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Abstract: Blood image intensity has been used to detect erythrocyte sedimentation rate (ESR). How-
ever, it does not give information on the biophysical properties of blood samples under continuous
ESR. In this study, to quantify mechanical variations of blood under continuous ESR, blood shear
stress and blood image intensity were obtained by analyzing blood flows in the capillary channel.
A blood sample is loaded into a driving syringe to demonstrate the proposed method. The blood
flow rate is set in a periodic on–off pattern. A blood sample is then supplied into a capillary chip,
and microscopic blood images are captured at specific intervals. Blood shear stress is quantified
from the interface of the bloodstream in the coflowing channel. τ0 is defined as the maximum shear
stress obtained at the first period. Simultaneously, ESRτ is then obtained by analyzing temporal
variations of blood shear stress for every on period. AII is evaluated by analyzing the temporal
variation of blood image intensity for every off period. According to the experimental results, a
shorter period of T = 4 min and no air cavity contributes to the high sensitivity of the two indices
(ESRτ and AII). The τ0 exhibits substantial differences with respect to hematocrits (i.e., 30–50%) as
well as diluents. The ESRτ and AII showed a reciprocal relationship with each other. Three suggested
properties represented substantial differences for suspended blood samples (i.e., hardened red blood
cells, different concentrations of dextran solution, and fibrinogen). In conclusion, the present method
can detect variations in blood samples under continuous ESR effectively.

Keywords: erythrocyte sedimentation rate (ESR); ESR index; aggregation index; blood shear stress;
blood flow intensity; capillary chip

1. Introduction

Because red blood cells (RBCs) are more numerous than other cells (such as white blood
cells and platelets), the rheological properties of RBCs play a significant role in determining
blood flow. Owing to their distinctive advantages (i.e., high surface area/volume and
flexible membranes), RBCs are easily deformed under external shear stress [1]. High
deformability helps RBCs pass through micron-sized capillaries to transport gases and
waste into peripheral tissues [2]. In microcirculation, RBCs are exposed to high shear stress
as well as oxidative stress [3]. To resist these stresses and provide sufficient functionality,
biochemical and structural alterations of RBCs occur sensitively depending on stress
conditions [4]. The mechanical properties of RBCs are then substantially altered. Therefore,
significant alterations in the mechanical properties of RBCs can be used as biomarkers for
diagnosing such pathological disorders as hypertension [5], diabetes [6–8], malaria [9], and
cardiovascular diseases [10–12]) or detecting storage-induced lesions [13–19] as well as
senescence [4].

Several researchers have reported a substantial correlation between coronary heart
disease and the mechanical properties of blood [20–22]. Probing the mechanical properties
of blood is crucial for diagnosing and monitoring diseases [2,23]. Currently, microfluidic
techniques, which have several merits such as a high sensitivity, small volume, short
measurement period, and disposability), have been employed extensively to measure the
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mechanical properties of blood (i.e., viscosity [24–27], deformability [24,28–31], hemat-
ocrit [32,33], erythrocyte sedimentation rate (ESR) [34,35], and aggregation [36–39]).

Blood viscosity is often determined by injecting blood into a specific microfluidic
device [40]. The blood viscosity obtained at a low shear rate is determined substantially by
RBC aggregation. RBC deformation or alignment contributes to decreasing blood viscosity
at higher shear rates. In a microfluidic environment, it is extremely difficult to obtain
consistent viscosity at low shear rates (or flow rates) because a syringe pump does not
supply consistent blood flow at extremely low flow rates [41]. Instead of blood viscosity,
RBC aggregation has been obtained by analyzing blood flow at extremely low flow rates or
stasis [35,42,43]. After blood is injected into a microfluidic channel, the blood flows or stops
with external sources (i.e., a solenoid valve [44], pinch valve [35], vibration motor [45], and
pump). Unlike RBC aggregation, the ESR is obtained without external flow controllers.
When blood (approximately 1 mL) is loaded into a vertical capillary tube, gravity forces
the RBCs to fall to the bottom of the tube. When the ESR in the tube is obtained, RBC
aggregation causes an increase in cell-to-cell interactions and large voids in the network,
resulting in faster sedimentation. The ESR is then interpreted as a comparable measure
of RBC aggregation [34]. The interface movement after 1 h is called the sedimentation
velocity (mm/h). The sedimentation velocity is routinely used as an ESR index to detect
chronic diseases and immune disorders [3,46]. However, the conventional ESR test does not
provide information on variations in RBC distributions resulting from RBC sedimentation.
Instead of a vertical capillary tube, a driving syringe is employed to supply blood to the
microfluidic device. As RBC sedimentation occurs in the syringe, the hematocrit increases in
the bottom regions of the syringe. When supplying blood to a microfluidic channel from the
bottom region, variations in the RBCs in the tube can be monitored by analyzing the image
intensity of the blood flow. Alterations in image intensity are interpreted as an increase in
the hematocrit resulting from RBC sedimentation [47–50]. However, image intensity does
not provide mechanical information about the blood. More recently, our group suggests
the shear stress for monitoring the effect of the hematocrit on blood flow because it is
influenced by the hematocrit [51]. A new ESR index (ESRτ) has been suggested using the
blood shear stress under continuous blood flow. This index provides consistent results
compared with the conventional sedimentation velocity. However, the image intensity
of the blood flow remains unchanged under continuous blood flow. It is impossible to
compare the two indices obtained using blood shear stress and image intensity. To compare
the two indices quantitatively, it is necessary to stop and run the blood flow because RBC
aggregation occurs at stasis or extremely low shear rates.

In this study, by supplying or stopping blood flow into a microfluidic device with a
syringe pump, the blood shear stress and image intensity were obtained at the turn-on and
turn-off periods, respectively. Two indices for quantifying the ESR in the driving syringe
were obtained by analyzing the blood shear stress and blood image intensity at specific
intervals. The contributions of the blood delivery period, air cavity secured into the syringe,
and hematocrit to the performance were quantified by measuring the variations in the
two indices. To compare the indices quantitatively, several types of suspended blood were
prepared by adding normal RBCs to the diluent (i.e., dextran solution and fibrinogen) and
by adding thermally hardened RBCs to the dextran solution.

Compared with the conventional ESR method (i.e., sedimentation velocity), the pro-
posed method can monitor the contribution of continuous ESR in a driving syringe to the
mechanical properties of blood flows. The variation in the ESR in the driving syringe is
then monitored by temporal variations of blood shear stress and blood image intensity.
The maximum shear stress measured at the first period can be used to detect mechanical
differences in blood samples (i.e., hematocrit or diluent). The three biomechanical proper-
ties (i.e., τ0, ESRτ , and AII) are effective in detecting differences in blood samples. In an
experiment of less than 10 min, three suggested properties can detect variations of blood
samples under continuous ESR effectively.
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2. Materials and Methods
2.1. Microfluidic Device Fabrication and Experimental Setup Preparation

As shown in Figure 1A, a microfluidic platform was prepared to quantify the con-
tinuous ESR occurring in the driving syringe. It consisted of a microfluidic device, two
syringe pumps, and an image acquisition system. The microfluidic device was composed
of two inlets (a, b), a reference fluid channel (RC, width = 1 mm), a blood channel (BC,
width = 1 mm), a coflowing channel (width (w) = 1 mm), and one outlet. To stop the
blood flow shortly and avoid the invasion of the reference fluid into the blood channel, a
relatively small-sized microfluidic channel (width = 100 µm) was positioned between the
blood channel and the coflowing channel. The channel depth (h) was set to 50 µm.
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Figure 1. Proposed method for quantification of red blood cell sedimentation using blood shear
stress and blood flow image in a capillary chip. (A) Schematics of experimental setup, including
a microfluidic device and two syringe pumps. The microfluidic device consisted of two inlets
(a, b), reference channel (RC), blood channel (BC), coflowing channel, and one outlet. As shown in
left side panel, using two syringe pumps, flow rate of reference fluid is set to constant value of Qr.
Flow rate of blood (Qb) set to square wave profile (i.e., amplitude, period [T]). (B) Quantification
of image intensity and shear stress of microscopic blood flow. Selection of two regions of interest
(ROIS) for estimating image intensity (Ib) in the blood channel and interface (β) in coflowing channel.
(C) Estimation of blood shear stress (τ) using discrete fluidic circuit model. (D) Quantification
of ESR index and aggregation index. (i) Temporal variations of β and Ib under on-off blood flow
(ii) Definition of ESR index (ESRτ) and aggregation index (AII) in terms of blood shear stress and
blood flow image intensity, respectively.
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A polydimethylsiloxane (Sylgard 184, Dow Corning, Midland, MI, USA) microfluidic
device was fabricated using a conventional micro-electromechanical system technique and
soft lithography [52].

The microfluidic device was positioned on an inverted microscope (IX81, Olympus,
Tokyo, Japan) with a 4× objective lens (numerical aperture = 0.1). Two Tygon Tubing (inside
diameter = 250 µm, outside diameter = 750 µm, length = 400 mm, Cole-Parmer, Vernon Hills,
IL, USA) was fitted into each inlet. The other Tygon Tubing (inside diameter = 250 µm,
outside diameter = 750 µm, length = 200 mm) was fitted to the outlet. To repel air in
the microfluidic channels and avoid nonspecific binding of plasma proteins to the inner
surfaces, the microfluidic channels were filled with bovine serum albumin (2 mg/mL).
This condition was maintained for 10 min. Next, 1× phosphate-buffered saline (PBS) was
loaded into the microfluidic channels. Two disposable syringes (approximately 1 mL) were
filled with blood and a reference fluid (glycerin solution (30%)), respectively.

As shown in the right panel of Figure 1A, the syringes were installed using two syringe
pumps (NeMESYS, Cetoni GmbH, Korbußen, Germany) that were installed vertically
against the gravitational direction. As shown in the left panel of Figure 1A, reference fluid
was supplied at a constant flow rate (Qr = 0.5, or 1 mL/h). However, the flow rate of the
blood sample (Qb) was set to a square-wave profile (amplitude = 0.5 mL/h, period: T).

A high-speed camera (FASTCAM MINI, Photron, Tokyo, Japan) was used to capture
microscopic images of the blood flow in the blood channel and the interface in the coflowing
channel. The camera speed was set to 2000 fps, and microscopic images were then recorded
at intervals of 1 s. Experiments were conducted at a constant room temperature of 25 ◦C.

2.2. Quantification of Blood Flow Inside the Capillary Chip

To quantify the ESR occurring in the driving blood syringe, the image intensities in
the blood channel and the interface in the coflowing channel were quantified by analyzing
the microscopic blood flow images recorded by the high-speed camera.

First, as shown in Figure 1B, to obtain the image intensity of the blood flow, a specific
region of interest (ROI) of 4 mm × 1 mm was selected within the blood channel. The
image intensity of the blood flow was obtained by conducting digital image processing
using MATLAB 2019 (MathWorks, Natick, MA, USA). The average image intensity (Ib) was
calculated by averaging the image intensities distributed within the ROI.

Second, to obtain the interface (or blood-filled width) in the coflowing channel, a
specific ROI (2 mm × 1 mm) was selected at the downstream position where the inter-
face remained distinctively straight. Based on the intensity threshold algorithm (Otsu’s
method) [53], a grayscale image was converted into a binary image. The blood-filled width
(wb) was obtained by averaging the interfaces distributed within the ROI. The interface was
calculated as β = wb/w. Based on the interface (β), the width of each stream was obtained
as w × β for the bloodstream and w × (1 − β) for the reference fluid stream.

2.3. Simple Mathematical Model for Estimating Shear Stress of Blood Flow in the
Coflowing Channel

As shown in Figure 1C, a discrete fluidic circuit model was constructed to estimate the
blood shear stress in the coflowing channel. The flow rate of each fluid is represented as Qr
for the reference fluid and Qb for the blood. Both fluid streams in the coflowing channel
were modeled as two fluidic resistances connected in parallel. A symbol (¶) indicates zero
value of pressure (i.e., P = 0), designated as GND (ground condition). As both fluid streams
flowed in the straight coflowing channel, they had the same pressure condition (i.e., the
pressure of the reference fluid stream equals the pressure of the bloodstream). According to
previous studies [25,54,55], the approximation error between the mathematical model and
the real physical model contributed substantially to the worsening of accuracy, especially
when an interface was relocated near both walls. To compensate for the approximation
error, a correction factor (Cp), which can be obtained by conducting experiments or nu-
merical simulations, was proposed. For a rectangular channel with a low aspect ratio (i.e.,
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h/w = 50/1000), the shear stress formulas for the reference fluid stream and bloodstream
were derived as

τr =
6 µr Qr

(1 − β)w h2 (1)

and
τb =

6 µb Qb
Cp β w h2 (2)

Here, the subscripts r and b represent the reference fluid stream and bloodstream,
respectively. In addition, µr and µb are the viscosity of the reference fluid and viscosity of
the blood sample, respectively. The viscosity of the reference fluid (glycerin [30%]) was
set to µr = 3 Cp [56]. Based on the force balance condition (i.e., the pressure-drop-induced
force equals the shear-stress-induced force) in a straight channel, both fluid streams have
the same shear stress (i.e., τr = τb = τ) [55]. Thus, it was possible to obtain the shear
stress of the bloodstream in terms of Equation (1) or Equation (2). During the continuous
ESR in the driving syringe, hematocrit of blood flow was changed over time. Hematocrit
changes blood viscosity continuously. As shear stress contributed to varying interface,
shear rate of blood flow also varied depending on interface. Thus, it was impossible to
obtain blood shear stress with Equation (2). However, viscosity of the reference fluid
remained unchanged. Based on Equation (1), the blood shear stress could be estimated
easily when an interface was available. In this study, Equation (1) was used to estimate
blood shear stress.

2.4. Blood Sample Preparation

To prepare suspended blood (i.e., normal RBCs in diluent), concentrated RBCs and
fresh frozen plasma (FFP) were purchased from the Gwangju–Chonnam Blood Bank
(Gwangju, Republic of Korea). They were stored in a refrigerator prior to the experi-
ments. According to the specific washing procedures [52], normal packed RBCs were
collected by discarding the buffy coat. In addition, the FFP was defrosted at room tem-
perature. Autologous plasma was obtained by passing FFP into syringe filtration. Several
types of suspended blood were prepared by adding normal RBCs to a specific diluent (i.e.,
1× PBS, autologous plasma, dextran solution, and fibrinogen) or hardened RBCs to specific
concentrations of dextran solution. To quantify the contribution of the hematocrit to the
ESR in the driving syringe, suspended blood was prepared by adding normal RBCs to a
specific dextran solution (10 mg/mL). To increase RBC aggregation in normal RBCs, normal
RBCs were added to five different dextran solutions (Cdex = 10, 20, 40, 60, and 80 mg/mL)
prepared by dissolving dextran powder (Leuconostoc spp., MW = 450–650 kDa; Sigma-
Aldrich, St. Louis, MO, USA) in 1× PBS. To quantify the contribution of fibrinogen to the
ESR, suspended blood was prepared by adding normal RBCs into three different fibrinogen
solutions (Cfib = 4, 8, and 12 mg/mL), which were dissolved by adding human plasma
fibrinogen (F3879-250 mg, Sigma Aldrich Co., St. Louis, MO, USA) into autologous plasma.
To evaluate the effect of the hardened RBCs on the ESR, blood was prepared by adding
normal RBCs into 1× PBS. Two different degrees of fixed RBCs were obtained by exposing
blood to either 50 ◦C for 30 min or 50 ◦C for 60 min inside a convective oven. After the
thermal fixation of RBCs, RBCs were collected by conducting a washing procedure and
were suspended into a specific diluent.

3. Results and Discussion
3.1. Definition of ESR Index and Aggregation Index in Terms of Blood Shear Stress and Blood
Image Intensity

To investigate the contributions of the ESR to the two parameters (β, Ib) over time,
suspended blood was prepared by adding normal RBCs to a specific dextran solution
(10 mg/mL). As shown in Figure 1A, the flow rate of the reference fluid was set to
0.5 mL/h. Simultaneously, the flow rate of blood was set to a square-wave profile (i.e.,
amplitude = 0.5 mL/h, T = 8 min). Figure 1D(i) shows temporal variations of β and Ib.
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When the syringe pump for suspended blood was turned on, β tended to increase gradually
over time. When the blood syringe pump was turned off, the RBC aggregation caused Ib to
decrease significantly over time. The variation range of Ib decreased continuously with an
increase in the period. Based on these results, Ib can be used to estimate RBC aggregation
or the ESR, especially under periodic on–off blood flow. According to a previous study,
the ESR in the driving syringe causes a change in the image intensity of the blood flow in
a microfluidic channel under periodic on–off blood flow [50]. In addition, it contributes
to increasing blood shear stress (τ), even under a constant blood flow [51]—that is, Ib
and τ can be employed to quantify variations in the ESR occurring in the driving syringe.
According to Equation (1), blood shear stress can be calculated when β is specified. In
Figure 1D(ii), variations in τ and Ib are redrawn simply with respect to a specific time. First,
the initial shear stress (τ0) (i.e., the reference value) is defined as the maximum shear stress
during the first period of blood flow (from t = t1 to t = t2). In the next period of blood flow
(from t = t3 to t4), the ESR in the syringe contributes to an increase in the hematocrit (or
viscosity) of the blood flow. Thus, blood shear stress increases significantly when compared
with τ0 as the reference value. Based on an experimental investigation, to calculate the
variation range of blood shear stress for a single period, two parameters (Sα and Sβ) were
suggested and calculated previously [51]:

Sα =
∫ t4

t3

τ0dt (3)

and

Sβ =
∫ t4

t3

(τ − τ0)dt (4)

ESRτ is then defined as ESRτ = Sβ/(Sα + Sβ). If there is little variation in the ESR,
the blood shear stress remains unchanged for each period. ESRτ is then estimated as zero
because Sβ = 0. As shown in Figure 1D(i), the blood shear stress tends to increase over
time—that is, the ESR in the driving syringe caused to increase Sβ.

As a comparable parameter to the ESR, the image intensity of blood flow was used
to estimate the trends of RBC aggregation in blood. In the absence of blood flow (from
t = t4 to t = t5), the RBC aggregation contributed to decreasing Ib over time. Based on previ-
ous studies [37,45], two parameters (Iα and Iβ) were obtained by analyzing the temporal
variations of Ib. AII was defined as AII = Iβ/(Iα + Iβ). As shown in Figure 1D(i), the Ib
obtained in the absence of blood flow decreased with an increase in the period. Specifically,
AII tended to decrease with an increase in the period. The ESR can be monitored in terms
of AII. Subsequently, two indices (ESRτ and AII) were calculated in terms of blood shear
stress (i.e., the blood flow condition) and image intensity of blood flow (i.e., the blood
flow at stasis), respectively. Initial shear stress and both indices were used to quantify the
continuous ESR in the driving syringe.

3.2. Contribution of Dynamic Blood Flow to ESR Quantification

In previous studies [35,45], RBC aggregation was obtained by analyzing blood flow
after stopping it completely. Under the square-wave profile of blood flow, the blood flow
did not stop immediately because of the time delay of the fluidic system (i.e., the time
constant) [57]. The time constant was determined by the fluidic resistance and system
compliance (i.e., time constant = fluidic resistance × system compliance). Here, two vital
factors (the on–off period [T] and air cavity secured in the driving syringe (Vair)) were
adjusted to investigate the contributions of the time constant to the ESRτ and AII.

First, to evaluate the contributions of the period of the on–off blood flow to both
indices, the period was adjusted from T = 0 (continuous blood flow) to T = 8 min. The
amplitude of the square-wave profile of the blood flow was set to 0.5 mL/h. The flow rate
of the reference fluid was set to 0.5 mL/h. To stimulate test blood with a high degree of
aggregation, normal RBCs (Hct = 50%) were added to a specific concentration of dextran
solution (10 mg/mL) rather than autologous plasma. Figure 2A shows temporal variations



Micromachines 2023, 14, 1594 7 of 17

of τ and Ib with respect to the period (T) ((i) T = 0, (ii) T = 4 min, (iii) T = 6 min, and
(iv) T = 8 min). At a continuous blood flow (T = 0), the ESR during driving caused an
increase in blood shear stress over time. However, the image intensity did not differ
substantially over time. In other words, for quantifying the ESR under continuous blood
flow, the blood shear stress was much better than the blood image intensity [51,58]. Shin
et al. reported the critical shear stress required for RBC aggregation under transient blood
flow [59]. However, under periodic on–off blood flow, the shear stress increased gradually
with an increase in the period.
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As blood was supplied from the bottom region of the driving syringe, the hematocrit
of the blood flow tended to increase over time in the microfluidic channel [50]. As expected,
RBC aggregation contributed to a significant decrease in the image intensity in the absence
of blood flow. The Ib value changed distinctively depending on the period; however, it
decreased substantially over time. Based on the temporal variations of τ and Ib, two indices,
i.e., ESRτ and AII, were obtained for every period. For continuous blood flow (T = 0),
ESRτ = 0.274–0.309 and AII = 0. As shown in Figure 2B(i), temporal variations of ESRτ were
obtained with respect to T = 4, 6, and 8 min. The ESRτ was represented as mean ± standard
deviation (n = 3). Below ∆t = 15 min, the ESRτ increased significantly over time. This
period did not have a substantial influence on the ESRτ . After ∆t = 24 min, a shorter period
(T = 4 min) led to a higher value of the ESRτ compared with a longer period (T = 8 min).
Previously, Yeom et al. reported that the oscillational motion of the air cavity caused the
ESR to increase in the syringe tube [60]. Shin et al. also showed that the critical shear stress
tended to increase gradually during four consecutive periods (i.e., T = 5 s) [44]. Based on
the previous results, it was inferred that a shorter period contributed to the acceleration
of the ESR in the driving syringe. Figure 2B(ii) shows the temporal variations in AII with
respect to T. The AII is represented as mean ± standard deviation (n = 3). With an increase
in the period, the AII tended to decrease gradually because of the ESR in the driving syringe.
As shown in Figure 2A, the Ib decreased significantly over a longer period (T = 6 or 8 min).
A longer period led to a higher value of AII than a shorter period. After ∆t = 24 min, the
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AII did not exhibit a substantial difference between T = 6 min and T = 8 min. In a previous
study, a long period with no blood flow had a positive influence on RBC aggregation over
consecutive periods of 6 min [61]; that is, a longer period led to an increase in AII compared
with a shorter period. In the experimental investigations, a shorter period (T = 4 min)
resulted in a high sensitivity of ESRτ . To obtain the ESR in the driving syringe, the period
of the square-wave profile was set to T = 4 min during all following experiments.

Second, the compliance effect of the fluidic system caused the time delay to increase or
the pulsatile flow to be regulated. Even though the syringe pump was turned off, the blood
flow did not stop immediately because of the compliance effect. In the microfluidic system,
several components (i.e., a PDMS microfluidic device, flexible tubing, and an air cavity
in the syringe) induced compliance effects. Because the RBC aggregation was influenced
significantly by dynamic blood flow, it was necessary to quantify the contribution of the
compliance effect to the ESR. For convenience, the air cavity secured in the syringe was
adjusted to vary the magnitude of the compliance effect. As shown in Figure 3A(i), the air
cavity was set to Vair = 0, 0.1, and 0.2 mL by moving a piston in a blood syringe. Vair = 0
indicated that there was no air cavity in the blood syringe. The test blood (Hct = 50%) was
prepared by adding normal RBCs to a specific dextran solution (10 mg/mL). The flow rate
of the reference fluid was set to 0.5 mL/h. Blood was supplied in an on–off fashion (i.e.,
amplitude = 0.5 mL/h and T = 4 min).
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As shown in Figure 3A(ii–iv), temporal variations of τ and Ib were obtained with
respect to Vair. With respect to Vair = 0.1 and 0.2 mL, blood shear stress increased over
time. As the air cavity contributed to a reduction in the alternating components of the
blood flow [41,57,62], the fluctuation range of the shear stress decreased significantly at a
high air cavity volume. At higher volumes of the air cavity, the blood flow did not stop
immediately. Because the air cavity hindered RBC aggregation, the Ib value remained
constant over time. Based on temporal variations of τ and Ib, two indices (i.e., ESRτ
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and AII) were obtained over time. Figure 3B(i) shows the temporal variations in ESRτ

with respect to Vair. Here, experiments were repeated twice for each air cavity. The
condition without an air cavity (Vair = 0) had a higher value of ESRτ when compared with
Vair = 0.1 or 0.2 mL. Figure 3B(ii) shows the temporal variations of AII with respect to Vair.
The AII had a high value when there was no air cavity. When the air cavity was set to 0.1
or 0.2 mL, AII decreased significantly. The experimental results revealed that no air cavity
provided a high sensitivity of ESRτ as well as AII. Therefore, to monitor the ESR in the
blood syringe with high sensitivity, it was necessary to confirm that any air cavity inside
the blood syringe was small.

3.3. Contribution of Hematocrit to ESR in Driving Syringe

Previous researchers reported that hematocrit has a strong influence on RBC aggre-
gation [37,39,45,50,54,60,63]. In addition, RBC stiffness contributes to changes in RBC
aggregation [38,44,47,52]. As ESR shows similar trends to RBC aggregation, three kinds
of experiments were conducted by changing hematocrit, and RBC stiffness. Based on the
previous studies, the hematocrit (i.e., RBC volume in relation to total blood volume) was
set from 30% to 50%. In addition, to change the stiffness of the RBC, normal RBCs were
hardened thermally. To accelerate RBC aggregation, a dextran solution (10 mg/mL) was
selected as the diluent. The test blood was prepared by adding normal or hardened RBCs
to a specific dextran solution.

The ESR in the syringe caused variations in the hematocrit of the blood flow, which
contributed to the shifting of the interface toward the channel wall. When the interface was
relocated near the channel wall, the modeling accuracy of Equation (1) deteriorated [55].
Thus, the flow rate of the reference fluid was adjusted from 0.5 to 1 mL/h (i.e., Qr = 1 mL/h).
Test blood was supplied at the square-wave profile (amplitude = 0.5 mL/h, period = 4 min).

First, the contributions of the hematocrit to the ESR were obtained by changing the
Hct ranging from 30 to 50%. Figure 4A(i) shows temporal variations of τ with respect to
Hct. As expected, the hematocrit caused an increase in blood shear stress. The τ increased
significantly over time. Figure 4A(ii) shows the temporal variations of Ib with respect to
Hct. Under blood flow, the hematocrit caused Ib to increase. A significant difference was
observed between Hct = 30% and Hct = 50%. Previous researchers reported that RBC
aggregation or ESR tended to decrease with increasing hematocrit [50,63,64]. Because the
fluctuation range of Ib (i.e., Iβ, as shown in Figure 1C(ii)) was proportional to the magnitude
of RBC aggregation, it tended to decrease substantially with respect to Hct. In addition,
the variation range of Ib decreased gradually over time. As shown in Figure 1C(ii), τ0
was obtained as the maximum shear stress during the first period. For convenience, the
elapsed time was reset to zero (i.e., ∆t = 0). As shown in Figure 4B, the variation of the
ESR was summarized in terms of three physical properties, i.e., τ0, ESRτ , and AII. Three
representative properties of blood samples are expressed as mean ± standard deviation
(n = 4). Figure 4B(i) shows variations of τ0 with respect to Hct. According to Equation (2),
the shear stress is proportional to blood viscosity. Because Hct was strongly related to blood
viscosity [24,65,66], it was reasonable that the Hct contributed to a substantial increase
in τ0.
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Figure 4. Contribution of hematocrit to ESR index as well as aggregation index. (A) Temporal
variations of blood shear stress and image intensity with respect to hematocrit. (i) Temporal variations
of τ with respect to Hct = 30%, 40%, and 50%. (ii) Temporal variations of Ib with respect to Hct.
(B) Contribution of hematocrit to initial shear stress (τ0), ESRτ , and AII. (i) Variations of τ0 with
respect to Hct. (ii) Temporal variations of ESRτ with respect to Hct. (iii) Temporal variations of AII

with respect to Hct. (iv) Linear relationship between ESRτ and AII with respect to Hct.

Figure 4B(ii) shows temporal variations of ESRτ with respect to Hct. Interestingly,
within 16 min, the ESRτ did not differ substantially with respect to Hct. Based on the
results, the ESRτ obtained within a short duration (less than 16 min) did not depend on the
Hct in the range from 30 to 50%. However, after 20 min, the ESRτ tended to decrease with
respect to the Hct. According to a previous study [51], the ESRτ decreased at a higher Hct
under continuous blood flow. The ESRτ did not exhibit a substantial difference between
Hct = 30% and Hct = 40%, but it did show a substantial difference between Hct = 30%
and Hct = 50%. Thus, it was inferred that the ESRτ tended to decrease at a higher Hct
without respect to the blood flow pattern (i.e., continuous or square-wave blood flow).
Figure 4B(iii) shows the temporal variations of AII with respect to Hct. The AII did not
exhibit a substantial difference between Hct = 30% and Hct = 40%. A high Hct (50%)
caused a decrease in AII when compared with a low Hct (30 or 40%). After 16 min, the
Hct did not contribute to variations in AII. The trends of AII were quite similar to those
of ESRτ with respect to the Hct. To find out the relationship between the two indices, the
ESRτ and AII (i.e., Figure 4B(ii,iii)) were replotted on the Y-axis and X-axis, respectively.
A linear regression analysis was performed using Microsoft Excel Ver. 2019 (Microsoft,
Redmond, WA, USA). According to the results, the slope of each Hct was obtained as
(a) ∆ESRτ/∆AII = −2.2188 (Hct = 30%), (b) ∆ESRτ/∆AII = −2.7813 (Hct = 40%), and
(c) ∆ESRτ/∆AII = −3.928 (Hct = 50%). Both indices had a reciprocal relationship (i.e.,
negative slope). The slope tended to increase with respect to Hct. Because the regression
coefficients had higher values of R2 = 0.923–0.968, it was confirmed that the indices had a
strong linear relationship.

Second, two indices were employed to quantify the ESR of the hardened RBCs in the
blood syringe. According to previous studies [44,50,67,68], normal RBCs were thermally
hardened at high temperatures of either 50 ◦C for 30 min or 50 ◦C for 60 min. Hardened
blood samples (Hct = 50%) were prepared by adding the hardened RBCs to a specific
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dextran solution (10 mg/mL). To quantify the contribution of the hardened RBCs to the
ESR in the blood syringe, τ and Ib were obtained over time. As shown in Figure 5A(i),
temporal variations of τ were obtained with respect to normal and hardened blood, i.e.,
50 ◦C × 30 min and 50 ◦C × 60 min. When compared with normal RBCs, thermally shocked
RBCs caused the variation range of τ to decrease substantially over time. For hardened
RBCs, i.e., 50 ◦C × 60 min, τ remained constant over time. The longer the exposure time to
thermal shock, the smaller the variation range of the shear stress. Highly hardened RBCs
did not contribute to a change in τ over time.
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Figure 5. Detection of thermally hardened RBCs in terms of three suggested properties. (A) Temporal
variations of shear stress and image intensity with respect to control blood and two hardened blood
samples. As shown in right side panel, two snapshots of blood syringe filled with heat-treated RBCs
(i.e., 50 ◦C × 30 min and 50 ◦C × 60 min) were captured at the end of experiment. (i) Temporal
variations of τ with respect to control blood and two hardened blood samples. (ii) Temporal variations
of Ib with respect to blood samples. (B) Quantification of thermally hardened RBCs in terms of τ0,
ESRτ , and AII. (i) Variations of τ0 with respect to heat treatment conditions. (ii) Temporal variations
of ESRτ with respect to heat treatment condition. (iii) Temporal variations of AII with respect to heat
treatment condition. (iv) Linear relationship between ESRτ and AII for three blood samples.

Figure 5A(ii) shows the temporal variations of Ib with respect to the control blood
and hardened blood. The variation range of Ib tended to decrease with longer heat treat-
ment exposure times—that is, hardened RBCs at 50 ◦C × 60 min had a smaller Ib range
compared with normal RBCs. The right panel shows two snapshots of the blood syringe
filled with hardened RBCs with respect to the heat treatment conditions (50 ◦C × 30 min
and 50 ◦C × 60 min) captured at the end of the experiment. Slightly hardened RBCs
(50 ◦C × 30 min) exhibited a clear interface in the blood syringe. However, there was no
clear interface between the diluent and RBCs in the blood syringe for highly hardened
RBCs (50 ◦C × 60 min). According to the results, when normal RBCs were exposed to
heat treatment (50 ◦C × 60 min), the blood shear stress and image intensity did not exhibit
substantial differences over time. Furthermore, the ESR was not detected in the blood
syringe. As shown in Figure 5B, to quantify the thermally hardened RBCs, three properties
(τ0, ESRτ , and AII) were summarized as mean ± standard deviation (n = 2 or 3). Figure 5B(i)
shows variations of τ0 with respect to the heat treatment condition. Although τ0 tended to
increase gradually with respect to the heat treatment exposure time, there was no statistical
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difference between 30 min and 60 min. Figure 5B(ii) shows temporal variations of ESRτ

with respect to the heat treatment condition. Compared with normal RBCs, the ESRτ

tended to decrease substantially with respect to the heat treatment exposure time. The
longer exposure time (60 min) had the smallest ESRτ variation. Figure 5B(iii) shows the
AII temporal variations with respect to the heat treatment conditions. The AII tended to
decrease over time. After 16 min, the AII did not change over time. Before ∆t = 16 min,
the AII exhibited a promising difference with respect to the heat treatment conditions. For
the normal blood (i.e., no thermally exposed RBCs), continuous ESR occurs in the driving
syringe [50]. Hematocrit of blood increases gradually, and it contributes to decreasing AII.
It was inferred that one hardened blood (i.e., 50 ◦C for 30 min) contributed to continuous
ESR in the driving syringe to a certain degree. The AII was then decreased over time.
However, the other hardened blood (i.e., 50 ◦C for 60 min) did not contribute to ESR in
the driving syringe. For significantly hardened blood, hematocrit remained constant over
time. For this reason, highly hardened RBCs (50 ◦C × 60 min) did not exhibit a substantial
difference in AII over time. As shown in Figure 5B(iv), an X–Y plot (X-axis: AII, Y-axis:
ESRτ) was constructed to validate the correlation between the two indices. Because the
highly hardened RBCs (50 ◦C × 60 min) did not show a substantial variation of ESRτ and
AII, the indices did not have a linear relationship (i.e., R2 = 0.4). However, with respect
to the control blood and slightly hardened blood (50 ◦C × 30 min), the coefficients of
linear regression were estimated to have high values of R2 = 0.974–0.986. Thus, the two
indices had a strong linear relationship. The experimental investigations indicated that the
two indices could be used to detect differences between normal and hardened RBCs with
sufficient consistency.

3.4. Contributions of Diluent to ESR in the Driving Syringe

According to previous studies, diluents (dextran solution [45,51,52,63,69–73] and
fibrinogen [34,74]) contribute to increasing RBC aggregation or ESR [75]. To quantify
the effect of the diluent on the ESR, test blood was prepared by adding normal RBCs to
two types of diluent (dextran solution and fibrinogen). The present method was used to
measure variations of the two indices for the test blood.

First, the proposed method was used to detect variations of two indices for test blood,
which was prepared by adding normal RBCs into dextran solution (Cdex = 0, 10, 20, 40, 60,
and 80 mg/mL). Here, Cdex = 0 represents 1× PBS. Figure 6A(i) shows variations of τ0 with
respect to Cdex. The τ0 tended to increase significantly with respect to Cdex. Previously, by
supplying suspended blood to a microfluidic device under constant blood flow, the shear
stress and blood viscosity were obtained with respect to dextran solutions ranging from 5
to 80 mg/mL [51]. In a previous study, it was found that blood viscosity and shear stress
tended to increase substantially at higher concentrations of dextran solution, especially
under a constant blood flow. However, in the present study, the test blood was supplied to
the microfluidic channel in a square-wave profile, as shown in Figure 1A. Because the test
blood was prepared with the same normal RBCs, the difference in diluent (i.e., different
concentrations of dextran solution) led to an increase in τ0. Based on Equation (2), it was
confirmed that the τ0 increased because of the higher concentration of the dextran solution.
Compared with a previous study, the τ0 tended to increase substantially, regardless of the
blood flow pattern (constant or square wave). The τ0 could then be used to detect the change
in the diluent of test blood. Figure 6A(ii) shows the temporal variations of ESRτ with respect
to Cdex. Below Cdex = 40 mg/mL, the ESRτ tended to increase substantially with respect
to Cdex, which gradually increases during this period. However, above Cdex = 40 mg/mL,
the ESRτ tended to decrease with respect to Cdex. Interestingly, for dextran solutions with
Cdex = 60 or 80 mg/mL, the ESRτ tended to increase for up to 24 min. After 32 min, the
ESRτ tended to decrease over time. According to a previous study conducted under a
constant blood flow [51], ESRτ did not exhibit a substantial difference between 15 and
40 mg/mL. In addition, it significantly decreased between 60 and 80 mg/mL. However,
according to the present study, which was conducted at a square-wave blood flow, ESRτ
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tended to increase significantly between 10 and 40 mg/mL. Thus, it was inferred that the
difference in blood flow pattern (constant or square-wave profile) could lead to different
ESRτ trends. Figure 6A(iii) shows temporal variations of AII with respect to Cdex. The AII
tended to increase up to Cdex = 40 mg/mL. It tended to decrease above Cdex = 40 mg/mL
and tended to decrease significantly over time. The results confirmed that the two indices
have promise for detecting test blood with different concentrations of dextran.
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Figure 6. Detection of different diluents (i.e., dextran solution, fibrinogen) in terms of τ0, ESRτ , and
AII. (A) Detection of difference in dextran concentration in terms of three properties. (i) Variations of
τ0 with respect to Cdex = 0, 10, 20, 40, 60, and 80 mg/mL. (ii) Temporal variations of ESRτ with respect
to Cdex. (iii) Temporal variations of AII with respect to Cdex. (B) Detection of difference in fibrinogen
concentration in terms of three properties. (i) Variations of τ0 with respect to Cfib = 0, 4, 8, and
12 mg/mL. (ii) Temporal variations of ESRτ with respect to Cfib. (iii) variations of AII with respect
to Cfib. (C) Correlation between ESR index and aggregation index for test blood samples diluted by
dextran or fibrinogen. (i) Linear relationship between ESRτ and AII with respect to concentration of
dextran. (ii) Linear relationship between ESRτ and AII with respect to concentration of fibrinogen.

Second, the present method was employed to detect differences in two indices for test
blood, which was prepared by adding normal RBCs into fibrinogen. For healthy control
blood, fibrinogen levels ranging from 2 to 4 mg/mL were considered to be the normal
range [69]. According to an optical tweezer study, disaggregating force increased signif-
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icantly above Cfib = 4 mg/mL (i.e., the abnormal range). Furthermore, the AII increased
substantially in the abnormal range [76]. Based on previous studies, the fibrinogen was set
to more than 4 mg/mL (i.e., Cfib = 0, 4, 8, and 12 mg/mL). Here, Cfib = 0 means autologous
plasma. Figure 6B(i) shows variations of τ0 with respect to Cfib. The τ0 remained unchanged
below Cfib = 4 mg/mL (i.e., τ0 = 1.628–1.632 Pa). Above Cfib = 4 mg/mL, the τ0 of each
fibrinogen increased as τ0 = 1.666 ± 0.014 Pa (Cfib = 8 mg/mL) and τ0 = 1.747 ± 0.019 Pa
(Cfib = 12 mg/mL). The τ0 increased substantially in the abnormal range (more than
4 mg/mL) compared with the normal range (less than 4 mg/mL). Compared with the
previous optical tweezer study [69], the τ0 had a similar trend with respect to fibrinogen.
Figure 6B(ii) shows temporal variations of ESRτ with respect to Cfib. When compared with
autologous plasma (Cfib = 0), fibrinogen contributed to an increase in ESRτ . The ESRτ

tended to increase at higher concentrations of fibrinogen (i.e., Cfib = 4–8 mg/mL). The
ESRτ tended to increase over time. For higher concentrations of fibrinogen (i.e., Cfib = 8 or
12 mg/mL), when ∆t was less than 12 min, the ESRτ of Cfib = 12 mg/mL was smaller than
that of Cfib = 8 mg/mL. After 16 min, there was no substantial difference between Cfib = 8
and Cfib = 12 mg/mL. Figure 6B(iii) shows variations of AII with respect to Cfib. At ∆t = 0,
the AII tended to increase with respect to Cfib. However, after ∆t = 16 min, the AII did not
show a substantial difference with respect to Cfib—that is, fibrinogen did not contribute
substantially to the change in AII. Compared with ESRτ (Figure 6B(ii)), the variation range
of AII was much smaller. Therefore, it was inferred that measuring the variation in ESR in
terms of AII is difficult.

Finally, it was necessary to validate the linear relationship between the two indices.
As shown in Figure 6C, ESRτ and AII were constructed using an X–Y plot. Figure 6C(i)
shows a linear relationship between ESRτ and AII with respect to three types of dextran
solution (Cdex = 10, 20, and 40 mg/mL). The slope varied from −4.101 to −2.715. The
coefficient of linear regression was estimated to have a high value of R2 = 0.835–0.916.
Figure 6C(ii) shows a linear relationship between ESRτ and AII with respect to three types
of fibrinogen (Cfib = 4, 8, and 12 mg/mL). The slope varied from −3.202 to −2.506. With
respect to Cfib = 4 or 8 mg/mL, the coefficient of linear regression obtained had a lower
value of R2 = 0.584–0.614 because AII did not show distinctive trends over time. However,
the higher concentration of fibrinogen (Cfib = 12 mg/mL) had a higher value of R2 = 0.93.
The linear regression analysis revealed that both indices had a strong correlation (i.e.,
ESRτ~AII), especially under periodic on–off blood flow.

4. Conclusions

Three physical properties (τ0, ESRτ , and AII) were proposed to quantify biophysical
variations of blood samples during continuous ESR in the driving syringe. According to the
experimental results, a shorter period of T = 4 min and no air cavity contributed to getting
high sensitivity of the two indices (ESRτ and AII). The ESRτ and AII showed a reciprocal
relationship with each other. The τ0 was linearly proportional to the hematocrit. The
contribution of hematocrit (30–50%) to ESRτ was negligible during the short duration of
the experiment (less than 16 min). In conclusion, the three biophysical properties exhibited
substantial differences in several types of suspended blood (i.e., thermally hardened RBCs,
dextran, and fibrinogen). In the near future, this method will be used to detect mechanical
differences in blood collected from patients. Furthermore, it is necessary to improve the
present method for testing blood in clinical settings or in vivo conditions.
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