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Abstract: This paper presents a novel nested, compliant, constant-force mechanism (CFM) that
generates millimeter-scale manipulation stroke. The nested structure is utilized to improve the
overall compactness of the CFM. A combination strategy of positive and negative stiffness is induced
to generate constant force with a millimeter-level range. In particular, bi-stable beams are used as
the negative stiffness part, and V-shaped beams are selected as the positive stiffness part, and they
are constructed into the nested structures. With this, a design concept of the CFM is first proposed.
From this, an analytical model of the CFM was developed based on the pseudo-rigid body method
(PRBM) and chain beam constraint model (CBCM), which was verified by conducting a simulation
study with nonlinear finite-element analysis (FEA). Meanwhile, a parametric study was conducted to
investigate the influence of the dominant design variable on the CFM performance. To demonstrate
the performance of the CFM, a prototype was fabricated by wire cutting. The experimental results
revealed that the proposed CFM owns a good constant-force property. This configuration of CFM
provides new ideas for the design of millimeter-scale, constant-force, micro/nano, and hard-surface
manipulation systems.

Keywords: compliant mechanism; constant force; V-shaped beam; bi-stable beam

1. Introduction
1.1. Background

With the rapid development of precision engineering fields, micro/nano manipulation
technology is gradually developing in the direction of miniaturization and integration [1–4].
The emergence of compliant mechanisms is successfully and widely used in the field of
micro/nano manipulation. This also provides an opportunity for the development of
compliant constant force mechanisms (CFMs).

Many engineering applications urgently require a constant operating force to satisfy
operating on a specific object in order to prevent damage and destruction of the target
object. Scholars have proposed various methods to control the operating force by using
force sensors to monitor and control the force in real-time, but this method is complex
and difficult [5–9]. In recent years, scholars have developed CFMs to achieve a constant-
force output [10–13]. Studies have shown that this method does not require complex
control devices, has a simpler structure, and is easily operatable. Wang et al. [14] equipped
a constant-force bi-stable micromachine to protect a micro-device, which had the function
of force regulation and overload protection. When an unknown force was applied to the
device, the constant force bi-stable micro-mechanism could quickly return to other stable
states to protect the device. Chen et al. [15] combined the negative stiffness characteristics
of the bi-stable mechanism with the positive stiffness characteristics of the linear spring
to design an adjustable CFM for passively adjusting the contact force of the robot end-effector.
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The mechanism could adjust the magnitude of the constant force to suit different working
situations by adjusting the pre-stress of the prior spring, which successfully avoided the
damage to the target object caused by the contact force in an unknown environment.

1.2. Motivation

Based on this background, scholars also made a lot of achievements in the design and
application of CFM. In the design of CFM, Xu [16] developed a micro-positioning platform
with a large stroke by using the characteristics of a bi-stable mechanism, which can output
a certain constant force within 4.44 mm and is widely used in the tiny precision operation
of a micro-positioning platform. Ding et al. [17] designed a bending-based constant force
module combined with a Z-shaped beam and a bi-stable beam, and the parameters of
this mechanism were optimized to obtain better constant force performance. A novel
CFM based on the combination of positive and negative stiffness mechanisms was also
proposed [18], using a folded beam combined with a bi-stable beam. This mechanism was
also used in an industrial deburring operation. In order to reduce the force drive, Tian
et al. [19] designed a CFM with structural holes by improving the bi-stable beam and also
connecting it in parallel with the folded beam with structural holes to combine a novel
CFM with low mass and stiffness. Tolman et al. [20] similarly designed a novel compliant
CFM using the positive and negative stiffness principle and proposed an adjustable version
of this mechanism was proposed. Zhang et al. [21] proposed a curved-beam-based quasi-
constant-force mechanism with an appropriate configuration of circular arc elements to
achieve a large range of quasi-constant-force output. Constant force mechanisms have
also been applied in a variety of work situations, especially in the field of micro/nano
manipulation. Liu and Xu [22–24] designed three compliant constant force micro-gripping
devices using the positive and negative stiffness principle. Zhang et al. [25] designed
a novel CFM-based compliant parallel gripper, which achieved constant-force gripping
through the combination of a bi-stable beam and a flexible folding beam and had both active
and passive constant-force characteristics in the X and Y directions. Ye et al. [26] designed
a two-stage flexible, constant-force micro-gripper to achieve constant-force output through a
combination of bi-stable and straight beams. Wang et al. [27] used a combination of positive
and negative stiffness mechanisms to design a CFM-type precision positioning stage using a
piezoelectric ceramic through a displacement amplifier, which could output a constant force
for application in biological cell manipulation. Chen and Lan [28] designed an irregular
constant-force slide buckle mechanism using the shape optimization method and verified
the constant-force performance of the mechanism through experiments. Weight et al. [29]
designed an electrically connected, constant-force device that maintains an optimal constant
force with the aid of the contact surface of the cam and the geometry of the flexible segment.
Meaders and Mattson [30] further optimized this structure to make its constant-force output
characteristics more reasonable.

Although there are many designs for CFM, existing CFMs have the limitations of a low output
constant force, a short constant-force stroke, or an overall non-compact structure. Nowadays, many
advanced applications require touching or machining hard material, such as grating ruling, robotic
grinding, polishing, etc. Therefore, it is necessary to develop a CFM with a large output force and a
constant-force stroke for this processing.

1.3. Contribution

In this article, we designed a novel nested type of flexible CFM, which has the perfor-
mance of outputting a large constant force within a millimeter-level stroke. This nested
structure can well improve the overall compactness. In this design, we used the positive
and negative stiffness principle, where a double V-shaped beam was selected as the positive
stiffness mechanism, and a double bi-stable beam was the negative stiffness mechanism,
connected in parallel to form a zero-stiffness mechanism.

The remainder of this paper is organized as follows: The design procedure of the
compliant mechanism and the model analysis are introduced in Section 2. In Section 3, the
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finite element analysis and parametric sensitivity analysis of the CFM are demonstrated.
In Section 4, the performance of the CFM is experimentally verified. Finally, this paper
concludes with some concluding remarks in Section 5.

2. Design and Modeling Analysis of a Compliant CFM

In this article, we investigated a compliant CFM for millimeter-scale micro/nano
operation, designed with the motivation of being able to output a large constant force in
the millimeter range. It prevents damage and destruction to the target object due to force
instability during operation and has the property of protecting the target object. Meanwhile,
we hope that the design of this mechanism can meet the needs of practical applications.

2.1. Mechanism Design

In the literature [22], a constant force-based gripper has been proposed, designed by
combining a bi-stable beam and a flexible straight beam. This CFM is capable of producing
a constant-force stroke of 220 µm. Based on this design, the flexible straight beam was
changed to a double V-shaped beam, and a bi-stable beam was added on the other side, as
shown in Figure 1, with the improved constant-force mechanism having a constant-force
stroke of 1 mm.
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The designed compliant CFM includes bi-stable and V-shaped beams, as shown in
Figure 1a, and the whole mechanism consists of an internal double V-shaped beam and
an external bi-stable beam, with the double V-shaped beam structure nested between the
bi-stable beams. This design concept improves the overall stiffness and compactness of the
mechanism. The bi-stable beam, as the part of CFM that generates negative stiffness, is
a flexible straight beam with an initial angle. The buckling phenomenon occurs when the
amount of deformation exceeds a critical point. During this period, the force decreases with
increasing displacement, and the stiffness takes on a negative value until the deformation
reaches another critical point. The V-shaped beams, which generate positive stiffness, are
composed of two flexible straight beams connected at both ends. When the rigid stage
moves, the flexible straight beam in the V-shaped beams only suffers a small torsional
deformation and no tensile deformation.

As shown in Figure 1b, the upper and lower plate spring of bi-stable beams are parallel.
There was no parallel relationship between the upper plate spring of the bi-stable beams
and the lower plate spring of the V-shaped beams. Similarly, the other corresponding plate
springs are not parallel to each other. In general, constructing a CFM required adjusting
the geometrical parameters of the negative stiffness mechanism (bi-stable beam) and the
positive stiffness mechanism (V-shaped beam) separately, including the shape parameters,
in order to optimize the zero-stiffness performance. Therefore, θw 6= θv/2.

For the positive stiffness structure, we chose a flexible straight beam and a double
V-shaped beam, and the comparative analysis was carried out by finite elements. As shown
in Figure 2, it can be seen that the relationship between the force and displacement of
the straight beam exhibits a significant nonlinear relationship. This is due to the fact that
a certain amount of stress hardening occurs when a certain displacement is applied to
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a flexible straight beam. Therefore, the straight beam cannot be well matched with the
negative stiffness part to obtain a stable output constant-force characteristic. The V-shaped
beam structure exhibited higher linearity than the straight beam structure and could be
better combined with the negative stiffness part to obtain constant-force characteristics.
The use of double V-shaped beams also allowed for the avoidance of micro-slip due to
non-integral coil spring assemblies, reducing parasitic motion around the perpendicular to
the bi-stable beam, and could be designed to have linear stiffness characteristics with small
deformations. At the same time, the output force of the straight beam was larger for the
same dimensions. Meanwhile, in order to obtain an output force matching the bi-stable
beam, the double V-shaped structure was chosen in this article.
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2.2. Analytical Modeling of the CFM

To analyze the compliant CFM, it was necessary to establish mathematical models
for the double V-shaped beam and the bi-stable beam, respectively, and to develop the
stiffness model according to the principle of combining positive and negative stiffness.
Then, an analytical model of the whole CFM could be established, and the relationship
curve between the force and displacement could be obtained.

2.2.1. V-Shaped Beam

First, a pseudo-rigid body model (PRBM) was established for the double V-shaped
beam [31]. Since the V-shaped beams are symmetrically distributed, one flexible beam was
taken for structural analysis in order to simplify the modeling process, as shown in Figure 3. In
the designed structure, the V-shaped beams are indirectly connected to the fixed end through
the bi-stable beam mechanism. Therefore, in order to model and analyze the V-shaped beam,
the end connected to the connecting block was fixed, and the other end was subjected to
a force F. Meanwhile, we used the PRBM to analyze and build the stiffness model.

In this mechanism, the length of the two sides of the V-shaped beam is Lv; the torsion
springs at the hinge points A–D reflect the deformation resistance of the beam; the flexible
beam between the two torsion springs is the length R of the PRB rod, whose pseudo-rigid
body angle is θ1; the initial angle between the end of the V-shaped beam and the vertical
direction is θ10; the distance moved under the action of the force is d. On the basis of the
PRB model shown in the figure, we conducted a theoretical analysis using the principle of
virtual work, so as to model the stiffness of the double V-shaped beam.

As shown in Figure 3, the relationship between the PRB angle θ1 and the displacement
d is as follows:

d = 2R cos θ10 − R cos(θ1 + θ10) (1)

where R = γLv is the pseudo-rigid rod length and γ is the characteristic radius coefficient.
Selecting θ1 as the generalized coordinate and differentiating the generalized coordinate
from Equation (1), then the virtual displacement of the slider is as follows:

δd = −2R sin(θ1 + θ10)δθ1 (2)
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The virtual work performed by the slider under the action of the force F is as follows:

δWF = 2FR sin(θ1 + θ10)δθ1 (3)

In the PRB model, the virtual work performed by the four torsion springs is as follows:

δWT = −4κθ12FRδθ1 (4)

Therefore, the total virtual work performed by the V-shaped beam is as follows:

δW = δWF + δWT (5)

Putting the above Equations (3) and (4) into Equation (5), we can obtain from the
virtual work principle as follows:

2FRsin(θ1 + θ10)δθ1 − 4κθ1δθ1 = 0 (6)

The relationship between the V-shaped beam force F and the PRB angle θ1 can be
obtained by the following:

F =
2κθ1

R sin(θ1 + θ10)
(7)

Then, the stiffness of the double V-shaped beam is as follows:

k =
F
d
=

2κθ1

R2 sin(θ1 + θ10)[cos θ10 − R cos(θ1 + θ10)]
(8)

For the validity of Equations (7) and (8), we restrict the range of the relevant parameters
(R, θ10, and θ1) of the V-shaped beam, respectively. The basic mechanism is designed to
determine the constraints on the three parameters, referring to the design guidelines in the
literature [18]. First, the length of the plate spring of the V-shaped beam is less than the
bi-stable beam, i.e., Lv < Lw. The value R is the pseudo-rigid length of the plate spring of
the V-shaped beam, in general, R = γLv. Therefore, we can derive a range of constraints
for R: 0 < R < γLw. Second, by the internal angle theorem of the isosceles triangle, we
can derive a range of constraints for θ10: 0 < θ10 < 90◦. Finally, since in this paper, we
input a displacement of 2.4 mm for the CFM, according to Equation (1) we can derive the
restriction range for the rigid body angle θ1: 0 < θ1 < 3◦. Therefore, we restricted the
range of values for the pseudo-rigid body length R, the pseudo-rigid body angle θ1, and
the bottom angle θ10 of the V-shaped beam as follows:

0 < R < γLw
0 < θ10 < 90◦

0 < θ1 < 3◦
(9)
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We conducted an analysis of the stiffness of the V-shaped beam by FEA simulation. In
Figure 4, the relationship between force and displacement is demonstrated, and its slope
represents the stiffness of the V-shaped beam. Within a certain range of input displacement,
the force and displacement show a linear relationship, so its stiffness is constant.
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2.2.2. Bi-Stable Beam

The negative stiffness effect of a bi-stable beam is caused by the buckling characteristic,
which is a nonlinear deformation. In this article, the bi-stable beams were theoretically
modeled using the chained beam constraint model (CBCM) [32]. The flexible beam was
discretized into several equal elements and modeled using a beam constraint model (BCM)
for each beam element.

First, the CBCM was constructed based on the beam constraint model (BCM) proposed
by Awtar [33], which is an effective solution for the non-linear deformation of flexible beams.
According to the schematic diagram of a typical beam with a planar flexible beam shown
in Figure 5, the CBM model is derived as follows:[

fo
mo

]
=

[
12 −6
−6 4

][
δy
θo

]
+ po

[
6/5 −1/10
−1/10 2/15

][
δy
θo

]
(10)

δx =
t2 po

12L2 +
1
2
[
δy θo

][ 3/5 −1/20
−1/20 1/15

][
δy
θo

]
+ po

[
δy θo

][ −1/700 −1/1400
−1/1400 −11/6300

][
δy
θo

]
(11)

To simplify the derivation of the control equations for the BCM, the load was normal-
ized to the geometric and material parameters of the beam as follows:

fo =
FoL2

EI
; po =

PoL2

EI
; mo =

MoL2

EI
; δy =

∆Y
L

; δx =
∆X
L

(12)
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Figure 5. Typical beam with a planar flexible beam.

As shown in Figure 6a, the end force and end bending moment of the flexible beam
are denoted by Fo, Po, and Mo. Respectively, the end displacement and end rotation angle
of the flexible beam are denoted by Xo, Yo, and θo. Assuming that the plane’s flexible beam
is divided into N beam elements of equal length, for the ith (2 ≤ i ≤ N) element, a local



Micromachines 2023, 14, 480 7 of 14

coordinate system Oixiyi is established at the end point (node i−1) of the (i−1)th element
and along the tangent to the node i−1. The local coordinates of the first element were
established at the fixed end of the plane flexible beam, that is, the node O, and the free end
of the plane’s flexible beam is the node N. As shown in Figure 6b, we used fi, pi, and mi to
represent the nodes in the local coordinate system of the ith segment’s normalized lateral
force, normalized axial force, and normalized bending moment on the node i, respectively.
Meanwhile, we used δxi, δyi, and αi to represent the corresponding lateral displacement,
axial displacement, and end rotation angle, respectively. The load balance equation for the
ith column is as follows:  f ′i−1

p′i−1
m′i−1

 =

 1 0 0
0 1 0

1 + δxi −δyi 1

 fi
pi
mi

 (13)
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In this case, the transverse force, axial force, and bending moment of the (i−1)th unit
on the ith unit are denoted by f ′i−1, p′i−1, and m′i−1, respectively. Since the ith unit has a
rigid body rotation αi−1 around the (i−1)th unit, we can obtain the following: fi−1

pi−1
mi−1

 =

cos αi−1 − sin αi−1 0
sin αi−1 cos αi−1 0

0 0 1

 f ′i−1
p′i−1
m′i−1

 (14)

The angle θi(θ1 = 0) that the ith element rotates around the global coordinate system
can be expressed as follows:

θi =
i−1

∑
1

αi (15)

The simultaneous Equations (14) and (15) yield the equilibrium equation for the ith
element (there are 3(N−1) equations in total):

θi =
i−1

∑
1

αi

 cos θi − sin θi 0
sin θi cos θi 0

1 + δxi −δyi 1

 fi
pi
mi

 =

 f1
p1

mi−1

 (16)

Normalizing the end load (because the local coordinate system and the global coordi-
nate system of the first element coincide, so the directions of f1 and p1 are parallel to the
directions of fo and po, respectively), we obtain the following:

fo =
Fo L2

EI = N2 f1

po =
Po L2

EI = N2 p1

mo =
Mo L2

EI = NmN

(17)
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The geometric constraint equations for the entire plane flexible beam can be written as
follows (three equations in total):

{
N−1
∑

i=1

[[
cos θi − sin θi
sin θi cos θi

][
Li(1 + δxi)

Liδyi

]]
=

[
Xo
Yo

]
θN + αN = θo

(18)

The length of the ith cell is Li, and for equal-length divisions, there is Li = L/N.
As shown in Figure 7a, for this bi-stable beam, the global coordinate system was set

at the fixed end A, with the x-axis along the beam length and the y-axis perpendicular to
the beam. We divided the flexible beam into three sections and used the beam constraint
model for modeling analysis. For a given guide end B, the lateral displacement is d, so the
end displacement of the flexible beam can be expressed as follows:

Xo = LAB − d sin θw
Yo = −d cos θw

θo = 0
(19)
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Figure 7. Schematic of the bi-stable beam: (a) schematic of the bi-stable beam; (b) force of the positive
coordinate system.

As Figure 7b shows, the lateral force F at the leading end B can be expressed by the
end loads (Fo and Po) of the beam as follows:

F = Fo cos θw + Po sin θw (20)

The above theoretical analysis was carried out on the flexible bi-stable beam and
the double V-shaped beam, and MATLAB software was used to draw the curve diagram.
Finally, a curve with a constant-force range was formed, as shown in Figure 8.
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3. FEA and Parameter Analysis
3.1. Finite Element Analysis

In order to verify the performance of the compliant CFM, a nonlinear simulation
study was conducted using the commercial software ANSYS. First, the model of the CFM
was built. Then the model was imported into workbench and the material was set to
aluminum alloy. The material parameters used for the aluminum alloy can be found in
Table 1. A certain displacement was input at the lower end of the mechanism and the step
size was set. The final reaction force was derived. The force–displacement curve of the
CFM derived from the simulation is shown in Figure 9, which verifies that the CFM has
certain characteristics of outputting constant force.

Table 1. Table of the parameters of the aluminum alloy.

Parameters Numerical Value

Young’s modulus 71 Gpa
Density 2810 kg/m3

Poisson’s ratio 0.33
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As shown in the force–displacement curve obtained through simulation, by applying
a displacement of 2.4 mm at the bottom end of the CFM, the mechanism outputs a near-
constant force of 44.2 N within 1 mm. The results of the FEA of the CFM match the analysis
results of the mathematical model, which verifies the output constant-force characteristics
of the designed CFM.

The geometric parameters of the CFM were determined by simulation. Additionally,
the specific dimensional parameters are shown in Table 2.

Table 2. Table of the parameters of the CFM.

Parameters Numerical Value

Bi-stable beam

Length Lw 32.5 mm
Tilt angle θw 3.7◦

Thickness tw 1.0 mm
Widthω 3.1 mm

V-shaped beam

Length Lv 27.22 mm
Angle θv 25.4◦

Thickness tv 1.1 mm
Widthω 3.1 mm

3.2. Parameter Analysis

The parameter of the structure significantly determined the output characteristics of
the CFM [34]. In this subsection, we investigated the sensitivity of the parameter. It was
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clear from Equations (7) and (19) that the constant force characteristics were exceptionally
sensitive to the parameters tv, θv, Lw, and θw. We changed the values of each of the
four parameters. We changed the values of the four parameters and derived the output
characteristic curves of the CFM using the finite element software ANSYS. As shown in
Figure 10, we observed that the variation of different parameters had a determining effect
on the output performance of CFM.
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Figure 10. Institutional parameters: (a) tv; (b) θv; (c) Lw; (d) θw.

First, as shown in Figure 10a, tv increased from 0.8 mm to 1.3 mm with an interval of
0.1 mm. As tv increased, the force also increased and the relationship between tv, and the
force was approximately proportional. Within 0.8–1.1 mm, the change in tv had almost no
effect on the constant-force strokes. Within 1.1–1.3 mm, the stiffness of the V-shaped beam
increased due to the larger tv. Therefore, the bi-stable beam on the upper side was pushed
to move upward to reach the flexural state, so the curve changed, and the constant-force
strokes became larger. Within 1.1–1.3 mm, the stiffness of the V-shaped beam increased
due to the larger tv. Therefore, the bi-stable beam on the upper side was pushed to move
upward to reach the flexural state, so the curve changed, and the constant-force strokes
became larger. Second, as shown in Figure 10b, θv increased from 23.4◦ to 33.4◦ at an
interval of 2◦. It can be seen that the effects of θv and tv on the CFM are the same, and the
difference lies in the different effects on the magnitude of the force. tv had a more obvious
effect on the magnitude of the force within the constant-force distinction, while the effect of
θv on the magnitude of the force was relatively flat.

As shown in Figure 10c, the effect of the parameters of the bi-stable beam on the
performance of the CFM was explored. First, the length Lw of the bi-stable beam was
spaced from 30.5 to 35.5 mm with an interval of 1 mm, increasing the constant-force strokes
with the increase in Lw and decreasing the magnitude of the force with the increase in the
beam length. Second, as shown in Figure 10d, θw varied from 1.7◦ to 6.7◦ at 1◦ intervals, and
it was observed that a larger θw increased the travel of the constant force. The magnitude
and amplitude of the force also increased with the increasing θw. This indicates that the
magnitude of the inclination angle of the bi-stable beam has a greater effect on the size of
the region generating negative stiffness.
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4. Experimental Study
4.1. Prototype Fabrication

The designed CFM was machined by the wire-cutting process, and the processing
material was Al-7075 aluminum alloy (Young’s modulus, 71 Gpa; Poisson’s ratio, 0.33). The
magnitude of the constant force generated by selecting different materials will be different.
Therefore, different materials can be selected according to the actual situation to achieve
different constant forces for different occasions. Verification of the prototype was carried
out on a pneumatic stage, where the device required for the experiment was mounted.
The force sensor (SFS200) was used to measure the magnitude of the force and was bolted
to the convex end connection block of the CFM, while the force sensor was bolted to the
micro-positioning stage, and a certain displacement was given to the CFM by turning
the X–Y positioning stage. The displacement was measured by a digital indicator meter
(Mitutoyo 543-390B). The force sensor was connected to the computer terminal through a
high-frequency data collector (LabPro508) to monitor the magnitude of the generated force
in real-time to verify the performance of the designed CFM.

As shown in Figure 11, we moved the force sensor through the positioning stage,
and the experiment started when the force sensor contacted the bottom of the CFM. After
the force sensor contacted the CFM, we continued to move the positioning stage for the
same time and recorded the data. At this point, the CFM generates a reaction force on the
force sensor, which is processed by the data collector and reflected on the display. In the
process, we recorded the input displacement and output reaction force for each time period.
Additionally, it was selected 13 points in the same time interval to plot the curves of input
displacement and output force in relation to time (Figure 12a,b). Finally, the two curves
were fitted to the desired constant force characteristic curve (Figure 12c).
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Figure 11. The experimental apparatus.

4.2. Experimental Results

In this section, the CFM was experimentally tested, and its performance was discussed.
A displacement of 2.4 mm was input to the end of the CFM, as shown in Figure 12a. The
output constant force measured by the force sensor was 45.5 N, as shown in Figure 12b,
and the constant force ranged between 1.2 and 2.2 mm. It can be seen from Figure 12c that
the CFM designed in this paper has the characteristic of outputting constant force for a
period of time. The experimental results agree closely with the simulation and theoretical
results, and the performance of the structure was verified. In Figure 12d, we enlarged the
view of experimental results to clearly demonstrate the constant force zone. Due to the
manufacturing error causing the experimental results to have a certain error against the
simulation theory, the manufacturing error, material properties, and surface roughness,
and other imperfections are the main reasons for the deviation between the model and
experimental results.
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In Table 3, we present a comparison of the variability between the model, theory, and
simulation, respectively, and quantify the error of the three results in the constant force
zone. Compared with the experimental results, there existed a negligible error of less than
5% for the constant force derived from the theoretical and simulated results. It can conclude
that the designed mechanism has a certain performance of the outputting constant force.

Table 3. Analysis of results in the constant force interval.

Performance Experiment FEA Model Error

Constant force (N) 45.5
44.2 - 5%

- 43.3 3%
Constant stroke (mm) 1.0 1.0 1.0 -

5. Conclusions

In this paper, a novel nested, compliant CFM with a millimeter-level stroke was
proposed, which can overcome the limitations of the small output force and constant-force
strokes of the existing CFM. The configuration uses the principle of combining positive and
negative stiffnesses to generate a constant output force, and the positive stiffness mechanism
is located within the negative stiffness mechanisms. We analyzed the mechanism in detail.
The positive and negative stiffness parts of the CFM were modeled and analyzed using the
method of PRB and CBCM, respectively. A simulation analysis of the static mechanics was
also carried out using finite element software. Finally, a prototype was fabricated, and an
experimental platform was built for performance testing. The experimental results showed
that the constant-force mechanism has constant-force strokes of the millimeter level and
can output a constant force of 45.5 N within 1 mm of a stroke.

In Table 4, we compare the literature on the related constant-force mechanism, and
the materials used for the prototype fabrication included aluminum alloy and 3D printing
materials. As can be seen from the table, the CFMs covered in the literature all have
relatively small output forces and different output stroke lengths. The CFM designed in
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this article is capable of outputting a constant force of 45.5 N within millimeter strokes,
which can meet the needs of operating hard-surface materials. In future research, we will
optimize the mechanism to obtain larger constant-force strokes to suit more occasions.

Table 4. Comparison of the existing literature.

Designs Constant Force (N) Stroke (mm)

This work 45.5 1.0
Literature [27] 29 0.7
Literature [18] 11.92 2.13
Literature [35] 11.15 2
Literature [22] 0.53 0.22
Literature [36] 0.3 0.65
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