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Abstract: Robust and accurate attitude and heading estimation using Micro-Electromechanical
System (MEMS) Inertial Measurement Units (IMU) is the most crucial technique that determines the
accuracy of various downstream applications, especially pedestrian dead reckoning (PDR), human
motion tracking, and Micro Aerial Vehicles (MAVs). However, the accuracy of the Attitude and
Heading Reference System (AHRS) is often compromised by the noisy nature of low-cost MEMS-
IMUs, dynamic motion-induced large external acceleration, and ubiquitous magnetic disturbance.
To address these challenges, we propose a novel data-driven IMU calibration model that employs
Temporal Convolutional Networks (TCNs) to model random errors and disturbance terms, providing
denoised sensor data. For sensor fusion, we use an open-loop and decoupled version of the Extended
Complementary Filter (ECF) to provide accurate and robust attitude estimation. Our proposed
method is systematically evaluated using three public datasets, TUM VI, EuRoC MAV, and OxIOD,
with different IMU devices, hardware platforms, motion modes, and environmental conditions;
and it outperforms the advanced baseline data-driven methods and complementary filter on two
metrics, namely absolute attitude error and absolute yaw error, by more than 23.4% and 23.9%. The
generalization experiment results demonstrate the robustness of our model on different devices and
using patterns.

Keywords: MEMS IMU; attitude estimation; AHRS; complementary filter; magnetic disturbance;
deep learning

1. Introduction

With the widespread use of smartphones, wearable devices, wireless earphones, head-
mounted VR devices, Micro Aerial Vehicles (MAVs), and vehicle Advanced Driving Assis-
tance Systems, the small and low-cost inertial sensors based on Micro-Electromechanical
System (MEMS) technology, also known as MEMS Inertial Measurement Units (MEMS-
IMUs), are gradually playing an irreplaceable role in people’s lives. According to the latest
research report, the consumer-grade IMU market is expected to grow to 838 million US dol-
lars by 2026, with a compounded annual growth rate of 5% [1]. Using MEMS-IMU to track
motion is crucial in various applications, such as pedestrian dead reckoning (PDR) [2,3], hu-
man activity recognition [4,5], health monitoring, rehabilitation robotics, and autonomous
vehicles, which benefit fields such as the Internet of Things, smart cities, human–machine
interaction, and medical health [6]. Any improvement in this technology will profoundly
impact and extend a series of unprecedented systems and applications.

Due to limitations in the designing and manufacturing of MEMS sensors, the accu-
racy of MEMS-IMU has been regarded as challenging in achieving inertial navigation [7].
However, using MEMS-IMUs to obtain the attitude of the carrier has been an important
application accompanying its development and mass adoption since [8]. The traditional
method to estimate attitude is to use sensor fusion algorithms, such as the Attitude and
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Heading Reference System (AHRS), which uses motion data from 3-axis accelerometers,
gyroscopes, and magnetometers, to calculate 3D attitudes [9]. The principle is to use the
gravitational acceleration measured using the accelerometer during the stationary phase
and the geomagnetic fields measured using the magnetometer as reference sources to
correct for the error induced by the integration of the raw gyroscope measurement [10].

However, in practical scenarios, the accelerometer data represent the resultant vec-
tor of the carrier’s acceleration, which includes not only gravitational but also external
acceleration generated by motion and vibrations caused by collisions. These interfering
factors are ubiquitous during movement and are difficult to eliminate through modeling
or other means due to their random nature [11]. Similarly, the actual data obtained using
the magnetometer represent the resultant vector of the magnetic field at the carrier, which
includes not only the geomagnetic field but also magnetic disturbances caused by ferro-
magnetic materials in local building structures [12]. These interfering factors vary with
the region of use in both magnitude and direction, hindering the accurate measurement
of the geomagnetic field. The aforementioned disturbances jointly damage the accurate
and reliable estimation of attitude and heading. Therefore, exploring an AHRS algorithm
that can mitigate the influence of large external acceleration and magnetic disturbance has
become an emerging research direction [13–16].

1.1. Related Work

Traditional sensor fusion attitude estimators are mainly based on Kalman filtering
(KF) [17] and a Vector Observation Algorithm [18]. However, KF and other optimization
methods demand a high sensor sampling rate to achieve real-time prediction, and also re-
quire a large computational cost [19]. Researchers have developed sensor fusion algorithms
with Complementary Filters (CF) [20] or Complementary Kalman Filter [21] structures
to improve computational efficiency and have them applied to the AHRS. The adopted
Mahony algorithm [20] is a typical CF algorithm in this field and is widely used in low-cost
applications. Since the performance of CF algorithms depends largely on the selection of
their gain parameters, a series of adaptive gain optimization methods have been proposed
to improve the robustness of the AHRS based on complementary filtering [22]. Madgwick
et al. proposed an AHRS algorithm based on the gradient descent algorithm (GDA) [19],
which relies on the gradient calculated by the measured acceleration vector and the gravity
vector pointing to the center of the earth to correct the accumulative error of the gyroscope.
Kok et al. [23] fastened the convergence of the GDA through a single gradient descent step
with fixed step length and further reduced the computational complexity by 36%. The
advanced complementary filter MUSE [24] is similar to the Madgwick filter, but only uses
the gravity vector as the attitude update source when the device is completely stationary.
Instead, it mainly uses the geomagnetic north vector as the basis for gradient calculation,
which eliminates the problem of erroneous updates caused by large external accelerations,
as the acceleration vector is mainly composed of gravity when the device is stationary.

In 2020, Madgwick improved the original GDA algorithm and proposed an AHRS
algorithm called the Extended Complementary Filter (ECF) [25], which is based on the
Mahony’s original CF algorithm. The ECF algorithm uses both the gravity vector and
geomagnetic north vector for attitude error correction. When the algorithm detects dynamic
motion or magnetic disturbance, it disables the corresponding correction information and
only utilizes the rest components for attitude updates. Fan et al. considered both mag-
netic disturbance and dynamic motion issues, first implementing a decoupled magnetic
field complementary filter tilt estimation algorithm [26], and then proposing an adaptive
anti-disturbance strategy based on a finite state machine [27]. Yuan et al. [28] modeled
the uncertainty of external acceleration and magnetic disturbance and took them as the
covariance matrix in an extended Kalman filter (EKF)-based attitude estimator. These
algorithms’ anti-disturbance ability was validated in indoor human motion tracking ex-
periments using well calibrated commercial modules, such as the MTw IMU sensor [29].
However, in diverse and low-cost MEMS inertial sensor devices, data quality is difficult
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to match that of commercial inertial modules, and the adaptively obtained parameters
are difficult to transfer between different devices and usage scenarios, making such al-
gorithms difficult to apply on a large scale. The VQF [30] decoupled the heading error
from the inclination error in attitude state representation to reject magnetic disturbances
and provided precise inclination correction using specific force measurements. The results
on the publicly available dataset [31] showed greatly improved accuracy and robustness
compared to traditional filtering methods.

With the development of deep learning and its advances in the field of robotics,
more and more researchers are using neural networks to process inertial sensor data in
the field of navigation, demonstrating strong fitting capabilities [32]. OriNet [33] and
Brossard et al. [34] have started using deep networks to regress attitude from IMU mea-
surements. OriNet uses a Long Short-Term Memory (LSTM) neural network to propagate
states. It corrects gyroscope biases using genetic algorithms and mitigates sensor noise
through additive Gaussian noise during training. Brossard et al. estimated attitude through
gyroscope integration but correct angular velocity errors using CNNs to filter out unwanted
noise and bias before integration. Both methods primarily focus on using deep networks to
filter gyroscope data and estimating compensation factors to reduce bias and noise. Differ-
ent from aforementioned methods, using an end-to-end framework to map attitude directly
from raw IMU data has developed a filter that outperforms traditional filters in robustness,
as shown in [35,36]. Extensive experiments on six publicly available datasets proved the
ability of RIANN [35] to generalize over different application scenarios. IDOL [37] utilizes
an LSTM to estimate both the attitude and covariance using nine-axis IMU data. At the
same time, it uses the EKF to fuse gyroscope data and the neural network output in a short
period of time to estimate the three-axis attitude.

Our work differs from previous works in the following two aspects. The first is that we
model IMU calibration errors, especially dynamic motion and magnetic disturbance, using
deep neural networks. The second is that we use an open-loop and decoupled version of
the ECF framework to adaptively fuse denoised sensor data to provide accurate attitude
estimation under different usage scenarios.

1.2. Our Contribution

In this paper, we propose a robust AHRS to adapt to different scenarios, especially un-
der dynamic motion and magnetic disturbance. In summary, we have four key contributions:

• A detailed modeling of low-cost IMU calibration errors for data-driven error compen-
sation including the gyroscope, accelerometer, and magnetometer.

• A series of Temporal Convolutional Network (TCN)-based random error estimation
models that take raw data as the input and regress the error-compensated sensor data,
including the denoised angular velocity, gravitational acceleration, and geomagnetic
north field.

• An open-loop and error-decoupled version of the ECF framework for efficient and
robust attitude estimation using a six-axis or nine-axis IMU.

• Extensive and qualitative experiments on three public datasets, covering different sen-
sor platforms, motion status, and magnetic field environment. Additionally, we prove
that our model outperforms the existing data-driven methods in both accuracy and ro-
bustness and is compact enough for implementation on resource- constrained devices.

The rest of this paper is organized as follows. Section 2 introduces the baseline method
of this paper and defines the problems by rewriting the formulation of the ECF framework.
Section 3 describes the details of the used calibration model, neural network architecture,
overall optimization techniques, and the loss function. Section 5 presents the results of the
experimental evaluations. Finally, the conclusion is drawn in Section 6.

2. Extended Complementary Filter Framework

We propose to use the ECF algorithm [25] as the sensor fusion framework. The main
formulations of the ECF algorithm are introduced below, and we use a direction cosine
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matrix (DCM) to express attitude. When the 3D attitude and angular velocity of a rigid
platform are known, the increment change in attitude can be expressed as

.
C

n
b = Cn

b Ωb
nb (1)

where Cn
b ∈ SO(3) is the DCM that maps the body coordinate frame (b-frame) to the

North–East–Down navigation coordinate frame (n-frame), which is a member of the
3D rotation group (SO(3)), and Ωb

nb is the anti-symmetric matrix of the angular veloc-

ity ωb
nb =

[
ωx ωy ωz

]T , which is

Ω = [ω×] =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (2)

Hence, the value for attitude at timestamp k can be calculated by integrating the

increment change in the attitude
.
C

n
b , where exp(·) is the SO(3) exponential map.

Cn
b(k) = Cn

b(k−1) exp(Ωb
nb∆t

)
(3)

Because the error of the gyroscope continues to accumulate over time through integra-
tion, the error term e is used for correction, and the global parameter K is the gain used to
scale the error correction term. Then, Equation (1) for attitude update can be changed to

.
C

n
b = Cn

b [(ω + Ke)×] (4)

The error correction term e includes two parts: the accelerometer correction term ea
and the magnetometer correction term em.

ea =
ab

‖ab‖
×

Cb
n(k−1)·

0
0
1

 (5)

where ba =
[
ax ay az

]T are the measured acceleration in the b-frame, Cb
n(k−1) is attitude

estimated in last timestamp, and vector
[
0 0 1

]T is the true gravity vector in the n-
frame. The error term ea represents the difference between the measured gravitational
acceleration in the zero-velocity range and the true gravity vector transformed in the b-
frame. Therefore, the gravity vector can be used as a correction source for the attitude
through the accelerometer.

em =
ba × bm
‖ba × bm‖

×

Cb
n(k−1)·

0
1
0

 (6)

where bm =
[
mx my mz

]T are the measured magnetic field in the b-frame, and vector[
0 1 0

]T is the unit vector pointing east in the n-frame, which represents the cross
product of gravity vector and geomagnetic north vector to eliminate the influence of
magnetic declination. Therefore, the vector pointing east can be used as a correction source
for the heading angle through both the accelerometer and magnetometer. e can be described
by a set of rules, as follows:

e =


ea + em if ‖

(
‖ba‖ − ‖g‖

)
‖ < amin and mmin < ‖bm‖ < mmax

ea else if ‖
(
‖ba‖ − ‖g‖

)
‖ < amin[

0 0 0
]T

else

(7)
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where amin is a small constant, g represents the gravity vector, and [mmin, mmax] represents
the normal fluctuation range of the geomagnetic field. Equation (7) indicates that when
the accelerometer detects large external acceleration or the magnetometer detects magnetic
disturbances, the corresponding part is removed from the total error term to prevent
erroneous correction. The gain K can be modeled as

K =

{
Knorm if t > tinit

Knorm + tinit−t
tinit

(Kinit − Knorm) else
(8)

where Kinit is a large value for fast convergence to the correct attitude at the initialization
period, and Knorm is a smaller gain factor for normal operation of the model. By adjusting
the parameter K, the algorithm can achieve the best performance, then realize the real-time
solution to the attitude of the carrier.

However, simply removing the accelerometer and magnetometer calibration sources
cannot alleviate the problem of gyroscope error accumulation. Using this approach for
a prolonged period of time under dynamic motion and magnetic disturbance can still
cause the attitude result to diverge. Additionally, the algorithm requires a relatively long
static time for the attitude to converge, and short static or low-speed situations cannot
reduce attitude error. Therefore, when deploying the algorithm in practical applications,
corresponding improvements need to be made in this regard. Subsequent experiments have
shown that the ECF algorithm is suitable for hardware systems with low gyroscope errors
and high sampling rates. It is difficult to achieve good attitude prediction results for systems
with low sampling rates and long periods of high dynamics and magnetic disturbance.

3. Denoising Neural Network for Robust AHRS
3.1. Low-Cost Inertial Measurement Unit (IMU) Calibration Model

The calibration model of low-cost IMU suffers from errors, which are either systematic
errors or random errors. Systematic errors, such as a scale factor error, axis misalignment,
and static bias, can be modeled mathematically and can be mitigated through calibration,
while random errors are usually modeled as random processes within the inertial navi-
gation solution scheme. [38] We introduce the IMU calibration model commonly used in
developing the AHRS as follows [8]. The following terms are all in the b-frame. Gyroscope
readout yGyr,k at timestamp k can be modeled as

yGyr,k = KGyrωk + bGyr,k + vGyr,k (9)

where KGyr is the gyroscope scale factor matrix; ωk is the true angular velocity in the
b-frame; bGyr,k is bias, which includes static bias bGyr,0 and time-varying random bias; and
vGyr,k is a white noise term. Accelerometer readout yAcc,k can be modeled as

yAcc,k = KAcc[ak + g] + bAcc,k + vAcc,k (10)

where KAcc is the accelerometer scale factor matrix, ak is the external non-gravitational
acceleration, g is gravitational acceleration, and vAcc,k is a white noise term. Magnetometer
readout yMag,k can be modeled as

yMag,k = KMagmk + dk + vMag,k (11)

where KMag is the magnetometer scale factor matrix, mk is the true geomagnetic field, dk is
magnetic distortion, and vMag,k is a white noise term.

In practice, the aforementioned systematic error terms can be calibrated without ex-
ternal equipment during operation. Typically, the ellipsoid fitting method can be used in
combination with the geomagnetic north vector and gravity vector to calibrate the magne-
tometer and accelerometer [39–41]. The gyroscope, on the other hand, needs to be fitted
with the accelerometer using the hexahedron method [42] to obtain the gyroscope system-
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atic errors during flipping, while the random errors can be calibrated by analyzing the zero
bias changes during long-term static testing using the Allan variance [43]. Compared to
the methods mentioned earlier, our paper presents a novel approach to correcting errors
in IMUs using denoising neural networks. This data-driven method can address both
systematic and random errors in IMUs. The concept is to utilize neural networks with
trainable parameters to model error terms, enabling the mapping of raw sensor data to
denoised physical quantities.

Leveraging the aforementioned common calibration models, we transform Equations (9)–(11)
and obtain the denoised angular velocity ω̂Gyr as

ω̂Gyr = R̂GyryGyr,k − ω̃k (12)

where R̂Gyr ∈ R3×3 is the transpose of matrix KGyr, which includes scale factor error and
misalignment error of gyroscope, and error term ω̃k ∈ R3 is mainly comprised of static and
random bias bGyr,k. Similarly, the denoised gravitational acceleration ĝk can be computed as

ĝk = R̂AccyAcc,k − ãk (13)

where R̂Acc ∈ R3×3 is the transpose of matrix KAcc, and error term ãk ∈ R3 is mainly com-
prised of external acceleration ak. The denoised geomagnetic field b̂k can be computed as

b̂k = R̂MagyMag,k − m̃k (14)

where R̂Mag ∈ R3×3 is the transpose of matrix KMag, and error term m̃k ∈ R3×3 is mainly
comprised of magnetic distortion.

3.2. Learning-Based Sensor Error Compensation

Now we seek to estimate error terms in IMU calibration models using data-driven
methods. We define the neural network to estimate gyroscope error term ω̃Gyr as

ω̃Gyr = fTCN(yIMU,k−N , . . . , yIMU,k) (15)

where neural network fTCN is similar to the network structure proposed by Brossard [34].
It is mainly composed of a five-layer 1D-CNN. The time series is processed by inputting N
data frames before k time, and the sequence is serialized by padding zeros at the beginning
of the sequence. Different expansion values are set in each layer of the CNN so that the
receptive field of the highest layer can cover the entire sequence, and the entire network can
realize the time window of N = 448. The CNN’s convolution kernel parameters gradually
increase with the number of layers to achieve high-dimensional feature extraction, setting
the Batch Normalization layer and Dropout layer after each layer to alleviate overfitting
and using the GELU activation function to achieve nonlinear output. The structure and
parameters of the network are shown in Figure 1.
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Figure 1. The structure and detailed parameters of fTCN . The 5-layer structure has a receptive field
of N = 448, which can be calculated by the product of the 1D CNN kernel size and multiplied by each
layer’s stride.
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As Equation (15) stated, the input data for the six-axis IMU are yIMU,k = (yGyr,k, yAcc,k) ∈ R6,
and for the nine-axis IMU are (yGyr,k, yAcc,k, yMag,k) ∈ R9. It is important to include ac-
celerometer and magnetometer data since the change in acceleration and magnetic field
can also contain information for an incremental change in attitude. When the carrier is
moving slowly and has no magnetic disturbance, the acceleration and magnetic field in the
b-frame can be stated as

bak = Cb
n(k)(∆v/∆t + ng) (16)

bmk = Cb
n(k)(∆d + nb) (17)

Additionally, the change in acceleration and magnetic field can be computed as

bak+1 −
bak = Cb

n(k)
ng − Cb

n(k−1)
ng

=
(

exp(−Ωb
nb∆t)− I3

)
Cn

b(k−1)
Tng

(18)

bmk+1 −
bmk =

(
exp(−Ωb

nb∆t)− I3

)
Cb

n(k−1)
Tnb (19)

where ng is the gravity vector in the n-frame, and nb is the geomagnetic north vector in the n-
frame. By providing multi-source data, the neural network can fuse information in different
domains to improve the ability of the dynamic error compensation for angular velocity.

Similarly, we define the neural network to estimate error term ãk as

ãk = fTCN

(
yAcc,k−N , . . . , yAcc,k

)
(20)

The neural network to estimate error term m̃k as

m̃k = fTCN

(
yMag,k−N , . . . , yMag,k

)
(21)

Both neural networks utilize a TCN as the feature extractor.
Since the proposed calibration models are linear operations, in addition to the pa-

rameters of the neural network, other parameters of the calibration model, such as R̂Gyr,
R̂Acc, and R̂Mag, can also be optimized through backpropagation. During initialization, the
neural network outputs 03, and R̂Gyr, R̂Acc, and R̂Mag are set as I3; error model outputs
are, respectively, ω̂Gyr ≈ yGyr,k, ĝk ≈ yAcc,k, and b̂k ≈ yMag,k, in order to speed up the
training. After the training is completed, the obtained parameters R̂Gyr, R̂Acc, and R̂Mag
do not change with time, and they represent the scale factor and axis alignment error of
the sensor.

Compared with the traditional calibration method, the parameters obtained through
data driving can better reflect the real in-run error of the sensor. A follow-up will have
experiments verify the accuracy of the calibration method.

3.3. Optimization for Open-Loop ECF Model

After acquiring denoised sensor data using the IMU calibration model, we utilize the
ECF framework to fuse sensor data. The corrected angular velocity ω̂k, which is used for
attitude update, can be modeled as

ω̂k = ω̂Gyr + γeAcc + ηeMag (22)

where ω̂Gyr is calculated using Equation (12), and γ ∈ R3 and η ∈ R3 are gain parameters.
Error term eAcc can be calculated as

eAcc =
ĝk
‖ĝk‖

×

C̃
b
n(k−1)·

0
0
1

 (23)
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where ĝk is calculated using Equation (13), and eMag can be calculated as

eMag =
g′ × b̂k

‖g′ × b̂k‖
×

C̃
b
n(k−1)·

0
1
0

 (24)

where b̂k is calculated using Equation (14).
According to the calculation of error correction terms from the accelerometer and mag-

netometer, the attitude value from the previous timestep must be obtained to achieve the
transformation of the true reference vector. However, the serial closed-loop calculation will
greatly increase the training time of the neural network, and the non-direct correspondence
also increases the difficulty for training convergence. The Transformer [44] proposes to use
masking to process the label sequence of the decoder input to achieve parallel calculation
and accelerate the training of the decoder. However, due to the short time interval between
adjacent outputs of the proposed model and the relatively simple dependency relationship,
the multiplication of large masks undoubtedly increases the computational burden of
the model.

We have taken the idea of the Transformer and used an open-loop structure to achieve
the abovementioned recursive updating structure. The method we obtained is to input the
pre-integration attitude value that has been updated synchronously with the gyroscope
only from initialization in addition to the sensor data. The specific expression is as follows:

C̃
n
b(k−1) = Cn

b(0) · exp([yGyr,1×]∆t
)
·exp([yGyr,2×]∆t

)
· . . . · exp([yGyr,k−1×]∆t

)
= Cn

b(0) exp
(

∑k−1
i=0 [yGyr,i×]∆t

) (25)

The cumulative error of C̃
n
b(k−1) can be merged into the error terms during the calcula-

tion of sensor compensation and eliminated together using the TCN denoising network
through training. This enables the TCN to model gyroscope error alongside their own
sensor error and serves as data augmentation to alleviate overfitting. In high-performance
hardware systems, the above method can rely more on the direct attitude information
obtained from the gyroscope, reduce the reliance on the magnetometer and accelerometer,
and prevent erroneous correction.

We apply the same approach when calculating eMag, with the gravitational acceleration
being replaced by accelerometer measurement g′ ≈ yAcc. This decouples the denoising
neural network for the accelerometer and for the magnetometer, preventing the error
propagation in multi-stage models.

The output of the ECF model is a corrected angular velocity ω̂k. Additionally, the
attitude update can achieve an open-loop state by using Equation (3). This is only necessary
to obtain the initial attitude value Cn

b(0), and the corresponding attitude value can be
calculated in real-time in the subsequent integration process. The algorithm frame diagram
is shown in Figure 2.

3.4. Loss Function

Since the proposed model needs to adapt to different application requirements of
different hardware devices, designing a training and optimization method that meets
most datasets is a necessary condition for the implementation of this method. We propose
to use the form of incremental accumulation to integrate the attitude change to reduce
the frequency of the IMU. The incremental change in attitude from time i to i + j can be
calculated as:

δCn
b(i,i+j) = Cb

n(i) · C
n
b(i+j) = ∏i+j−1

k=i exp([ωk×]∆t) (26)
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We can merge j frames of attitude estimation data into one frame through Equation (26),
and calculate the loss function with the label of the corresponding timestamps:

Lj = ∑
i

ρ
(

log
(

δCb
n(i,i+j)δĈn

b(i,i+j)

))
(27)

where the log(·) is the SO(3) logarithm map, and ρ is the smooth L1 loss, i.e., Huber
loss. Since the calculation of the incremental change does not require the participation
of the original attitude, and the left multiplication rule of SO(3) is followed during the
transformation, the calculation of the loss function for the cumulative attitude change is
not disturbed by the initial attitude. Finally, set the Huber loss parameter to 0.005, and j
takes 16 and 32 to calculate the loss function:

L = L16 + L32 (28)

4. Experimental and Results
4.1. Experiment Setup

In order to achieve accurate data-driven attitude estimation, it is necessary to have
a relatively accurate 3D attitude gold standard to annotate the dataset. The calibrated
VICON Optical motion capture system has been tested to achieve an accuracy of 0.1◦ [28],
which is sufficient to calibrate our inertial equipment. To validate the designed attitude
estimation model under different hardware devices and usage modes, this paper chose
three public datasets for validation. Below, we will introduce their hardware systems and
experimental methods.

4.1.1. TUM VI Dataset

The TUM VI dataset [45] consists of visual–inertial sequences from different scenarios
captured using hand-held devices. Different sensors and reflective markers are fixed on a
rigid frame that can be handheld, and coordinate frame transformations are implemented to
align the data from the IMU and markers in the same carrier right-hand b-frame, reducing
the preprocessing difficulty. The inertial sensor used is a Bosch Sensortec consumer-grade
six-axis IMU, model BMI160. It includes a three-axis accelerometer and gyroscope, with
a sampling rate of 200 Hz and proper calibration and time synchronization. The ground
truth is obtained using an optical motion capture system from OptiTrack, which contains
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16 Flex13 cameras with a sampling frequency of 120 Hz. We select the room sequence set
with the longest sequence as the training and test datasets. The sequences are entirely
captured in the motion capture room, with the user holding the capture device and walking
freely in the room, recording video images and IMU data. Each sequence lasts for 2–3 min.
We define the training set as the first 80 s of sequences room1, room3, and room5; the
validation set as the remaining end of these sequences; and the test set as the other three
room sequences.

4.1.2. EuRoC MAV Dataset

The EuRoC MAV dataset [46] consists of visual–inertial sequences deployed on Micro
Aerial Vehicles (MAVs). Specifically, it includes synchronized stereo images, IMU data,
and ground truth data provided by a Leica Nova MS50 laser tracker and Vicon motion
capture system. The inertial sensor uses the ADI ADIS16448 6-axis IMU with a sampling
rate of 200 Hz, without calibration, but with precise time synchronization between the
sensor and ground truth data. The MAV collected 11 flight trajectories in 2 environments, a
factory and a motion capture room, each lasting 2–3 min. Due to the flight characteristics
of the UAV, it maintains dynamic motion throughout the recording process, and there is
no obvious zero-velocity state available for traditional algorithms to converge, making
attitude estimation challenging. We define the training set as the first 80 s of sequences
MH (01, 03, 05), V1 (02), and V2 (01, 03); the validation set as the remaining parts of these
sequences; and the test set as the remaining five sequences.

4.1.3. OxIOD Dataset

The OxIOD dataset [47] consists of inertial motion sequences collected via smart-
phones. The inertial sensors use the ICM-20600 six-axis IMU from InvenSense and the
HSCDTD004A three-axis magnetometer from Alps, and data are collected at a sampling
rate of 100 Hz and 50 Hz for magnetometer, respectively. The ground truth system is
collected using the Vicon motion capture system deployed indoors. This dataset provides a
variety of phone wearing modes (handheld, pants pocket, handbag, and trolley), different
types of motion (slow walking, normal walking, and running), various devices, and users.
We chose all sequences containing different usage and motion types in the dataset and
divided them according to the given training set/test set annotations from the Handheld
(HH), Pocket (PO), Handbag (HB), Trolley (TR), Slowly Walking (SW), and Running (RU)
datasets. We selected the first 80 s of the training set sequences as the training set and
the remaining data as the validation set. In testing, due to the large variation in sequence
length under different modes and the inevitable error accumulation caused by long-term
operation, we tested all data for the first 2 min for comparison over different datasets.

We confirmed some issues with the dataset processing mentioned in [48]. Firstly,
due to the fact that smartphones cannot access the raw sensor data, the motion data
provided by the API is processed through the smartphone’s built-in attitude algorithm to
eliminate gravitational acceleration or to convert the b-frame to the n-frame. The built-in
attitude algorithm is generally composed of filtering algorithms, which perform badly
under dynamic motion and magnetic disturbance. When using the ECF algorithm to
process the OxIOD dataset, we discovered significant periodic disturbance, which affected
the estimation of Roll and Pitch angles. We speculate that this is due to the magnetic
disturbance present in the data collection room, which affects the API’s attitude calculation
and provides unreliable IMU data. In addition, we analyzed that the smartphone and Vicon
have different left- and right-hand b-frames, so we added a negative sign in front of the xy-
axis of the gyroscope, the z-axis of the accelerometer, and the z-axis of the magnetometer to
realize the coordinate frame transformation. In addition, we removed the HH_data5_seq4
test sequence because its motion data showed a state of significant disturbance, resulting in
errors exceeding the normal range in the validation metrics.
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4.2. Experiment Settings

We implemented the proposed network using the Pytorch framework and trained and
deployed it on one NVIDIA RTX2080Ti. During training, we used the Adam optimizer
with an initial learning rate of 0.01 and a cosine annealing learning rate adjustment strategy.
To prevent overfitting, we set the weight decay parameter to 0.1 and the dropout parameter
to 0.1. Additionally, we used Gaussian white noise to augment the data, which improved
the model’s robustness and prevented overfitting. During training, the entire network
had only 244,877 trainable parameters, and the model size was only 995 KB. We iterated
over each dataset 1800 times and saved the model parameters that produced the smallest
validation loss during training. During testing, since the network is entirely feedforward, it
took only 0.07 s to process a 1-min (100 Hz sampling rate) input sequence, demonstrating
real-time computational capabilities.

4.3. Metrics and Evaluation Protocol

In terms of evaluation methods, for test sequences of length n, we choose the following
two evaluation criteria. The absolute attitude error (AAE) is calculated as follows:

AAE =

√
n

∑
i=1

1
n
‖log

(
Cb

n(i)Ĉ
n
b(i)

)
‖

2

2
(29)

Similar to the calculation of loss function, the attitude error is realized by multiplying
the rotation matrix of the predicted attitude to the left by the transposition of the rotation
matrix label, and then using the logarithmic mapping of SO(3) to the vector space, and
then calculate the root mean square error (RMSE) (in ◦)on the sequence after taking the
second-order norm of the error vector.

AYE =

√
n

∑
i=1

1
n
‖ψi − ψ̂i‖

2 (30)

In addition to the AAE, the heading angle estimation error of the model is also an
important performance indicator, which is vital in tasks such as PDR. The absolute yaw
error (AYE) calculates the RMSE on the sequence after calculating the yaw error (in ◦)
between the predicted heading angle and the ground truth.

When computing the sequence error, the estimated attitude is aligned with the ground
truth attitude when n = 0, so that the result is only related to the model prediction. Due to the
different lengths of test trajectories on different data sets, absolute error varies vigorously in
different settings. In [49], a relative orientation error (ROE) evaluation method is proposed,
which mainly divides the trajectory into small segments according to the travel distance,
performs attitude alignment before the small segment, and then calculates the attitude
error within the time interval. Since this experiment does not involve the prediction of the
trajectory position, we use the AAE and AYE within the same time interval after the start
for performance comparison during the test.

4.4. Performance on Attitude Estimation

First, we evaluate the attitude estimation performance on the TUM VI dataset. Since
TUM VI only provides six-axis inertial motion data, we use the six-axis IMU version of the
attitude estimation model, which only performs gyroscope noise reduction and external
acceleration compensation. The results are shown in Table 1. We show the compared
representative methods as follows:

• Raw IMU: Using raw uncalibrated gyroscope data and integrating directly after initial
alignment to obtain attitude, this method is the benchmark for all attitude algorithms.

• ECF [25]: The state-of-art complementary filtering method introduced in Section 4.2,
which is also our fusion framework.
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• Calibrated IMU: A total of 45 calibration parameters and fusion gains of the gyroscope,
accelerometer, and magnetometer are automatically generated through a data-driven
method, and the corresponding parameters are all non-zero constants. This method
can be seen as setting the sensor input data of the neural network to 0 during training
and only training the calibration parameters.

• OriNet [33]: A 3D pose estimation method based on a LSTM network.
• DIG [34]: The gyroscope noise reduction network proposed by Brossard et al. inte-

grates the angular velocity data after noise reduction to obtain the attitude value and
does not perform extra processing on large external acceleration and magnetic disturbance.

Table 1. Absolute attitude error (AAE) and absolute yaw error (AYE) in ◦, on the test sequences of
the TUM VI dataset.

Sequence
Raw IMU ECF Calib-IMU OriNet DIG Proposed

AAE AYE AAE AYE AAE AYE AAE AYE AAE AYE AAE AYE

room2 11.27 10.85 14.58 13.83 2.39 2.21 3.03 2.86 4.06 3.85 2.06 1.47
room4 2.51 2.13 3.86 2.80 0.76 0.42 0.81 0.49 1.12 0.73 0.88 0.59
room6 5.00 4.78 5.51 5.12 2.22 2.01 2.53 2.31 2.56 2.34 1.95 1.74

average 6.26 5.92 7.98 7.25 1.79 1.55 2.12 1.89 2.58 2.31 1.63 1.27

As shown in Table 1, the Raw IMU achieved a relatively small attitude and heading
angle error, which is due to the high sampling rate and preliminary calibration of the IMU
used in TUM VI. The static error of the gyroscope is within a small range, and the data
collection process is mainly based on human walking, which is relatively smooth and does
not amplify the corresponding dynamic error. After fusing the acceleration data, the ECF’s
performance decreased compared to the baseline, because the uncalibrated accelerometer
introduced new sources of error. In the case where the gyroscope data are more accurate
and there is no dynamic change in the fusion gain K, overcorrection occurred. The error
was significantly reduced using the data-driven calibration method, and the Calibrated
IMU yielded better performance than OriNet and DIG due to the low dynamic error of
the usage scenario. The proposed method absorbs the advantages of the above methods,
and after static and dynamic denoising of the two sensors, fuses them through the ECF
framework to achieve corrected angular velocity data, with the framework having been
experimentally demonstrated to perform well in attitude estimation tasks. Compared to
baseline method DIG, the proposed method achieved AAE and AYE reduction for 41%
and 45% in the TUM VI dataset. Figures 3 and 4, respectively, show the attitude angle
changes and attitude angle errors for the test sequence room6. It can be seen that the Raw
IMU and ECF have large fluctuations in the Roll and Pitch angles, and the error of the yaw
angle increases over time due to the lack of heading calibration information. However, our
method based on denoising neural networks can achieve higher estimation accuracy by
autonomously compensating for the yaw angle.

4.5. Performance under Dynamic Motion and Magnetic Disturbance

In this section, we assess the effectiveness of the proposed 6-axis attitude estimation
in the face of persistent large external accelerations using the EuRoC MAV dataset. We
perform a comprehensive evaluation of our nine-axis attitude estimation model on the
OxIOD dataset, incorporating noise reduction for gyroscope, compensation for external
accelerations, and compensation for magnetic disturbance. The results are shown in Table 2.
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As shown in Table 2, in the comparison of the two difficult motion sequences MH_02
and V1_03, the proposed method has achieved high performance, but a relatively large
error occurred in the simple sequences, such as with MH_02 and V1_01. The error is mainly
composed of the yaw angle error. Our analysis is that the movement trajectory in the
EuRoC MAV dataset is relatively single, and the six-axis attitude estimation model has no
calibration information at the heading, which leads to error accumulation. Overall, our
method improves the baseline method DIG under dynamic motion by 23.4% and 23.9%
for AAE and AYE. Since the EuRoC MAV dataset did not calibrate the static bias of the
gyroscope beforehand and had no long stationary phase for attitude error correction, the
ECF method resulted in significant errors in both the AAE and AYE metrics compared to
data-driven methods.
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Table 2. AAE and AYE results for the test sequences of the EuRoC MAV and OxIOD datasets.

Dataset Sequence
Raw IMU ECF Calib-IMU OriNet DIG Proposed

AAE AYE AAE AYE AAE AYE AAE AYE AAE AYE AAE AYE

EuRoC
MAV

MH 02 easy 123 104 80.19 18.87 5.21 3.89 6.48 3.12 7.86 4.92 4.06 2.81
MH 04
difficult 130 108 62.98 15.83 4.26 3.57 4.64 3.41 3.11 1.31 3.31 1.39

V2 02
medium 116 85 58.26 16.29 4.67 3.10 3.27 2.26 3.74 2.62 2.89 2.19

V1 03
difficult 119 77 57.92 17.37 2.50 1.72 3.36 1.85 2.58 0.92 2.30 0.80

V1 01 easy 114 80 59.38 12.6 5.73 4.58 6.13 4.47 5.13 2.99 4.59 2.50
average 120.4 90.8 63.75 16.19 4.47 3.37 4.78 3.02 4.48 2.55 3.43 1.94

OxIOD

HB_d2_seq4 12.88 6.90 9.07 6.91 51.72 24.27 9.06 8.25 30.40 12.28 8.43 5.71
HH_d5_seq1 5.99 5.02 6.08 5.49 9.52 7.17 7.30 5.69 12.86 10.21 9.37 5.26
HH_d5_seq2 95.62 95.67 11.5 9.09 5.72 4.54 9.15 8.06 3.77 3.17 6.56 4.75
HH_d5_seq3 100.13 100.36 57.84 56.23 42.94 40.62 51.45 49.62 37.90 35.21 30.68 28.50
PO_d2_seq6 99.42 90.60 28.76 8.37 24.70 6.15 27.54 6.83 10.66 3.74 5.02 2.34
RU_d1_seq7 8.06 2.94 7.37 2.95 6.30 4.29 5.28 3.87 9.65 7.90 12.21 9.07
SW_d1_seq8 2.57 1.26 2.21 0.81 10.29 9.70 4.53 4.32 4.88 4.48 4.30 1.19
TR_d2_seq6 2.95 1.72 2.64 1.72 11.70 11.23 2.34 1.50 19.77 19.41 6.23 3.20

average 40.95 38.06 15.68 11.45 20.36 13.50 14.58 11.02 16.24 12.05 10.35 7.50

Figure 5 shows the change in the attitude angle in the V1_03 sequence. It can be seen
that due to the calibration information of the accelerometer, the error of the ECF attitude
estimation is reduced compared to the Raw IMU method, but there is still a certain distance
from the true value. The noise-reduction neural network suffers from severe movements,
such as rapid turning, when the accuracy decreases, which causes the gap between the yaw
angle curve in the figure and the true value at the peak.
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For the OxIOD dataset, the proposed method achieved the best performance in terms of
average AAE and AYE metrics for different sequences, achieving performance improvement
by 36.3% and 37.8%. However, it can be observed that the performance of the network
is poorer in the Running mode. The LSTM-based denoising method also achieved good
results on this trajectory. We analyzed that this is because the Running mode involves
a change in the motion pattern, and the LSTM network, which is designed to handle
time series relationships, has stronger time feature extraction capabilities compared to the
1D-CNN network. Additionally, the forget gate design allows for longer time series to have
better memory. All methods exhibited significant attitude errors in the HH_data5_seq3
sequence. Through analysis of the curves of the three attitude angles over time, it was
determined that there exists a stable constant error between the predicted yaw angle and the



Micromachines 2023, 14, 1070 15 of 21

true value, indicating that the original sensor data were interfered with during the recording
of this sequence. For sequences with a smoother motion pattern, such as SW_d1_seq8
and TR_d2_seq6, the Raw IMU method showed better performance, while all the other
data-driven methods seem to bring extra errors to the attitude estimation. The data-driven
methods appear to overfit difficult cases; however, they cause accuracy degradation in easy
cases. Nevertheless, our proposed method outperforms the ECF algorithm by 34.0% and
34.5% in two metrics. We add the attitude calculated by the internal API of the mobile
phone recorded in the dataset for comparison (purple curve). The attitude estimation
curves of various methods on the PO_data2_seq6 trajectory are shown in Figure 6.

Micromachines 2023, 14, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 6. Attitude estimates on the test sequence PO_data2_seq6. The API’s attitude exhibits peri-
odic errors and drifts compared to the ground truth. 

As shown in Figure 6, the attitude data obtained using the API exhibit significant 
drift in the Roll and Pitch angles. We analyzed that this was due to the circular indoor 
trajectory, where there were stable sources of magnetic disturbance. Each time the trajec-
tory approached the disturbance source, it affected the magnetometer data, thus impact-
ing the internal attitude estimation algorithm. Specifically, this manifested as a periodic 
disturbance of approximately 20 s added to the stable periodic walking where the actual 
frequency was about 0.73 Hz. Similarly, when using the Raw IMU and ECF to calculate 
the inertial motion data affected by unreliable attitude estimation algorithms, correspond-
ing magnetic disturbance would also occur. Accordingly, the proposed denoising attitude 
estimation model achieved excellent magnetic disturbance elimination, thereby improv-
ing the robustness of attitude estimation. 

4.6. Generalization 
In order to evaluate the robustness of our model on unseen sequences, considering 

the scenarios of commercial applications, we have adopted a set of tests using sequences 
from different users and devices provided by the OxIOD dataset. We use the trained 
model from Section 4.4, which used the dataset collected by User1 using an iPhone 7 Plus 
smartphone, with the test set comprised of four different users and two different 
smartphone devices. The results of AAE and AYE of the test sequences are visualized in 
Figure 7. We have also provided the results of trained nine-axis input version of DIG and 
ECF which parameters are optimized in training sequences for comparison. 

Figure 6. Attitude estimates on the test sequence PO_data2_seq6. The API’s attitude exhibits periodic
errors and drifts compared to the ground truth.

As shown in Figure 6, the attitude data obtained using the API exhibit significant
drift in the Roll and Pitch angles. We analyzed that this was due to the circular indoor
trajectory, where there were stable sources of magnetic disturbance. Each time the trajectory
approached the disturbance source, it affected the magnetometer data, thus impacting
the internal attitude estimation algorithm. Specifically, this manifested as a periodic dis-
turbance of approximately 20 s added to the stable periodic walking where the actual
frequency was about 0.73 Hz. Similarly, when using the Raw IMU and ECF to calculate the
inertial motion data affected by unreliable attitude estimation algorithms, corresponding
magnetic disturbance would also occur. Accordingly, the proposed denoising attitude
estimation model achieved excellent magnetic disturbance elimination, thereby improving
the robustness of attitude estimation.

4.6. Generalization

In order to evaluate the robustness of our model on unseen sequences, considering the
scenarios of commercial applications, we have adopted a set of tests using sequences from
different users and devices provided by the OxIOD dataset. We use the trained model from
Section 4.4, which used the dataset collected by User1 using an iPhone 7 Plus smartphone,
with the test set comprised of four different users and two different smartphone devices.
The results of AAE and AYE of the test sequences are visualized in Figure 7. We have also
provided the results of trained nine-axis input version of DIG and ECF which parameters
are optimized in training sequences for comparison.
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As illustrated in Figure 7, the proposed AHRS generally outperforms the baseline
methods. However, in some test sequences such as User3, the data-driven methods appear
to have a large variance caused by a domain shift. The average AAE and AYE of the
proposed AHRS on 52 test sequences are 20.3◦ and 11.2◦, which are lower than both
benchmarks, showing the capability of generalizability over different users and devices.
However, the generalization ability of the proposed network to different types of IMU is
still challenging, and we would like to try more datasets and data augmentation techniques
to improve the generalization of the proposed model.

5. Discussion
5.1. The Effectiveness of Data-Driven Error Compensation Model

After comparing the results of different methods in Tables 1 and 2, we can conclude that
modeling static errors, such as in the Calibrated IMU method, can significantly improve
attitude estimation performance. Furthermore, modeling dynamic errors with neural
network models can further enhance the performance and robustness of the model. In
addition, we can compare the difference between the denoised angular velocity output
of the model and the raw angular velocity output of the gyroscope. Figure 8a,b show the
curves of this difference in the TUM VI dataset room6 sequence and the EuRoC MAV dataset
V1_03 sequence. We can see that the two curves have different y-axis intercepts, which is
because the TUM VI dataset calibrates the IMU and eliminates static bias errors, while the
EuRoC MAV dataset does not. As we did not set a separate parameter for calibrating the
static bias of the gyroscope, the calibration of the static bias shown in Figure 8b is entirely
learned through the neural network.

The DIG method only models and denoises the error data of the gyroscope and
cannot completely eliminate errors in the presence of significant magnetic disturbance
and large external acceleration. In this section, we conducted ablation experiments on the
error calibration model of the Calibrated IMU method on the OxIOD dataset, specifically
comparing the performance difference between calibrating all sensor parameters and only
calibrating gyroscope parameters. The comparison results are shown in Figure 9. It is
evident that calibrating all parameters leads to a significant improvement in performance.
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5.2. Different Input of Gyroscope Denoising Neural Network

Equations (16)–(19) discussed the principle that accelerometers and magnetometers
affect the estimation of angular velocity through attitude computation, and concluded
that accelerometer and gyroscope data should be included as input to the gyroscope noise
prediction network. Here, we analyze the effectiveness of this theory by comparing the
performance of the gyroscope denoising model when nine-dimensional data (including
accelerometer and magnetometer data) are input versus only three-dimensional gyroscope
data. Other network parameters were kept the same. The comparison results confirmed
the effectiveness of this method and are shown in Figure 10.

5.3. Ablation Experiment of Different Compensation Source

We conducted ablation experiments on different components of the model, including
the external accelerations compensation and magnetic disturbance compensation models,
on the OxIOD dataset to analyze the effectiveness of each component. The comparison
results are shown in Table 3. It can be seen that the proposed model components showed
significant performance improvements compared to the baseline model on most sequences,
and the model can adaptively adjust its dependence on different error eliminations to
achieve improved accuracy after fusion. The results of the ablation experiments sug-
gest that the model applies different components to handle different motion errors, and
the joint action of the two error elimination methods improves the overall accuracy of
attitude estimation.
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Table 3. Ablation experiment results.

Sequence
Proposed w/o Mag. w/o Acc. w/o Mag. and Acc.

AAE AYE AAE AYE AAE AYE AAE AYE

HB_d2_seq4 8.43 5.71 36.31 18.47 23.9 11.51 35.15 12.04
HH_d5_seq1 9.37 5.26 9.02 5.84 11.18 6.71 7.5 4.97
HH_d5_seq2 6.56 4.75 6.77 4.49 7.98 5.31 10.24 8.62
HH_d5_seq3 30.68 28.50 42.49 38.66 54.82 52.66 55.34 53.51
PO_d2_seq6 5.02 2.34 16.78 7.85 16.48 5.93 19.88 5.6
RU_d1_seq7 12.21 9.07 10.05 6.47 11.54 8.21 33.65 30
SW_d1_seq8 4.30 1.19 3.68 1.64 1.78 0.97 13.59 12.91
TR_d2_seq6 6.23 3.20 8.71 6.58 12.89 11.3 13.95 13.72

average 10.35 7.50 16.73 11.25 17.57 12.83 23.66 17.67

6. Conclusions

In this study, we present a robust AHRS algorithm for accurate attitude estimation
in dynamic motion and magnetic disturbance scenarios. We propose a data-driven IMU
calibration model to compensate for systematic and random errors in the raw sensor data,
providing denoised angular velocity, gravitational acceleration, and a geomagnetic north
field. To estimate random error terms such as gyroscope random bias, external acceleration,
and magnetic disturbance, we use TCNs as feature extractors with raw IMU readouts as
input. By optimizing the systematic and random errors of the IMU using backpropagation
during training, our model can accurately estimate attitude. The ECF framework is used
for sensor fusion, and we modify the close-loop iteration, turning it into an open-loop
estimation, to accelerate the training process. We decouple different error compensation
networks to prevent the accumulation of error and erroneous correction in different usage
scenarios. We conduct extensive experiments to evaluate our proposed model on motion
data under dynamic motion and magnetic disturbance, achieving more than 23.4% and
23.9% performance improvement compared to the baseline data-driven method and 34.0%
and 34.5% compared to the ECF traditional filter. Generalization experiments on different
devices and users demonstrate the robustness of our model to adapt to different scenarios.

Future work includes adapting our model to more sophisticated datasets covering
daily usage scenarios with more motion modes, devices with different sensors and sampling
frequencies, quantitative environmental condition changes, and outdoor conditions. We
aim to improve the generalizability of our model over different datasets under the same
network parameters using transfer learning and other data augmentation techniques. To
deploy our model on low-end smartphones and embedded systems, further optimization
and compression techniques are needed, such as knowledge distillation and quantization.
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