, the complementary binding time increases
and the detection efficiency decreases; if the sequence is too short, the specificity of
detection degenerates;

2. No complementary interval. Nucleic acid sequences with a complementary interval
can form a secondary structure by themselves and inhibit the complementary binding;

3. The base composition ratio is constant. The base composition ratio of G and C must
be within the range of 40–60%;

4. Avoid multiple iterations of the same base. In order to reduce the false probability,
the number of consecutive identical bases should be fewer than four.

Nucleic acid sequences that meet the above conditions can be divided into different
types according to the source: DNA [15], oligonucleotide [16], RNA [17], aptamer [18],
and so on. These genetic probes are from different sources, and the detection objects and
preparation methods are different, but the detection procedure can be summarized as in
Figure 1.

2.1. Probe Immobilization

In probe immobilization, a nucleic acid sequence with a known order is used as a
sensing element to modify the microcantilever surface and form a sensor. Probe immobi-
lization is a key technology of sensor preparation, which determines the specific, proximity,
adhesion, and binding force of the sensitive layer to the sample [19]. The immobilization
process even has an effect on the stress change of the microcantilever during detection [20].
In order to enhance the stress difference and improve the sensitivity, the genetic probe is
usually immobilized on the upper surface of the cantilever free end, while the lower surface
is prevented from adsorbing any composition of the sample [21]. The probe immobilization
methods include:

Adsorption. The genetic probe is combined with the inert carrier on the cantilever
surface by interaction caused by hydrogen bonds [22], polar bonds [23], or electrostatic
attraction [24]. The adsorption method is convenient and simple, but the reproducibility
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and storage time are poor because of the reversible adsorption process with environmental
sensitivity. Additional chemical treatment [25] or silica nanoparticles [26] can improve the
adsorption.

Entrapment. The genetic probe is wrapped in polymers [27] or silica gel [28] and then
coated on the microcantilever surface [29]. The entrapment method not only immobilizes
several genetic probes simultaneously on the microcantilever surface, but also improves the
stability of sensitive components. For a polymer-based microcantilever [30], the preparation
and modification can be performed simultaneously. However, the carrier material has a
certain effect on the mass transfer during the testing process, which can result in an increase
in detection time and a decrease in sensitivity.

Covalent binding. Covalent bonding needs to be activated by introducing active
groups such as carboxyl groups [31], amino groups [32,33], and silane [34] on the cantilever
surface or derivative functional groups on the DNA probe [35]. The activation process can
improve the firmness and durability of the probe, but it has an effect on the sensitivity and
specificity.

Molecular self-assembly. The nucleic acid molecules that constitute the genetic probe
spontaneously form a highly ordered monolayer on the microcantilever surface and then
immobilize [36]. The interaction between monolayer nucleic acid molecules is a nonco-
valent bond force such as hydrogen bond, Van der Waals force, or π–π stacking effect.
At present, molecular self-assembly is one of the most common ways to immobilize the
genetic probe, because of the excellent stability and little influence on sensitivity [37]. Before
molecular self-assembly immobilization, a gold film is usually precoated on the surface of
the microcantilever. The gold film can improve the binding capacity by forming a stable
and strong gold–sulfur bond [37,38].
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The above immobilization methods can be used in combination to ensure modifi-
cation efficiency and nucleic acid sequences’ density, as well as prevent modification
layer shedding [39]. With the advent of novel micro- or nanofunctionalization process-
ing technologies such as Dip-Pen nanolithography [40], nanoimprint lithography [41],
Nano-fountain probe [42], Bioplume TM system [43], inkjet printing [44], microcapillar-
ies [45], and piezoelectric printing [46], genetic probe immobilization technology continues
to evolve rapidly.

2.2. Complementary Hybridization

Based on the base pairing principles of nucleic acids, A (Adenine)–T (Thymine) and G
(guanine)–C (Cytosine), the genetic probe on the cantilever can specifically hybridize to the
sample and generate an identification signal. The classical complementary hybridization
includes the following types:

Southern blot [47]. The Southern blot method was first created and named by E.M.
Southern of the University of Edinburgh in 1975. The Southern blot method not only can
detect a DNA sample with a homologous fragment and determine the length, but is also
effective for recombinant plasmids and phages. The process of Southern blot detection is as
follows: extract a DNA sample→ electrophoresis→ denaturation→ transfer membrane
→ blocking → hybridize to strand → detection. Southern blot is reliable and sensitive
but requires radioactive labels such as 32PdNTP and 35SdNTP, and is time-consuming
and often fails to give real-time data. Therefore, Southern blot is rarely combined with
microcantilever sensors.

Northern blot [48]. This method was invented by James Alwine, David Kemp, and
George Stark of Stanford University in 1977, and then named “Northern blot” in contrast
with Southern blot. The Northern blot method is mainly used for RNA sample analysis. The
Northern blot method can detect the exogenous genes that are transcribed in the host and
determine the transformed mRNA molecular weight and content. The process of Northern
blot detection is as follows: extract a RNA sample→ denaturation→ electrophoresis→
transfer membrane→ blocking→ hybridize to strand→ detection. Similar to Southern
blot, the combination of Northern blot and a microcantilever is restricted by radioactive
markers.

Western blot [49]. The Western blot method, once called immunoblotting, was in-
vented by Harry Towbin of the Michel Friedrich Institute for Biological Research in Switzer-
land in 1979. The Western blot method, which can recognize proteins from biological
tissues’ crude extracts, is mainly for protein molecule detection and analysis. The pro-
cess of Western blot detection is as follows: extract a protein sample → denaturation
→ depolymerize (SDS + PAGE)→ electrophoresis→ transfer membrane→ blocking→
antibody/antigen reaction → detection. Antigen–antibody reaction is the key step of
Western blot and also the main reason that this method is suitable for microcantilever
sensors. When the antigen is bound to the antibody, the cantilever bends as a result of the
increased intermolecular repulsion between the antigen–antibody complexes [50]. Similar
to the antibody–antigen system, the biotin–avidin system can be used to enhance the signal
intensity of complementary hybridization. First, biotin is immobilized on the preprocessed
surface of a microcantilever by covalent doping or electrostatic adsorption. Then, a nucleic-
acid-sensitive layer forms due to the specific affinity between biotin and avidin [51]. The
binding force between biotin and avidin is more than six orders of magnitude higher than
that of the ordinary antigen–antibody reaction, so the obtained modification layer is more
solid and stable [52]. However, the modification procedure is more complicated, and the
cost increases correspondingly.

In addition, according to technical characteristics of detection processes, the com-
plementary hybridization also includes dot blot [53], slot blot [54], and in situ blot [55].
Dot blot and slot blot, named after certain special dosing devices, are rapid quantitative
detection techniques derived from Southern blot. In situ blot is a method that combines
gene hybridization with histochemistry. In situ blot detection, performed on cell or tissue
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specimens, can achieve target nucleic acids’ precise localization and quantification [56].
In addition, in situ blot supports nonisotope labeling (biotin, digoxin, and so on), which
is characterized by a long storage time and convenient use in detection. The detection
of a single-base mismatch using an in situ blot-modified microcantilever is shown in
Figure 2 [57]. The spin microcantilever is partly immersed into the liquid, and the captured
DNA can be immobilized on the surface. Next, the target DNA and the silica nanoparticle-
enhanced probe DNA are added in turn. Meanwhile, the vibrational frequency of the spin
microcantilever is measured after each step.
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The specificity of complementary hybridization is excellent and can even achieve
single-base mismatch detection. However, the mass sensitivity of the genetic-probe-
modified cantilever still needs to be improved due to the nucleic acid being very light
weight, especially the short oligonucleotide with almost no weight. As shown in Figure 3,
using gold nanoparticles (GNPs) as an additive can improve the mass sensitivity of the
cantilever [58–60]. First, the cantilever surface is coated with gold film, and then SH-DNA
probes are immobilized through the Au–S chemical bond; meanwhile, mercapto hexanol
spare parts are shut down on the cantilever surface. After DNA hybridization detection,
the sensor passes streptavidin-modified GNPs for an hour. According to the principle of
biotin–streptavidin combining, the target’s DNA combines with GNPs while hybridiza-
tion information amplifies. On this basis, multilevel amplification can also be achieved.
The methods that can improve sensor quality sensitivity also include MEMS preparation
technology progress, signal extraction method update, and so on.

2.3. Signal Extraction and Processing

The molecular recognition signal generated during the complementary hybridization
process is converted to microcantilever displacement at the micro- or nanoscale. Appropri-
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ate methods of signal extraction and processing are used to extract these small displace-
ments and then convert them to standard signal output by using amplification, filtering,
or another method. Strictly speaking, signal processing is not part of a microcantilever
sensor; however, the microcantilevers based on the IC fabrication process have a similar
preparation process to that of the signal processing circuit, so many microcantilevers have
an integration signal processing function [61,62].
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The microcantilever displacement is usually caught by optical or electrical methods.
Optical extraction methods can be further divided into optical interference methods [63]
that measure the interference fringe displacement between reflected light and reference
light, and optical lever methods [64] that amplify microdisplacement by reflecting light. In
2011, Kang et al. [65] proposed an optical differential signal extraction system consisting
of two microlens arrays (MLA1 and MLA2) and a sensing/reference microcantilever pair,
as shown in Figure 4. The change in surface stress between two microcantilevers can be
determined by monitoring the phase difference. Optical differential detection can eliminate
the influence of environmental disturbances including nonspecific adsorption, pH, ionic
strength, and temperature. When a cocaine-specific aptamer probe is modified on the
microcantilever surface, the detection limit of cocaine can be as low as 25 µm (11 mN/m).
The optical signal extraction method is derived from AFM. The main advantages of this
method are high accuracy and strong anti-interference. However, a detection system
based on the optical method requires a CCD camera [66], PSD [67] or tunable laser [68],
and precision optical circuit to catch the reflected light caused by the microcantilever, so
the system is difficult to miniaturize. However, in 2018, Li et al. [69] fabricated polymer
microcantilevers onto the end of standard single-mode fibers using ns-laser machining,
which makes the miniaturization of optical detection methods possible, but more reliable
immobilization techniques on the cantilever surfaces will be a key issue to solve in the
fabrication of these lab-on-fiber biosensors.
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Figure 4. The aptamer-modified microcantilever sensor for cocaine detection. (A) Schematic rep-
resentation of the sensing strategy for cocaine detection. (B) Optical circuit of differential surface
stress sensor. Laser wavelength is 635 nm. A pair of microlens arrays with lenses of 240 and 900 µm
diameter, and pitches of 250 µm and 1 mm, respectively, were used to direct the beams toward the
sensing/reference pair [65].
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As shown in Figure 5, electrical measurement methods include: the capacitance
method based on a capacitive sensor [70,71] (Figure 5A), the piezoelectric method based
on material forward piezoelectric effect [72,73] (Figure 5B), and the piezoresistive method
based on material piezoresistive characteristics [74,75] (Figure 5C). The capacitance method
has the highest accuracy of the electrical measurement methods. However, the microcan-
tilever with a capacitance sensor is complicated and difficult to assemble. In addition, when
used in a liquid environment, the measurement range of the capacitance sensor is narrow
and the drift is large. The piezoelectric method is easy to integrate and not limited by the
environment. However, the reverse piezoelectric effect is often used to drive a dynamic
cantilever. It is difficult to avoid interference when using both the forward and reverse
characteristics of a piezoelectric material at the same time. A microcantilever that uses the
piezoresistive method is easy to prepare, low in cost, and not as complicated as decoupling
methods are, but the detection accuracy is the lowest.
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Figure 5. SEM images of microcantilever based on electrical measurement methods. (A) Microcan-
tilever with comb capacitance detection, driver electrode, and CMOS signal amplification circuit
proposed by Forsen et al. in 2005 [70]. (B) In 2007, Lee et al. achieved self-excited dynamic detection
of the poly T-sequence DNA and a variety of proteins by using a PZT microcantilever [72]. (C) In
2021, Tian et al., developed a polyimide (PI)/Si/SiO2 based piezoresistive microcantilever biosensor
to achieve a trace level detection for aflatoxin B1 [75].
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To enhance electrical measurement methods’ performance, many scholars have pro-
posed improvement schemes. As shown in Figure 6A, in 2006, Shekhawate et al. [76]
measured the nanometer-level deflection of a microcantilever by embedding a metal-oxide
semiconductor field-effect transistor (MOSFET) into the cantilever to replace the traditional
varistor. The silicon nitride cantilever is a reference, and the gold-coated one is used as a
sensing cantilever. Due to the low noise, high sensitivity, and direct readout, this approach
is suitable for specific binding events with biotin and antibodies detection. Figure 6B
shows how, in 2014, Lee et al. [77] reported an optocalorimetric, self-powered sensor for the
quantitative detection and discrimination of DNA strands. The piezoelectric and pyroelec-
tric properties of the PZT microcantilever are exploited in the quantitative detection and
discrimination of adsorbed DNA strands with their spectral characteristics. The detection
limit reached the order of a nanogram. Figure 6C shows how, in 2018, Ku et al. [78] inte-
grated a temperature compensation resistor on the piezoresistive microcantilever, which
can reduce the influence of the resistance thermal effect and dual piezoelectric wafer effect
from 25.6 µV/◦C to 0.3 µV/◦C.
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Figure 6. Improved scheme of electric signal extraction method. (A) Schematic of the interaction
between probe and target molecules on an embedded-MOSFET cantilever system [76]; (B) schematic
diagram of infrared pyroelectric detection system based on a PZT microcantilever [77]; (C) piezoresis-
tive microcantilever sensor chip design with temperature compensation resistance [78].
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In addition to the above optical and electrical methods, the magnetic force also can be
used for the ultrasensitive detection of a microcantilever, by establishing a link between
very weak molecular interaction and the magnetic force [79,80]. Meanwhile, there are
some special signal extraction methods adapted to the genetic probe modification of a
microcantilever. As shown in Figure 7, in 2015, Wu et al. [57] combined a nonlinear optical
mass sensor using a hybrid spin microcantilever and the nanoparticle-enhanced technique,
to detect and monitor DNA mutations. Even one base pair mutation in the target DNA
sequence can be identified accurately and in real time.
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3. Detection Principle of Genetic-Probe-Modified Cantilever

In 1997, Strey et al. [81–83] studied DNA double helix interaction force by combining
experimental measurement and theoretical analysis, which was the foundation for the signal
conversion mechanism of a genetic-probe-modified microcantilever. In order to eliminate
interference from the external environment during the detection, it is necessary to find
ways to further improve sensitivity, optimize the genetic-probe-modified microcantilever
design, and accelerate its practical applications, and much theoretical research must be
done, including study relating to the deflection or frequency shift mechanism with probe
immobilization or hybridization action on the microcantilever surface as well as analyzing
the effects of DNA molecular density, chain length, and conformational entropy on the
mechanical response of the microcantilever.

3.1. Deflection Principle

In 2000, Fritz et al. [21], the first group that immobilized a genetic probe on a microcan-
tilever, attributed the deflection to differential stress between the modified and unmodified
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surfaces of the microcantilever. In 2001, Wu et al. [84] studied the origin of surface-stress
change by using DNA hybridization experiments on a cantilever. The cantilever deflection
lies in the interplay between changes in configurational entropy and intermolecular ener-
getics induced by specific biomolecular interactions (such as DNA–RNA, antigen–antibody,
protein–ligand, and DNA–protein), and the deflection direction can be changed by adjust-
ing the configurational entropy and intermolecular interactions. In 2002, in subsequent
research [85], they proved that the direction or magnitude of microcantilever deflection
can be manipulated by adjusting the configuration entropy or intermolecular interactions
(such as the number of mismatch points). Also in 2002, McKendry et al. [86] suggested
that the nanomechanical motion of a microcantilever originates predominantly from steric
hindrance effects and depends on the concentration of DNA molecules in solution. In
2003, Liu et al. [87] proposed that the nanomechanical bending of a cantilever is caused
by the flexoelectric effect [88], instead of the conformational entropy force suggested by
Wu et al. Based on the above theory, they verified an apparent semimicroscopic relation-
ship between cantilever deflection, ssDNA length, and salt concentration, but could not
define the percentage of ssDNA probe hybridization. In 2004, Alvarez et al. [36] studied
the interaction forces responsible for microcantilever bending when the self-assembled
monolayer hybridizes with the complementary nucleic acid. They concluded that the
main source of surface stress during the immobilization is the covalent bond between
the surface gold atoms and the sulfur atoms of the thiol linker of the DNA probes, while
the only contribution to the surface stress during hybridization is intermolecular forces
between neighboring DNA molecules. In 2006, Huber et al. [89] believed that the surface
stress generated when transcription factors bind to specific sites on double-stranded DNA
oligonucleotides is the cause of cantilever deflection. In the same year, Stachowiak et al. [90]
found that the cantilever surface stress generated by the complementary hybridization
process is a combined effect of DNA strand length, graft density, and hybridization effi-
ciency. In 2009, Arroyohernández et al. [20] observed the immobilization process of the
ssDNA-modified layer using X-ray diffraction and X-ray photon spectroscopy, and they
found that the sign of microcantilever stress difference is determined by the changes in
structure and kinetic energy during S–Au bonding. In 2010, Godin et al. [91] explored
various mechanisms associated with molecular adsorption on the cantilever surface and
their impact on induced surface stresses. The results showed that the surface stress resulting
from adsorption-induced changes in the electronic density of the underlying surface is up
to 2–4 orders of magnitude larger than that resulting from intermolecular electrostatic or
Lennard–Jones interactions.

3.2. Detection Model

Based on the above deflection principle, many scholars have proposed semiquanti-
tative or quantitative models to explain and predict the response changes of a cantilever
sensor. In 2002, Hagan et al. [92] presented a model that can account for the cantilever de-
flections resulting from the adsorption and subsequent hybridization of DNA molecules. In
the model, the forces determining equilibrium cantilever deflection can be divided into elec-
trostatic free energy (FELEC), free energy resulting from macromolecular conformational
entropy and nonelectrostatic interactions (FPOLY), free energy contribution associated with
the osmotic pressure of the counterions (FOSM), and a mechanical energy penalty asso-
ciated with bending the cantilever (ECANT). For dsDNA, the model results showed that
the dominant factor determining cantilever deflections is hydration force, not electrostatics
or conformational entropy; for ssDNA, the adsorption deflection is smaller than that for
dsDNA, which agrees with Fritz et al. [21] but is not consistent with Wu et al. [84]. They also
used the model to highlight the importance of grafting densities and found the influence of
disordered grafting points on deflection. However, a model calculation based on molecular
equilibrium adsorption is not relevant to nonspecific segment/surface interactions.

In 2006, the group of Zhang [93,94] started work on a model of stresses in a multi-
layer microcantilever. In 2007, they proposed a laminated cantilever model combining a
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piezoelectric biolayer in continuum mechanics, the linearized Poisson–Boltzmann equation
from statistical mechanics, and the scaling method from polyelectrolyte brush theory [95].
In this model, the cantilever consists of four layers, including a Si layer, a Ti layer, an
Au layer, and a ssDNA molecular brush biolayer immobilized by self-assembly of the
thiol group. They analyzed the relationship between the nanomechanical deflection of
the cantilever and factors such as the nanoscope structural features of ssDNA molecules,
buffer salt concentration, and macroscopic mechanical/piezoelectric parameters of DNA
probes using this model, and concluded that the piezoelectric effect of the biopolymer
brush layer is the main factor in cantilever nanomechanical bending. In 2008, the group
introduced the DNA liquid crystal equation [83] into the above four-layer microcantilever
model, and proposed an energy model for the nanomechanical study of cantilever–DNA
deflection [96]. This model also considers the contribution of the normal strain at the cen-
troidal principal axis to the chip deflection. The numerical results showed that cantilever
deflection enhances with an increase in length of DNA chains, and the interchain distances
should be carefully controlled to no less than 4 nm during the process of probe molecule
self-assembly. In 2009 [97], by revising the analytical Stoney’s equation, they presented
an alternative two-variable model to formulate the overall free energy of dsDNA probes.
The model included electrostatic energy between neighboring strands, hydration energy
between DNA molecules and hydrogen bonding networks in water, and conformational
fluctuations of dsDNA. The computation results showed that predictions by the first-order
approximation are in good agreement with the experimental data from Stachowiak [90]
in a 1.0 M sodium phosphate buffer. In 2009 [98], the group investigated the influence of
the hybridization exothermic effect on the nanomechanical deflections of a cantilever by
using an alternative model for the thermoelasticity of a laminated cantilever. In 2010 [99],
they studied the influence of screened electrostatic repulsion in the microcantilever DNA
grafting process by combining their alternative two-variable model [97] with the sphere–
chain model for ssDNA [92]. The model computation results from the Monte Carlo method
showed that the cantilever deflections grow with the increase in grafting density or nu-
cleotide number. In 2011 [100], in order to reveal the relationship between nanomechanical
packing deflections, based on the model in [81,87], the group formulated a four-layer
model for cantilever deflection by inducing a counterion osmotic effect. The model showed
that the contribution of the normal strain at the centroidal principal axis to the cantilever
deformation and the contribution of the Au and Cr layers to the mechanical energy of the
cantilever cannot be neglected. Moreover, the packing deflections grow with an increase
in grafting density, chain length, or buffer salt concentration. In 2013 [101], to describe
the nonuniformity of DNA probe thickness, the group improved the empirical model for
osmotic experimental systems [81–83] under the net charge assumption. The parameters of
the new multiscale model are from the curve fitting of the experimental data, which can
predict the inhomogeneity and elastic properties of a DNA biofilm on a microcantilever.
In 2015 [102], to refine the above multiscale model [101], the group carried out a micro-
cantilever bending experiment and obtained the empirical parameters of interactions in
ssDNA film. By comparison with the simulation results, it was found that the average
spacing assumption of the traditional DNA stacking model greatly underestimated the
film elastic modulus. In 2021, the latest research results of Zhang [103] led to an alternative
mechanical model to characterize the clamped-end effect on the static detection signals of
the DNA microcantilever. In this model, the clamped-end effect on the static deflection
signals is discussed, and the importance of the neutral axis shift effect is also illustrated for
an asymmetric laminated microcantilever.

In addition to the above studies, in 2007 Merlo et al. [104] investigated the electrostatic
field within DNA molecules and its force consequently acting on the cantilever by estab-
lishing a cylinder model based on the electrostatic potential of dsDNA molecules arrays
immersed in an ionic solution. In 2008, Sushko et al. [105] reported the first quantitative
multiscale model to describe the transduction of specific biochemical reactions into mi-
cromechanical cantilever bending motion. Considering the effects of the chemical, elastic,
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and entropic properties of the cantilever material and sensing layer, the model can predict
the cantilever deflection direction and magnitude upon pH variations of the buffer solution
and for various chain lengths of SAMs. Another achievement of this model is identifying
the biaxial elastic modulus of the sensing layer for improved detection sensitivities. In
2009, to study the chemomechanical response origin of cantilever arrays, Sushko et al. [106]
proposed a quantitative mesoscopic model that includes two competing components to the
differential deflection: a specific chemical or physical reaction on the active cantilever and
the elastic property difference of the active or reference coatings. In 2010, to predict dsDNA
surface coverage and induced surface stress, Huang et al. [107] proposed adsorption and
interaction models that can provide a clear quantitative explanation for the practical limit
on the number of base pairs.

3.3. Impact of Environmental Factors

From the research results of the deflection principle and detection model, it can be
seen that the microcantilever deflection is affected not only by sample concentration, sensor
hierarchy, DNA probe grafting density, chain length, and other factors, but also by many
environmental factors.

3.3.1. Temperature

In 2002, Yue et al. [108] used chip-scale high-throughput microcantilever arrays to
study the effect of detection time on thermomechanical sensitivity. The results showed
that the long-term drift of microcantilevers can reach 2.1 nm/min, so the test should be
completed within 10 min. In 2006, Biswal et al. [109,110] found that, after heating, the
dissociation and melting processes of the dsDNA-modified layer would lead to changes in
the electrostatic, anti-ionic, and hydration forces between the remaining DNA molecules
on the microcantilever surface. Furthermore, the melting temperature of the dsDNA
modification layer is a function of chain length and salinity. In 2013, Joseph et al. [111]
studied the thermal induction influence on local and global structures by modifying the
DNA molecule with a hairpin structure on the surface of the microcantilever. The results
showed that the microcantilever deflection curve is a function of temperature.

3.3.2. Salinity

In 2003, by inducing a microcantilever deflection experiment based on DNA adsorbing
hybridization, Liu et al. [87] verified that there is a semimicroscopic relationship between
the amount of microcantilever deflection, the length of ssDNA modification layer, and
the concentration of buffer salt. In 2006, Stachowiak et al. [90] found that, by changing
the ionic strength of a solution, the grafting density of the DNA-modified layer can be
controlled, thus establishing a relationship with the surface stress. In the same year,
Zhang et al. [93,95] studied the effect of the concentration and type of buffered salt solution
on the microcantilever’s deflection. The results showed that the osmotic pressure generated
under high salinity contributed much to the deflection of the microcantilever, but the
deflection direction would be decided by the competition between salt ions, H+, and OH−.
In 2011, Mertens et al. [112] found that the NaCl concentration has a certain influence on the
interaction between ssDNA-modified microcantilevers and spermidine. With a decrease
in NaCl concentration, the surface stress changes from repulsion to gravitation, and the
value increases gradually. In 2017, Wu et al. [113] pointed out that, due to the competition
between microgravity and repulsion, the piezoelectric coefficient of the low-density dsDNA
film in the multivalent salt solution is negative, while the piezoelectric coefficient of the
high-density film is positive. In addition, the piezoelectric coefficient change is closely
related to the microcantilever signal.

3.3.3. Humidity

In 2008, Mertens et al. [114] studied the influence of humidity on a ssDNA-modified
microcantilever by controlling the proportion of dry and wet nitrogen in the environment.
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The results showed that water adsorption plays an important role in the process of ssDNA
membrane self-assembly. In 2014, Domínguez et al. [115] investigated the influence of
humidity on the swelling and ablation process of the self-assembled DNA modified layer. It
was found that the compressive stress on the microcantilever surface is proportional to the
humidity, and reaches a peak when the humidity is 2–3%. In 2017, this research group [116]
also found that the Young’s modulus of the ssDNA film is proportional to humidity and
reaches a peak value when the grafting density is 3.5 × 1013/cm2.

3.3.4. pH

In 2005, Shu et al. [117] found that the motion direction and amplitude of a microcan-
tilever with an integrated DNA motor can be adjusted by the pH value and ionic strength
of the buffer solution, and there is a sharp change in the surface stress direction of the
microcantilever when pH = 6.7. In 2012, Zhang et al. [118] investigated the pH effect on the
hybridization efficiency by using high-density ssDNA modification of a microcantilever.
The results showed that the hybridization efficiency is lower at a lower pH (4.5) and reaches
a peak at a higher pH (7.5–8.5). In 2017, the same group [119,120] studied the effects of pH
on the electrical and mechanical properties of DNA films. They found that the competitive
relationship between H+ and OH− determines the microcantilever deflection direction, and
the uniformity of ion distribution also affects the stiffness of DNA film (the film is softer
under acidic conditions).

4. Application of Genetic-Probe-Modified Cantilever

In 2000, a group led by Fritz [21] published an article in Science about using genetic-
probe-modified microcantilevers for the first time to detect oligonucleotides. In the follow-
ing 20 years, genetic-probe-modified microcantilevers have achieved fruitful applications
in the fields such as DNA, RNA, viruses, bacteria, proteins, and trace ions.

4.1. Nucleic Acid

In 2002, the McKendry group of IBM [86] reported a microcantilever array that can
sequence-specifically detect unlabeled DNA targets in 80-fold excess of a nonmatching
DNA background solution. This proves the excellent anti-interference ability of a genetic-
probe-modified microcantilever. In 2003, Su et al. [121] detected DNA strands by using a
microcantilever with gold-nanoparticle-modified genetic probes in dynamic mode. After
the amplification process, by catalyzing the nucleation of silver, the method can detect
target DNA at a concentration of 0.05 nM or lower. In 2005, Ilic et al. [122] further improved
the dynamic detection sensitivity by using scanning optical–thermomechanical motion
excitation method. The sensitivity of their cantilever array was sufficient to detect the
binding of a single large biomolecule without labeling. In 2006, Zhang et al. [123] first
demonstrated the nanomechanical analysis of multiple differential gene expression of 1–8U,
a potential marker of cancer progression or viral infection, by using cantilever–array sensors
in a complex background without amplification or labeling. Also in 2006, Huber et al. [89]
investigated the interaction between dsDNA and two different DNA-binding proteins, the
transcription factors SP1 and NF-κB, by using cantilever arrays. This demonstrated the
feasibility of micromechanical cantilever sensors for investigating transcription factors.
In 2007, Kishan et al. [124] successful detected small DNA sequences at a femtomolar
concentration in human serum by using a 15-mer ssDNA-modified piezoelectrically excited
cantilever. In 2010, the group of Miyachi [125] reported a method of systematic evolution of
ligands by an exponential enrichment (SELEX) using a cantilever based on AFM to obtain
aptamers that have a strong affinity for target molecules. Thrombin, at concentrations as
low as 0.2 nM, can be detected by the AFM-SELEX method [126]. In 2014, Mishra et al. [44]
modified short nucleic acid sequences onto the microcantilever array surface by using
inkjet printing technology. This method improved the detection sensitivity of single-chain
peptide nucleic acids (PNA) by about 20-fold, and the detection limit reached the single-base
misalignment level. As shown in Figure 8, in 2019, Park et al. [127] modified microcantilever
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arrays using DNA probes, Au nanoparticles, and mismatch recognition proteins (MutS).
Single-nucleotide polymorphisms (SNPs) of cancer markers can be successfully realized
with a detection limit of 100 fM using this method. In addition, to trace detection of nucleic
acids and antibodies, a microcantilever modified by genetic probes can also be used for
research into DNA enzyme digestion [128] or DNA strand elasticity [129].
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4.2. Viruses, Bacteria, and Cells
4.2.1. Viruses

A virus is an acellular organism that contains only nucleic acid (DNA or RNA),
parasitizes cells, and proliferates by replication. Viruses are tiny but harmful, and they
have caused global public health problems many times. Therefore, viruses are among the
main detection objects of a genetic probe modification microcantilever.

In 2006, Sreepriya et al. [130] detected feline coronavirus at a concentration of 0.1 µg/mL
using a microcantilever modified by feline coronavirus antiserum. The results confirmed
the suitability of a genetic-probe-modified microcantilever for the detection of severe acute
respiratory syndrome-associated coronavirus (SARS-CoV). In 2007, Hwang et al. [131] used
an RNA aptamer as a microcantilever sensitive layer, and successfully detected hepatitis C
virus (HCV) at a concentration of 100 pg/mL. In 2009, Kim et al. [132] introduced an in/ex
situ monitoring method of the HBV by using PZT-embedded microcantilever sensors. The
DNA probe (37-mer including T10 spacers) specific to HBV DNA is immobilized on the
gold-coated microcantilever to achieve the recognition layer. Moreover, to increase the DNA
binding efficiency, an ethylene glycol spacer (HSC11-EG3-OH) is backfilled on the modifi-
cation layer. In 2010, Cha et al. [133] reported a dynamic microcantilever biosensor for HBV
DNA detection. When using silica nanoparticles (SiNPs) containing rhodamine B isothio-
cyanate (RITC) for signal amplification, the detection limit of target HBV DNA (243-mer
nucleotide) was found to be up to the femtomolar level. In 2012, Shu et al. [134] successfully
detected the grouper nerve necrosis virus using a silicon nitride microcantilever modified
by antimicrobial peptides (AMPs). In 2013, Abdullah et al. [135] successfully detected tar-
get ssDNA and ssRNA in human immunodeficiency virus (HIV) by using a silicon-based
microcantilever modified by mercapto-oligonucleotides. In 2015, Kim et al. [136] used the
specific primer of human papilloma virus (HPV) as the sensitive layer of silicon-based
varistor microcantilever and combined it with PCR amplification to successfully detect
HPV. In 2022, Wang et al. [137] developed an ultrasensitive nanomechanical method based
on a microcantilever array and PNA probes for the detection of SARS-CoV-2 virus. The
detection process is described in detail in Figure 9, while the method has an extremely
low detection limit of 0.1 fM (105 copies/mL) for an N-gene-specific sequence (20 bp). In
addition to virus detection, with the help of an AFM system, a microcantilever can also
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carry out a series of operations such as imaging, operation, and transmission monitoring of
a single virus [138].
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4.2.2. Bacteria

The structure of bacteria is much more complicated than that of viruses. For molecular
biology testing, specific nucleic acid fragment sequences of pathogenic bacteria are the
detection target of a microcantilever.

In 2013, Rijal et al. [139] detected Escherichia coli O157:H7 (EC) in beef samples by using
a piezoelectrically excited cantilever with the toxic gene stx2 as a sensing layer. Compared
to the traditional antibody–antigen method (2500 cells/mL), a much lower concentration
can be detected by this method without any culture enrichment or amplification (under
700 cells/mL). In 2014, Xu et al. [140] used porous silica functionalized with NH2 as the
medium layer of a piezoresistive microcantilever, then the streptomycin avidin was blocked
with bovine serum albumin to form a sensitive layer on the medium layer. The rapid real-
time detection of Escherichia coli was successfully realized by using the enzyme cleavage
reaction between the sensitive layer and gene stx2 of O157:H7. In 2019, Zheng et al. [141]
fabricated a gold-nanoparticle-amplified microcantilever array biosensor that can determine
in parallel ultralow concentrations of foodborne bacteria, including Escherichia coli O157:H7,
Vibrio parahaemolyticus, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Shigella.

In addition to Escherichia coli, in 2015, Khemthongcharoen et al. [142] detected Vibrio
cholerae by combining a gold-coated piezoresistive microcantilever with a self-assembled
monolayer (3-mercaptopropionic acid (MPA), for the immobilization of a specific DIVA
probe via avidin). As shown in Figure 10, in 2016, Etayash et al. [143] modified a bima-
terial dynamic microcantilever (BMC) with monocyte proliferation monoclonal antibody
(mAb) or monocyte proliferation, targeting antibacterial peptide (AMP). With the help of
a microfluidic channel integrated on the microcantilever, not only was the detection of
Listeria monocytogenes successfully realized, but the response of bacteria to antibiotics could
also be monitored in real time. In 2021, Wang et al. [144] combined an antibody-modified
microcantilever with AC thermoelectric technology, which improved the capture efficiency
of Vibrio parahaemolyticus and shortened the detection time. Recently, Yersinia [145] and My-
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cobacterium tuberculosis [146] were also successfully detected by a genetic-probe-modified
microcantilever sensor. In addition to detection and drug interaction research, a microcan-
tilever can also be used for bacterial growth monitoring [147].
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Figure 10. A schematic representation of the BMC and its multimode operation [143]. (A) BMC filled
with bacteria supported on a silicon substrate; (B) SEM image of the cross section of an inlet; (C) cross
section of microchannel on BMC modified with mAb or AMP; (D) fluorescent image from the top
side of the BMC, filled with bacteria; (E) SEM image of the tip of the BMC; (F) deflection of BMC
caused by heat when bacteria absorb infrared light; (G) resonance frequency changes with the quality
of bacteria; (H) selective absorption of infrared light by bacteria.

4.2.3. Cells

Cells are the basic structural and functional units of an organism. All organisms except
viruses are known to be made up of cells. The structure of cells is complicated, so the
targets are specific nucleic acid sequences or another biomarker when detecting cells by a
microcantilever.

Cancer cells are one of the highest detection priorities of microcantilever sensors. In
2006, Dell’Atti et al. [24] immobilized the biotin probe on the surface of a piezoelectric
microcantilever through a “glucan–streptomycin” avidin medium layer, and successfully
detected mutations in the TP53 gene in leukemia cells. In 2010, Ricciardi et al. [148] used
receptor–ligand and antibody–antigen systems to modify a dynamic microcantilever, and
successfully detected the angiogenesis marker Ang-1 of cancer cells. The results also
showed that the antibody–antigen method is more advantageous. In 2011, Loo et al. [73]
detected HER2, a biomarker commonly overexpressed in the blood of breast cancer patients,
using a magnesium niobate–lead titanate/tin piezoelectric material microcantilever (PEMS).
This was the first report of the detection of naturally occurring cancer biomarkers in
serum by a cantilever. In 2014, Le et al. [149] used a silicon nitride microcantilever with
a self-assembled monolayer to detect Golgi protein 73, which is a serum biomarker used
for diagnosing human hepatocellular carcinoma. The concentration detected was up to
400 ng/mL.

In recent years, with the development of MEMS technology, microcantilevers have
been able to detect intact cells. In 2015, Etayash et al. [150] demonstrated a microcantilever
that functionalized with a cancer-specific peptide 18-4 (WxEAAYQrFL) and showed signifi-
cant deflection on breast cancer cell (MCF7 and MDA-MB-231) binding. The detection limit
was 50–100 cells/mL, and the capture yield was 80%. In 2016, Chen et al. [45] developed a
microcantilever array with a TLSIIa aptamer probe for label-free detection of liver cancer
cells (HepG2). As shown in Figure 11A, four microcantilevers were modified with ap-
tamers as sensing microcantilevers (pink), and the other four as reference ones (yellow). ∆x
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indicates the differential signal induced by the interaction between aptamers and HepG2
cells. The gray arrow indicates the flow direction of the binding buffer. The detection linear
relation ranged from 1 × 103 to 1 × 105 cells/mL, with a detection limit of 300 cells/mL
(S/N = 3).
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As shown in Figure 12, in 2018, Etayash et al. [151], successfully detected breast cancer
cells (MDA-MB231) by using a microcantilever array composed of a decapeptide-modified
working sensor and a 6-hydroxy-1-hexanethio-modified reference sensor. The research
group also used normal mammary epithelial cells (MCF10) as a control group, changing
the arrangement of modified probes to study the differences in signal pathways between
cancer cells and normal cells. In addition, the microcantilever can be used to study the
dynamic deformation difference between cancer cells and normal cells, and the results may
indicate a new potential marker to identify cancer cells [152].

4.3. Other Substances
4.3.1. Proteins

Proteins, which are composed of various amino acid molecules in proportion, are not
only an important component of human cells and tissues, but also an important participant
in life activities through constant metabolism and renewal in the body.

In 2004, Savran et al. [153] modified the aptamer probe on the working cantilever
surface while there was a nonspecific oligonucleotide probe on the reference cantilever,
and successfully recognized specific proteins containing thrombin and Taq DNA poly-
merase. In 2007, Yoo et al. [154] modified an avidin-sensitive membrane on the surface
of a microcantilever by self-assembly and monitored in real time the binding process of
a streptavidin ligand. In 2010, Wang et al. [155] used a microcantilever modified by a
platelet-derived growth factor (PDGF) aptamer probe to quantitatively study the effect of
temperature on the binding process between the probe and PDGF. As shown in Figure 13,
in their subsequent research from 2013, they integrated a microcantilever array modified
by a PDGF aptamer on the microfluidic chip, and built a plug-and-play detection platform
with a DVD-ROM as the optical detection module, which can realize fast, low-cost, and
parallel detection [156]. In addition, in 2012, Zhai et al. [157] modified a microcantilever
with RNA aptamers to detect lipid carrier protein (Lipocalin-2). The system showed a
detection limit of 4 nM, and the study results also demonstrated that the RNA aptamer can
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bind to the siderophore binding pocket of the protein. In 2015, Liu et al. [158] modified
a dynamic microcantilever with the biotin–antibiotin system to detect ricin protein. In
2018, the group of Agarwal [159] detected a heart-type fatty acid-binding protein (h-FABP)
in a trace amount (100 ng/mL) by employing a piezoresistive SU-8/CB microcantilever
platform for the first time. In 2020, Dilip et al. [160] tested cardiac troponin-I by using a a
SiN–PolySi–SiO2 composite microcantilever modified with HIgG and Anti-HIgG.
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Figure 12. Nanomechanical detection of cancer cells in a model of breast cancer. (A) Schematic
diagram showing the attachment of malignant cells to the cantilever surface; (B) close-up image
of the cell–receptor complex on the nanomechanical cantilever surface; (C) attachment of stained
MDA-MB231 breast cancer cells (blue) on the working microbeam and the reference microbeam;
(D) SEM of a cancer cell attached to the measuring nanomechanical cantilever sensor [151].
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4.3.2. Antibiotics

As the most important invention in medical history, antibiotics have become a double-
edged sword. The superbacteria produced by the overuse and abuse of antibiotics seriously
threaten human health. Therefore, antibiotics are important detection objects of genetic-
probe-modified microcantilevers.

In 2008, Ndieyira et al. [161] successfully used a drug-sensitive mucopeptide analogue
(DAla) as a sensitive layer of a microcantilever to detect vancomycin, and quantitatively
analyzed the interactions in antibiotic–mucopeptide binding. In 2013, Hou et al. [162]
successfully detected oxytetracycline by using a sensor array consisting of self-assembled
monolayers (SAMs) of OTC-specific aptamers as a working cantilever sensitive layer and
6-mercapto-1-hexanol SAMs as a reference cantilever sensitive layer. In the following years,
by using a similar method, the group successfully detected multiple antibiotics such as
kanamycin [163], fumonisin B-1 [164], and nucleolin [165].

4.3.3. Heavy Metal Ions

Heavy metals are metals with a density greater than 5 g/cm3. Most heavy metal
elements are environmental pollutants, which seriously threaten human health. Therefore,
heavy metal ions are also detection targets of microcantilevers. In 2004, Cherian et al. [166]
functionalized a microcantilever with metal-binding protein AgNt84-6 that had the ability to
bind multiple ions of Ni2+, Zn2+, Co2+, Cu2+, Cd2+, and Hg2+. This research demonstrated
that a microcantilever can be used to discriminate multiple metal ions. In 2009, Xu et al. [167]
grafted a Gly–Gly–His (GGH) tripeptide to the 3-mercaptopropionic acid (MPA) layer on
the microcantilever gold surface. Then, they studied the interaction between tripeptide Gly–
Gly–His and Cu2+ under different environmental conditions and analyzed the mechanism
of microcantilever deflection. Since 2012, Peng has functionalized microcantilevers by
multiple methods involving sensitive layers for detecting heavy metal ions, including
benzo-9-crown-3 doped hydrogen for Be2+ [168], a specific Pb2+-dependent DNAzyme
molecule for Pb2+ [169], and benzo-9-crown-3 polymer brush for Be2+ [170]. In these studies,
the microcantilever sensor modified by DNAzyme not only exhibited high selectivity to
Pb2+ (10−8 M), but could be regenerated by flowing through a strong Pb2+ chelator (1, 4,
7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid). In 2017, You et al. [171] reported
a mass-amplified silver ion sensor (MAIS) based on a resonance microcantilever with
cytosine-based DNA as a sensitive layer. To enhance the sensitivity, GNPs that do not
affect the specific matching between silver ion and cytosine-DNA layer were introduced to
improve resonance frequency shift. Furthermore, genetically modified cantilever sensors
can also be used with other environmental pollutants such as okadaic acid (OA) [172] and
in food security, such as with profenofous pesticide residues in vegetables [173] and the
hepatic toxin microcystin–leucine–arginine (MC-LR) [174].

4.4. Integrated Detection

In early detection, the microcantilever is usually placed in the stage or testing pool
with the samples, and then the deflection or vibration changes of the sensor are measured
by an instrument such as an AFM or PSD. This detection process not only fails to show the
advantages of microcantilever, including small volume, simple structure, and easy inte-
gration, but also limits the detection scenario to the laboratory, hindering the application
and development of microcantilever sensors in rapid and portable detection. Micro total
analysis systems (µTASs), proposed at the beginning of this century, have the characteristics
of small size, high integration, and excellent compatibility. Combined with optics, electro-
chemistry, and other detection methods, the µTAS has become an indispensable analytical
technology in the fields of biology, medicine, chemistry, and the environment. Therefore,
the µTAS is an ideal choice for a microcantilever to avoid the constraints of the laboratory
environment as well as to realize real-time use, miniaturization, and commercialization.

As shown in Figure 14A, in 2006, Lechuga et al. [67] integrated a silicon-based mi-
crocantilever array, polymer microfluidic chip, vertical-cavity surface-emitting laser, seg-
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mented photodetector, and other modules to prepare a small biochemical detection system
with an Atomic Force Microscopy (AFM) detection limit. As shown in Figure 14B, in 2010,
Ricciardi et al. [175] integrated a microcantilever array and piezoelectric driver into a µTAS
chip. With the help of external optical instruments, the chip can complete Salmonella detec-
tion within 40 min. As shown in Figure 14C, in 2011, Huang et al. [176–178] integrated a
microcantilever, self-calibrated readout circuit, programmable microcontroller, voltage reg-
ulator, wireless transceiver, and other modules on a single-chip SoC by adopting a 0.35 µm
standard CMOS process, and then realized wireless detection of HBV by combining it with
microfluidic technology. As shown in Figure 14D, in 2015, Khemthongcharoen et al. [142]
prepared an integrated microfluidic detection chip with PCR technology and a pressure-
sensitive microcantilever as the core. Compared with conventional PCR, the sensitivity of
the integration system is 10 times higher. Starting in 2014, Wang et al., reported a series of
works about microcantilever integration, including surface antibody modification [179,180],
and the design and fabrication of a microcantilever with cavity, piezoelectric drive, and
frequency-tracking circuit [181–183]. The latest research of this team, in 2021 [184], had a
microcantilever prepared on an SOI substrate by standard CMOS processes such as RIE
and PECVD. After modification by the antigen–antibody system, the microcantilever was
integrated into a microfluidic chip, as shown in Figure 14E. The integrated detection system
can detect alpha-fetoprotein under the amplification of nanoparticles.
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5. Conclusions and Prospects

Since the microcantilever and genetic probe technologies were first combined in 2000,
the new sensor has been used for cutting-edge applications such as the determination of
nucleic acids (DNA or RNA) and its derivatives (oligonucleotides or polynucleotides), the
exploration of complementary hybridization reaction mechanisms, and analysis of the gene
transcription process. Nowadays, this technology has gradually been applied to conven-
tional instruments closely related to daily life, such as virus, bacteria, and cell detection
(HBV, HCV, HIV, HPV), analysis of common drugs (oxytetracycline, kanamycin, etc.), the
detection of heavy metal ions (Pb2+, Ag+), and early warning of food pesticide residues
(Profenofos and MC-LR). During the transformation process, probe immobilization and
complementary hybridization are no longer only the core procedures for sensitive layer
preparation to expand the application range of microcantilever sensors, but are also a
means to reveal deflection mechanisms and perform the analysis of influencing factors
such as DNA molecular density, chain length, and conformational entropy. Meanwhile, the
detection signal extraction and processing of microcantilevers have changed from optical
interference or optical deflection relying on an AFM system to electrical methods such as
capacitance, piezoelectricity, and piezoresistivity, which are more suitable for detection
instruments’ miniaturization, integration, and portability.

However, there are still many obstacles to the commercialization of microcantilever
sensors modified by a genetic probe. First of all, although the integration level of the
microcantilever sensor has improved greatly, and already includes driving, detecting, and
signal processing, many of the biochemical analysis steps, such as the mixing, separation,
and enrichment of samples, still need to be carried out in the laboratory before detection.
These operations are not only time-consuming and laborious, but also require professional
knowledge. The combination of genetic probe modification of a microcantilever sensor and
µTAS can alleviate this problem, but the integrated detection system is still in the prototype
exploration stage. Secondly, the deflection and sensitivity of a genetic-probe-modified
microcantilever are determined by many factors, such as the molecular force between DNA
strands, hydration force, configuration entropy, and osmotic pressure. However, most
detection principles and models can only qualitatively or semiquantitatively explain sensor
deflection in a specific detection process, without accurately predicting the deflection trend
of a microcantilever sensor. Thirdly, the influence of temperature, salinity, humidity, pH,
and other environmental factors on microcantilever sensor detection cannot be ignored,
but current research still focuses on individual detection under specified environmental
conditions, and there are still few comprehensive conclusions about various environmental
factors. In order to solve the above problems, promoting the innovation of genetic-probe-
modified microcantilever sensors and achieving the ultimate goal of integrated and portable
detection, researchers not only need to establish a quantitative detection model including
environmental factors by means of combining simulation analysis with detection test, but
also must realize the cooperation of representatives of various fields such as device design,
preparation technology, and application promotion.
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