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Abstract: This manuscript examines the design principle and real-world validation of a new minia-
turized high-performance flower-shaped radiator (FSR). The antenna prototype consists of an ultra-
compact square metallic patch of 0.116λ0 × 0.116λ0 (λ0 is the free space wavelength at 3.67 GHz),
a rectangular microstrip feed network, and a partial metal ground plane. A novel, effective, and
efficient approach based on open circuit loaded stubs is employed to achieve the antenna’s optimal
performance features. Rectangular, triangular, and circular disc stubs were added to the simple
structure of the square radiator, and hence, the FSR configuration was formed. The proposed antenna
was imprinted on a low-cost F4B laminate with low profile thickness of 0.018λ0, relative permittivity
εr = 2.55, and dielectric loss tangent δ = 0.0018. The designed radiator has an overall small size of
0.256λ0 × 0.354λ0. The parameter study of multiple variables and their influence on the performance
results has been extensively studied. Moreover, the impact of different substrate materials, impedance
bandwidths, resonance tuning, and impedance matching has also been analyzed. The proposed
antenna model has been designed, simulated, and fabricated. The designed antenna exhibits a wide
bandwidth of 5.33 GHz ranging from 3.67 to 9.0 GHz at 10 dB return loss, which resulted in an 83.6%
fractional impedance bandwidth; a maximum gain of 7.3 dBi at 8.625 GHz; optimal radiation effi-
ciency of 89% at 4.5 GHz; strong intensity current flow across the radiator; and stable monopole-like
far-field radiation patterns. Finally, a comparison between the scientific results and newly published
research has been provided. The antenna’s high-performance simulated and measured results are in
a good agreement; hence, they make the proposed antenna an excellent choice for modern smart-
phones’ connectivity with the sub-6 GHz frequency spectrum of modern fifth-generation (5G) mobile
communication application.

Keywords: low-cost; compact; high-performance; flower-shaped radiator (FSR); modern smartphone
wireless applications
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1. Introduction

The tremendous growth in antenna design has boosted the wireless communication
industry. More recently, wireless communication systems such as smartphones, laptops,
tablets, modern electronic devices, etc., have begun to shrink, and the size of antennas
is becoming smaller [1,2]. Furthermore, the multifaceted components used in wireless
communication systems, for example, integrated circuits (ICs), processors, cameras, speak-
ers, batteries, etc., are making wireless systems bigger and are causing them to occupy a
huge amount of space. Therefore, with the little available space in wireless communication
systems, researchers are trying to design compact, high-performance antennas. Recently,
the extensive use of compact, low-profile, and conformal antennas for modern 5G smart-
phones has been picked up upon. The modern technology covers fifth-generation (5G)
cellular personal communication systems (PCS), global positioning systems (GPSs), satellite
navigation, and many more practical wireless applications.

In advanced wireless communication systems, compact, low-profile designs with
differently shaped radiators and metallic ground planes are being used [3,4]. The antennas
exhibit high-performance features and may satisfy the plethora of modern communica-
tion system requirements using as little space as possible. Today, the requirement for
planar, compact, low-cost, high-performance radiators on the market is growing very fast.
Antennas that are economical, small in size, and lightweight and that have enhanced
characteristics fulfill the market demand [5]. Moreover, it is very important to select a
suitable type of antenna, which has the above advantages and may exhibit the characteris-
tics of high performance. Therefore, how to design a miniaturized antenna with the best
performance features is still a challenging task for the radio frequency (RF) component
design community.

In the past decades, many researchers have worked on planar monopole antennas
(PMAs). Different types and techniques, i.e., cutting slots, slits, and loaded stubs, have
been reported in the literature to enhance impedance BW and gain and radiation character-
istics [6,7]. These topologies have been implemented on different types of PMAs. Moreover,
the reduction in the size of the antenna is also a big challenge for current researchers.
However, due to the small size of antennas, the performance of the antennas reported in
the literature is not satisfactory. Therefore, with this aim and to solve the identified research
problem, compact, low-cost PMAs were designed to achieve outstanding performance
in comparison to the previous literature. Recently, PMAs with diverse shapes have been
identified as being ideal for contemporary wireless systems. Moreover, various antenna
types have been reported in the literature. A narrower bandwidth (BW), excellent gain,
radiation efficiency, and stable radiation performance with large dimensions are the main
concerns for PMAs [8–10]. Therefore, antenna designers are working to improve the afore-
mentioned features of PMAs. Moreover, several antenna types with multiple specifications
and applications have been reported in the literature. The reported antenna design still
faces a lot of challenges, for example, sensible antenna behavior, narrow BW, low efficiency,
stable monopole-like patterns, acceptable gain with comparatively larger sizes, and so on.

1.1. Related Work

Many researchers have proposed different types of planar antennas (PMAs) with opti-
mal performance features. The literature reports on broadband PMAs of differently shaped
radiation antennas and modified ground planes. Moreover, different techniques, namely,
metamaterial resonators, slots of different shapes, tunable stubs, and the selection of feed
lines, have been focused upon. These techniques have been used for the improvement of
impedance BW and peak realized gain. An existing study proposed an ultrahigh-frequency
(UHF) miniature antenna using a high impedance surface (HIS), as reported in [11]. The
antenna exhibited high gain and a reasonable BW with a larger size. Another study focused
on the radiation performance improvement of a slot antenna using an artificial magnetic
conductor (AMC) approach [12]. The design of mashed patch antennas for the enhance-
ment of bandwidth (BW) has been reported [13]. The authors utilized a proximity coupling
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concept in the designed antennas. Small antennas integrated with metasurfaces were pro-
posed for the improvement of BW and gain and analyzed with characteristic mode analysis
(CMA) [14,15]. Similarly, the authors designed a differential-fed patch broadband antenna
under TM10 and TM30 operational modes [16]. The authors analyzed and achieved a
13% increment in BW, a 7.0 dBi gain, and 85% radiation efficiency. Another study focused
on several parasitic patches and shorting vias for enhancing BW, as reported in [17]. The
authors attained fractional impedance BWs of 13.8% and 17.4%. A miniature broadband
antenna for fifth-generation (5G) wireless communication applications has been presented
in [18]. The authors achieved a fractional impedance bandwidth (FIBW) of 58.3% and stable
gain performance of 5.0 dBi in the operational band. An elliptical ring ultrawideband
(UWB) antenna for radio detection and ranging (RADAR) imaging applications was de-
signed [19]. Overall, the antenna possessed larger dimensions and exhibited a reasonable
gain performance of 4.0 dBi. A flower-shaped antenna with an enhanced BW for portable
wireless devices is demonstrated in ref. [20]. The proposed antenna was embedded on
54 × 64 × 1.6 mm3 laminate and exhibited an FIBW of 49% and a maximum gain of 3.4 dBi.

Recently, two compact broadband patch antennas were designed with inverted L- and
T-shaped strips [21]. The reported work achieved (12.46; 15) % FIBW, (6.6; 6.25) dBi gain,
and (84; 78) % radiation efficiency in the operational band. A hybrid mode dipole antenna
for sub-6 GHz wireless applications is reported in ref. [22]. The designed antenna achieved
67.5% FIBW and a maximum gain of 8.4 dBi with design complexity and a larger size.
A compact broadband and high gain differential-fed antenna under tri-mode resonance
has been proposed [23]. The antenna achieved 55% FIBW and a peak gain >10 dBi. The
designed structure has a larger size; the design complexity and radiation efficiency of the
antenna were not analyzed and reported. Another magneto-electric dipole antenna driven
with a differential-fed network has been reported [24]. The antenna exhibited 62% FIBW
and the gain variation was observed from 6.6 to 9.6 dBi in the operable frequency span.
However, the suggested antenna is imprinted on a larger sized laminate and suffers from
design complexity. A low-profile, high-gain antenna integrated with metasurfaces was
designed in ref. [25]. The antenna attained 28.4% FIBW and a peak gain of 8.2 dBi. A small
dual band antenna for sub-6 GHz of the 5G microwave spectrum is proposed in ref. [26].
The radiator has the overall size of 31 × 36 × 0.8 mm3 and obtained reasonable performance.
Another piece of research on a low-profile antenna with enhanced performance features
was presented in ref. [27]. A new antenna design with a stair-shaped metal ground plane
was proposed in ref. [28]. The core focus of this research was on the BW increment, and
it achieved polarization reconfigurable features. Moreover, a rectangle microstrip line
feed wide slot antenna structure with fractal-shaped and rotated square-shaped slots was
proposed [29,30]. The presented antennas achieved acceptable performance in terms of
gain and BW. Modified geometries of the antennas based on a crescent-shaped patch,
disc-shaped slots loaded on the main hexagonal-shaped slot and symmetrical triangular-
shaped slots for versatile wireless applications have been designed in refs. [31,32]. The
reported antennas achieved a wideband and multiresonant behavior with stable radiation
performance. A flower-shaped radiator coplanar waveguide (CPW)-fed structure for
wideband applications was reported [33]. The authors performed a polyline function
operation on a simple, circular-shaped patch to form the new shape of the radiator. An
ultracompact broadband monopole antenna with an elliptical radiator and trapezoidal
ground plane is proposed in ref. [34]. The authors achieved good performance by utilizing
a mixed approach.

A modified structure of a patch antenna with the triangular-shaped slot and stepped
cut on the radiator was demonstrated in ref. [35]. The authors attained the broadband
features with substantial gain performance. A compact bow-tie antenna of 122 × 56 mm2

in size excited with a tapered feed structure has been proposed in ref. [36]. The authors
achieved broadband features and a gain performance of around 6.5 dBi with modified
rectangular extensions to the bow-tie arm structure. An hourglass and an octagonal
Sierpiński-shaped monopole antenna feed with an asymmetrical CPW and a microstrip



Micromachines 2023, 14, 463 4 of 16

feedline was reported in refs. [37,38]. The antennas exhibited good performance regarding
their wideband, gain, efficiency, and radiation patterns. A miniature cross-shaped antenna
with a modified ground plane was presented in ref. [39]. The designed antenna exhibited
wide circular polarization features and stable pattern performance. All of these antennas
have a complex geometry and a large size. Furthermore, a broadband antenna for the global
navigation satellite systems (GNSSs) and wireless fidelity (Wi-Fi) wireless applications has
been proposed [40]. The antenna in the study exhibited substantial performance features
and antenna gain; radiation efficiency was not focused upon in the study. A conformal
wideband antenna with loaded meandered arms for wireless capsule endoscopy was
designed in ref. [41]. The authors only presented the design simulation results and the
results were not experimentally verified. A superstrate resonant cavity antenna with a via
hole-based patch was presented in ref. [42]. The authors obtained a high gain 15.8 dBi and
a reasonable FIBW of 10.7%. The reported antenna faced the design complexity, and its
efficiency was not analyzed. Similarly, multiple designs of E-shaped reconfigurable patch
antennas using RF switches were reported in ref. [43]. However, the efficiency and gain
of the antennas were not analyzed, and the authors provided only the simulation study.
A hexagonal probe-fed radiator was presented in [44]. The reported antenna occupied
a larger space and achieved a wide impedance BW of 8.3 GHz. A narrow frame and a
hybrid mode with slotted antennas for mobile communication and sub-6 GHz wireless
applications presented in refs. [45,46]. The antennas exhibited optimal performance features
with larger dimensions. Differently shaped antennas were reported [47,48]. The authors
designed bow-tie-shaped and bio-inspired antennas and analyzed the different substrate
materials’ impact on the designed dimensions and achieved a wide impedance BW.

1.2. Key Contributions

In this article, a new miniaturized low-cost, high-performance, flower-shaped radi-
ator (FSR) for modern smartphones was simulated and designed. The antenna structure
consisted of a very small square metallic patch of 9.5 × 9.5 mm2, a rectangular microstrip
feed structure, and a metal ground plane. A novel, effective, and efficient approach based
on an open circuit loaded rectangular, triangular, and circular disc stub was employed to
achieve the antenna’s optimal performance features. The proposed antenna is engraved
on a low-cost F4B substrate material with overall compact dimensions of 21 × 29 mm2.
Furthermore, the parameter study related to the multiple variables and their impact on the
performance results was extensively studied. The impact of different substrate materials,
impedance BWs, resonance tuning, and impedance matching was also analyzed. The pro-
posed antenna model was designed, simulated, and fabricated. The designed antenna
exhibited a broad BW of 5.33 GHz in the working frequency ranging from 3.67–9.0 GHz at
10 dB return loss [49]; a maximum gain of 7.3 dBi at 8.625 GHz; optimal efficiency of 89%
at 4.5 GHz; strong intensity current flow through the radiator; and stable, monopole-like
far-field radiation patterns. Finally, a comparison between the scientific results and newly
published research has been provided. The antenna’s high-performance simulated and
measured results are in good agreement and hence make the proposed antenna an excellent
choice for modern smartphones’ connectivity with the sub-6 GHz frequency spectrum of
modern fifth-generation (5G) wireless communication systems.

The core contributions of this manuscript are as follows:
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current flow across the radiator; and stable monopole-like far-field radiation patterns.
Finally, a comparison between the scientific results with newly published research
has been provided.
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1.3. Manuscript Structure

The rest of the paper is structured as follows: Section 2 explains the design methodol-
ogy of the proposed radiator. Section 3 analyzes the simulation results. Section 4 introduces
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patterns, and recently published review literature results are given in Section 5. Finally, the
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2. Proposed Antenna Design Methodology

The antenna development phases are shown in Figure 1a–d. Initially, the simple
antenna structure is comprised different elements such as a compact square patch of
9.5 × 9.5 mm2, a rectangular feed line of 16.6 × 4.23 mm2, and a partial ground plane
(PGP) with a compact size of 14 × 21 mm2. The antenna elements are etched onto a
low-cost, 1.5 mm thick F4B substrate with a relative permittivity of 2.55 and dielectric
loss tangent of 0.0018. The elements of the antenna are made of copper with a value of
0.035 mm. Furthermore, as portrayed in Figure 1b, an evolved antenna structure is formed
by modifying the metallic compact square patch. Firstly, two rectangular stubs are loaded
on the left and right sides of a compact metal square patch with a miniaturized size of
4.0 × 8.15 mm2. Then, polyline operations are performed on both of the sides of the loaded
rectangular stubs to form triangular-shaped stubs. As elucidated in Figure 1c, the third
step in the antenna design process is to perform a 5.0 mm fillet operation on the upper
edges of the metal part of the ground plane. Modification in the antenna’s design leads to
the enhancement of the impedance bandwidth and the realization of proper impedance
matching. Moreover, the fourth step in the antenna design is realized by having compact
2.0 mm loading disc stubs at the upper left and right edge of the improved metal patch as
shown in Figure 1d.

The proposed antenna design is formed by more than two disc-shaped stubs, and the
compact size of 2.0 mm is loaded on the lower edges of the modified metal patch. It was
noticed that by loading several stubs on a simple square patch, the antenna can have a
novel, flower-shaped patch. The dimensions of the antenna’s key elements, such as the
feedline, metal patch, dielectric laminate, and loading stubs, have a great influence on the
overall performance of the antenna. The antenna was designed and simulated by using a
three-dimensional (3D) electromagnetic simulation solver (HFSS). The top, bottom, and
side view of the proposed antenna are portrayed in Figure 1e,g. The proposed antenna was
carefully designed in the industrial software tool of the 3D Altium designer (AD) printed
circuit board (PCB), as shown in Figure 1f. The optimized parameters are listed in Table 1.

Table 1. Parameters of the proposed antenna (unit: mm).

Variables Optimal Value Variables Optimal Value

SL 29.0 SW 21.0
SH 1.5 GPW 21.0

GPL 14.0 F1 = F2 5.0
W50Ω 4.23 L50Ω 16.6

ULCDS 2.0 LLCDS 2.0
LTS = RTS 4.0 × 8.15 URS 9.5 × 0.8

WP 9.5 LP 9.5



Micromachines 2023, 14, 463 6 of 16

Micromachines 2023, 14, x FOR PEER REVIEW 5 of 16 
 

 

 It examines design principles and real-world validation of a new flower-shaped ra-
diator with a compact size of 21 × 29 mm2. 

 A novel, effective, and efficient approach based on open circuit loaded stubs is em-
ployed to achieve the antenna’s optimal performance features. 

 Frequency tuning and impedance matching can be attained with the flexible usage 
of variables. 

 The designed antenna exhibits high-performance features including a broad band-
width of 5.33 GHz ranging from 3.67–9.0 GHz at 10 dB return loss; a maximum gain 
of 7.3 dBi at 8.625 GHz; optimal radiation efficiency of 89% at 4.5 GHz; strong inten-
sity current flow across the radiator; and stable monopole-like far-field radiation pat-
terns. Finally, a comparison between the scientific results with newly published re-
search has been provided. 

 The proposed radiator is a very suitable candidate for modern smartphones’ connec-
tivity with the sub-6 GHz frequency spectrum of modern fifth-generation (5G) mo-
bile communication applications. 

1.3. Manuscript Structure 
The rest of the paper is structured as follows: Section 2 explains the design method-

ology of the proposed radiator. Section 3 analyzes the simulation results. Section 4 intro-
duces the experimentally validated results of return loss, efficiency, gain, and far-field 
radiation patterns, and recently published review literature results are given in Section 5. 
Finally, the concluding remarks are briefly explained in Section 6. 

2. Proposed Antenna Design Methodology 
The antenna development phases are shown in Figure 1a–d. Initially, the simple an-

tenna structure is comprised different elements such as a compact square patch of 9.5 × 
9.5 mm2, a rectangular feed line of 16.6 × 4.23 mm2, and a partial ground plane (PGP) with 
a compact size of 14 × 21 mm2. The antenna elements are etched onto a low-cost, 1.5 mm 
thick F4B substrate with a relative permittivity of 2.55 and dielectric loss tangent of 0.0018. 
The elements of the antenna are made of copper with a value of 0.035 mm. Furthermore, 
as portrayed in Figure 1b, an evolved antenna structure is formed by modifying the me-
tallic compact square patch. Firstly, two rectangular stubs are loaded on the left and right 
sides of a compact metal square patch with a miniaturized size of 4.0 × 8.15 mm2. Then, 
polyline operations are performed on both of the sides of the loaded rectangular stubs to 
form triangular-shaped stubs. As elucidated in Figure 1c, the third step in the antenna 
design process is to perform a 5.0 mm fillet operation on the upper edges of the metal part 
of the ground plane. Modification in the antenna’s design leads to the enhancement of the 
impedance bandwidth and the realization of proper impedance matching. Moreover, the 
fourth step in the antenna design is realized by having compact 2.0 mm loading disc stubs 
at the upper left and right edge of the improved metal patch as shown in Figure 1d. 

 

Micromachines 2023, 14, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 1. Diagram of the process of the antenna: (a) feeding the square patch with a partial ground 
plane, (b) a modified patch loaded with a stub, (c) a modified patch with a chamfered partial ground 
plane, (d) a loaded patch with a disc-shaped stub, (e) a top and back view of the proposed antenna, 
and (f) a 3D model of the designed antenna and (g) side view of the proposed antenna. 

The proposed antenna design is formed by more than two disc-shaped stubs, and the 
compact size of 2.0 mm is loaded on the lower edges of the modified metal patch. It was 
noticed that by loading several stubs on a simple square patch, the antenna can have a 
novel, flower-shaped patch. The dimensions of the antenna’s key elements, such as the 
feedline, metal patch, dielectric laminate, and loading stubs, have a great influence on the 
overall performance of the antenna. The antenna was designed and simulated by using a 
three-dimensional (3D) electromagnetic simulation solver (HFSS). The top, bottom, and 
side view of the proposed antenna are portrayed in Figure 1e,g. The proposed antenna 
was carefully designed in the industrial software tool of the 3D Altium designer (AD) 
printed circuit board (PCB), as shown in Figure 1f. The optimized parameters are listed in 
Table 1. 

Table 1. Parameters of the proposed antenna (unit: mm). 

Variables Optimal Value  Variables Optimal Value 
SL 29.0 SW 21.0 
SH 1.5 GPW 21.0 
GPL 14.0 F1 = F2 5.0 

W50Ω 4.23 L50Ω 16.6 
ULCDS 2.0 LLCDS 2.0 

LTS = RTS 4.0 × 8.15 URS 9.5 × 0.8 
WP 9.5 LP 9.5 

Figure 1. Diagram of the process of the antenna: (a) feeding the square patch with a partial ground
plane, (b) a modified patch loaded with a stub, (c) a modified patch with a chamfered partial ground
plane, (d) a loaded patch with a disc-shaped stub, (e) a top and back view of the proposed antenna,
and (f) a 3D model of the designed antenna and (g) side view of the proposed antenna.

Figure 2 shows the return loss performance of the evolved antenna models over the
entire frequency range. The first designed antenna model achieved a bandwidth (BW) of
2.19 GHz with a return loss of 10 dB, ranging from 4.0–6.19 GHz, which can be observed in
the graph.
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Figure 2. Corresponding return loss |S11| in the antenna design process.

The second prototype antenna achieves an impedance bandwidth of 2.46 GHz with a
return loss of 10 dB, ranging from 3.78–6.24 GHz. Similarly, the third prototype antenna
achieves an impedance bandwidth of 2.65 GHz with a return loss of 10 dB, ranging from
3.63–6.28 GHz. Moreover, the fourth prototype antenna achieves a broader impedance
bandwidth of 5.1 GHz with a return loss of 10 dB, ranging from 3.7–8.8 GHz. The proposed
antenna model achieves a wide impedance bandwidth of 5.33 GHz with a return loss of
10 dB, ranging from 3.67–9.0 GHz. Moreover, under the return losses of 24.18 dB and
26.6 dB, two resonances are observed at 4.52 GHz and 7.64 GHz, respectively.

3. Simulation Results and Analysis

The parameter study of the important variables that affect the impedance BW, the
matching and tuning performance of the proposed antenna, is explained in this section.

3.1. The Impact of the Ground Plane and 50 Ω Feedline Dimensions

The size and length of the ground plane and the width of the patch (WoP) have an
influence on the proposed antenna impedance matching performance and resonance tuning
features. Figure 3a shows the influence of the length of the ground plane (GPL) over the
frequency span. It can be analyzed that when the GPL is 14.0 mm, the frequency tuning
and impedance are perfectly matched. Similarly, it can be observed that when the values of
GPL are at the initial stage, the impedance performance and tuning at the first resonance
point do not match. Figure 3b elucidates the influence of the 50 Ω feeder width on the
frequency span. It can be seen that at a maximum value of feedline width (W50Ω), the
perfect impedance matching and broad impedance bandwidth are achieved. In addition,
lower values of feedline width strongly affect the impedance bandwidth. Likewise, the
frequency tuning of resonances is observed at the lower value of W50Ω. From the above
analysis, it can be concluded that the GPL and W50Ω have a great influence on the impedance
matching, BW, and resonance tuning in the operable frequency span.
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3.2. The Impact of Substrate Height and Material

The proposed antenna substrate thickness influence is shown in Figure 4a. At this time,
the antenna achieves a narrow impedance bandwidth of 0.97 GHz at the lowest value of
0.5 mm and with the operating frequency band ranging from 6.39 to 7.36 GHz. One can see
single resonance is observed at 6.86 GHz with a return loss peak at 13.97 dB. Furthermore,
the thickness of the substrate was increased to obtain a broader impedance bandwidth.
It can be observed that at 0.8 mm thickness, the antenna bandwidth is slightly improved.
The antenna achieved an impedance BW of 2.51 GHz, ranging from 5.92 to 8.43 GHz. The
single resonance was obtained at 6.86 GHz with a peak return loss of 15.6 dB. The required
target of the broader impedance BW had not been achieved yet. Furthermore, when the
substrate was 1.1 mm thick, the antenna achieved a broader impedance BW of 5.17 GHz
ranging from 3.67 to 8.84 GHz. Two resonances were observed at 4.19 GHz and 7.8 GHz
with peak return losses of 15.5 dB and 19.4 dB, respectively. When the thickness of the
substrate was increased to 1.3 mm, it can be seen that the proposed antenna exhibited an
impedance BW of 5.33 GHz in the range of 3.67 to 9.0 GHz with a return loss of 10 dB.
In addition, at the two resonance points of 4.31 GHz and 7.8 GHz, the peak return losses
were 21.3 dB and 24.4 dB, respectively. Finally, the optimal value of the substrate thickness
was chosen as 1.5 mm, and the antenna achieved a broader impedance BW of 5.32 GHz in
the frequency range of 3.63–8.95 GHz. Additionally, two resonances can be observed at
4.52 GHz and 7.62 GHz with peak return losses of 24 dB and 28.2 dB, respectively. From
the above analyzed results, it can be observed that the thickness of the substrate plays an
important role in obtaining the broad impedance BW of the proposed antenna.

The substrate material of the proposed antenna was carefully selected to achieve
optimal results. Figure 4b provides the performance of different substrate materials across
the operable frequency span. The influence of five different substrate materials such as
Taconic TLC, RO4003, RO6002, FR4, and F4B on the impedance bandwidth performance has
been extensively analyzed. Initially, the Taconic TLC laminate with a relative permittivity
of 3.2 and a dielectric loss tangent of 0.03 was chosen to analyze the return loss performance
of the proposed antenna across the operable frequency span. It can be seen that the antenna
achieved a 4.81 GHz impedance BW in the 3.56–8.37 GHz range with a return loss of 10 dB.
Another substrate material, namely, Rogers RO4003 with a relative permittivity of 3.55 and
a dielectric loss tangent of 0.0027 was selected. The antenna achieved a 4.5 GHz impedance
BW ranging from 3.5 to 8.0 GHz under 10 dB return loss. Likewise, the Rogers RO6002
substrate material with a relative permittivity of 2.94 and a dielectric loss tangent value of
0.0012 was chosen to obtain a broad impedance BW. The antenna obtained an impedance
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BW of 4.99 GHz ranging from 3.6 to 8.59 GHz with a return loss of 10 dB. The low-cost FR4
epoxy material with a relative permittivity of 4.4 and a dielectric loss tangent value of 0.02
was selected to achieve a broader impedance BW. With the selected material, the antenna
achieved a broader impedance BW of 4.17 GHz ranging from 3.36 to 7.53 GHz with a return
loss of 10 dB. Finally, a low-cost F4B material was selected to achieve a broader impedance
BW for the proposed antenna. The proposed antenna achieved a broader impedance BW of
5.32 GHz ranging from 3.63 to 8.95 GHz with a return loss of 10 dB.
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3.3. The Intensity of the Current across the Radiator

Figure 5 portrays the current distribution on the flower-shaped radiator surface cor-
responding to two resonance points at 4.52 GHz and 7.64 GHz. It can be seen that the
proposed antenna exhibits a strong distribution of current on the feedline, the edges of
patch, and the edges of the partial ground plane. Moreover, it can also be seen that the
proposed antenna current in the proposed operating band is very strong, so it is very
suitable for the lower sub 6 GHz band of the fifth-generation (5G) spectrum.
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4. Experimental Verified Results

The simulation and measurement results of return loss (|S11|), peak realized gain,
radiation efficiency, and the performance of the proposed antenna radiation pattern are
included in this section.

4.1. Return Loss (|S11|)

The fabricated model of the radiating structure is shown in Figure 6a,b. The antenna
model is connected to one port of the calibrated Agilent vector network analyzer (VNA)
model no. PNA5230C. The simulation and measurement results of the proposed and
fabricated antenna sample were compared and are elucidated in Figure 7. It can be seen
that the designed antenna model achieved an impedance BW of 3.67–9.0 GHz, which
constitutes a wider impedance BW of 5.33 GHz. Similarly, two resonances were observed at
4.52 GHz and 7.64 GHz and the maximum return losses of 24.18 dB and 26.6 dB. Moreover,
the fabricated antenna sample exhibits similar responses to the simulated results. However,
small discrepancies in the measurement results were observed due to substrate losses and
imperfect soldering of an SMA connected to the proposed antenna feedline.
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4.2. Performance Peak Gain and Efficiency (η)

The peak gain performance of the fabricated prototype is measured by two antenna
methods with a priori knowledge of the gain values. Figure 8a,b shows the fabricated
sample and the ridge gap horn antennas’ placement inside the chamber room. Figure 8a
compares the simulated and tested results of the peak gain of the proposed antenna. The
designed antenna exhibits a reasonable average gain of 4.1 dBi at 3.91 GHz. In addition, gain
performances of 4.3 dBi and 6.125 dBi were observed at 4.52 GHz and 7.64 GHz, respectively.
It can be observed that the gain of the antenna was increased monotonically from 4.15
to 7.0 dBi in the range of 3.9–8.25 GHz. Moreover, the simulation results show that the
broadside peak gain values were 7.3 dBi to 7.0 dBi at 8.625 GHz and 8.25 GHz, respectively.
The measurement results of the antenna sample coincided with the simulation results.
Moreover, reasonable discrepancies of around 0.5 dB were observed in the measurement
results. This loss is attributed to the measurement of the fabricated antenna sample and
also may be due to the lossy substrate and real-time environment losses inside the anechoic
chamber room.
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The radiation efficiency of the proposed antenna was extracted by an efficient, accu-
rate, and simple gain directivity method. From Figure 8b, it can be seen that the antenna
exhibited the maximum radiation efficiency of 89% at 4.5 GHz. Likewise, a reasonable
level of radiation efficiency such as 39% and 50% at 3.67 GHz and 3.75 GHz, respectively,
was observed. The antenna obtained excellent efficiency performance of around 86.5%
and 87% at the frequencies of 4.52 GHz and 7.64 GHz, respectively. Moreover, the mea-
surement results of radiation efficiency show a loss of almost 15% as compared to the
simulation results. These losses are mainly due to the approach employed for the radiation
efficiency measurement.

4.3. Far-Field Radiation Performance

The fabricated antenna sample was measured inside an anechoic chamber room. The
antenna under test (AUT) was placed on a turntable and rotated at 360◦ as shown in
Figure 9. In Figure 10a,b, the simulation and measurement results of the far-field two-
dimensional (2D) radiation pattern of the antenna obtained on the standard planes are
compared and illustrated.
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Figure 10. Radiation pattern performance (Φ = 0◦) and (Φ = 90◦) at different resonant frequencies:
(a) at 4.52 GHz and (b) at 7.64 GHz.

The proposed antenna exhibits a perfect monopole-like radiation pattern at both
resonances. Figure 10a is the radiation pattern performance at the 4.52 GHz resonant
point and the proposed antenna radiates omnidirectionally in the E and H planes. The
measurement results at the resonant frequency of 4.52 GHz coincide with the simulation
results. Nulls in the measured results are observed at around 90◦ and 270◦ in the H
plane at the resonant frequency of 4.52 GHz. Moreover, the 2D radiation patterns at the
second resonant frequency of 7.64 GHz are shown in Figure 10b. The proposed antenna
exhibits a perfect omnidirectional radiation pattern in the E and H planes. Furthermore,
the nulls are obtained in the H plane at 7.64 GHz. It is noted that the radiation pattern
becomes deteriorated at some points. A slight and acceptable discrepancy in the measured
results is observed due to the lossy nature of the cables, the power meter sensitivity,
the substrate material used, subminiature-A (SMA) connector soldering, and loss of the
measuring chamber.

5. Performance Comparison Analysis

Table 2 demonstrates the proposed comparison of the antenna’s key features with
newly published work. The proposed radiator shows clear advantages in terms of size,
operable frequency, fractional impedance bandwidth (FIBW), gain, radiation efficiency, and
design complexity.
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Table 2. Performance comparison between the latest published work and the proposed radiator.

Ref. Electrical Dimensions (λ0)
(SW × SL × SH)

FIBW (%) Gain (dBi) η (%)
Proposed Design Attributes

Size Material Occupied
Space (mm2)

Our work 0.256λ0 × 0.354λ0 × 0.018λ0 83.6 7.3 89 small F4B 609

[18] 0.84λ0 × 0.68λ0 × 0.06λ0 58.3 6.2 86 large FR4 3225.6

[11] 0.062λ0 × 0.179λ0 × 0.0163λ0 55.6 10.25 97 large PVC 4235

[12] 0.958λ0 × 1.533λ0 × 0.076λ0 86.48 10.6 Not Given
(NG) large FR4 4000

[14] 1.78λ0 × 1.78λ0 × 0.07λ0 24.4 7.8 >88 small RO4003C 9409

[15] 0.46λ0 × 0.46λ0 × 0.06λ0 31 14.1 NG large RO4003C 9409

[21] 0.67λ0 × 0.67λ0 × 0.03λ0 15 6.25 78 small F4B 1600

[28] 0.68λ0 × 0.68λ0 × 0.0068λ0 6.1 2.9 NG large FR4 6400

[17] 0.72λ0 × 0.66λ0 × 0.02λ0 17.4 4.0 NG small FR4 1404

[13] 0.247λ0 × 0.247λ0 × 0.013λ0 2.65 >5.0 >65 small RO4003C 900

[27] 2.53λ0 × 1.26λ0 × 0.029λ0 12 6.5 90 large F4B 25,000

[26] 0.3λ0 × 0.17λ0 × 0.009λ0 60.6 7.17 80 small FR4 1116

[22] 0.90λ0 × 0.78λ0 × 0.13λ0 67.5 8.4 67.5 large FR4 16,900

[23] 1.05λ0 × 1.36λ0 × 0.06λ0 55 7.3 NG large RO5008 78,400

[24] 1.3λ0 × 1.3λ0 × 0.24λ0 68 10.3 NG large PEC 67,600

[25] 1.3λ0 × 1.3λ0 × 0.06λ0 28.4 8.2 95 large NG 6084

[20] 0.42λ0 × 0.36λ0 × 0.011λ0 49 3.4 NG large FR4 3465

[19] 0.53λ0 × 0.66λ0 × 0.01λ0 111 4.1 NG large FR4 8000

6. Concluding Remarks

In this article, a new, low-cost, compact, high-performance, flower-shaped radiator
(FSR) for modern smartphones was designed and fabricated. A novel method comprising
open circuit loaded stubs was employed to achieve the antenna’s optimal performance
features. The designed structure of the antenna has the overall miniaturized dimensions
of 21 × 29 mm2. The proposed antenna was imprinted on F4B substrate material with
a thickness of 1.5 mm, εr = 2.55, and δ = 0.0018. The parameter study of the multiple
variables and their impact on the impedance BW and the matching and resonance tuning
results were extensively studied. Moreover, the impact of diverse laminate materials on
the performance of the radiator was also analyzed. When the return loss was less than
10 dB, the working frequency band of the proposed antenna exhibited a broad impedance
BW of 5.33 GHz ranging from 3.67 to 9.0 GHz, a maximum gain of 7.3 dBi at 8.625 GHz,
optimal efficiency of 89% at 4.5 GHz, strong intensity current flow across the radiator, and
stable monopole-like far-field radiation patterns were obtained. Hence, it is concluded
that the proposed antenna’s high-performance simulated and measured results are in good
agreement and hence make the proposed antenna an excellent choice for modern smart-
phone connectivity with the sub-6 GHz frequency spectrum of modern fifth-generation
(5G) mobile communication applications.
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