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Abstract: Machine learning methods, such as support vector regression (SVR) and gradient boosting,
have been introduced into the modeling of power amplifiers and achieved good results. Among
various machine learning algorithms, XGBoost has been proven to obtain high-precision models faster
with specific parameters. Hyperparameters have a significant impact on the model performance. A
traditional grid search for hyperparameters is time-consuming and labor-intensive and may not find
the optimal parameters. To solve the problem of parameter searching, improve modeling accuracy,
and accelerate modeling speed, this paper proposes a PA modeling method based on CS-GA-XGBoost.
The cuckoo search (CS)-genetic algorithm (GA) integrates GA’s crossover operator into CS, making
full use of the strong global search ability of CS and the fast rate of convergence of GA so that the
improved CS-GA can expand the size of the bird nest population and reduce the scope of the search,
with a better optimization ability and faster rate of convergence. This paper validates the effectiveness
of the proposed modeling method by using measured input and output data of 2.5-GHz-GaN class-E
PA under different temperatures (−40 ◦C, 25 ◦C, and 125 ◦C) as examples. The experimental results
show that compared to XGBoost, GA-XGBoost, and CS-XGBoost, the proposed CS-GA-XGBoost can
improve the modeling accuracy by one order of magnitude or more and shorten the modeling time
by one order of magnitude or more. In addition, compared with classic machine learning algorithms,
including gradient boosting, random forest, and SVR, the proposed CS-GA-XGBoost can improve
modeling accuracy by three orders of magnitude or more and shorten modeling time by two orders
of magnitude, demonstrating the superiority of the algorithm in terms of modeling accuracy and
speed. The CS-GA-XGBoost modeling method is expected to be introduced into the modeling of
other devices/circuits in the radio-frequency/microwave field and achieve good results.

Keywords: XGBoost; cuckoo search; genetic algorithm; modeling; power amplifier

1. Introduction

As an essential part of wireless communication systems, the performance of radio-
frequency (RF) power amplifiers (PA) play an important role in wireless communication
systems [1]. Modeling of RF PA is crucial for wireless communication [2–4].

Various modeling methods have been widely used in the past decades to model
RF PA [5]. As is well known, neural networks (NNs) are commonly used in modeling
due to their learning ability based on appropriate errors and good nonlinear function
fitting ability [6]. The modeling method based on a real-value delay neural network
(RVTDNN) uses backpropagation as the network training algorithm, effectively describing
the nonlinear characteristics of PA [7]. Using Chebyshev polynomials in the complex field
as the input of the neural network, the functional link neural network (FLNN) is also used
for PA modeling. Compared with the real-valued neural network (RVNN), the FLNN has a
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faster rate of convergence speed and lower computational complexity [8]. By converting
one-dimensional signal data into two-dimensional data, a convolutional neural network
(CNN) can significantly reduce the number of coefficients, reduce the training complexity,
and improve the speed of PA modeling [9]. Although the neural network has shown
significant accuracy in prediction, it lacks interpretability. In addition, the neural network
performs poorly in processing relatively small datasets, limiting their application in PA
modeling, as most PAs cannot provide sufficient massive data for model training [10].

Machine learning algorithms also have good performance in predicting classification
and regression problems. Moreover, the requirement for the size of the dataset is not high,
and better predictions can be obtained in a relatively short period [10]. Random forest
has been introduced into PA modeling [11,12]. The forest is composed of many random
trees, having high randomness and strong generalization ability, reducing the occurrence
of model overfitting and thus improving the model’s accuracy [11,12]. However, high
randomness comes at the cost of increasing the number of trees in the forest, increasing
the computational burden and modeling time [13]. Results of PA modeling by machine
learning algorithms, such as gradient boosting, K-nearest neighbor (KNN), random forest,
and decision trees, are compared, and the conclusion has been drawn that gradient boosting
has the best modeling accuracy and fastest speed. However, due to the slight variance of
the base model used in gradient boosting, the variance of the overall model increases with
serial iterative training, resulting in a weak ability of the model to prevent overfitting [13].
Chen et al. [14] proposed XGBoost in 2016. XGBoost effectively limits the complexity and
variance of the model and prevents overfitting by introducing a regularization term into the
loss function of gradient boosting [15]. To ensure optimal algorithm performance, optimiza-
tion techniques must be used to determine the critical parameters in XGBoost: learning
rat; max_depth; and n_estimators [16]. The traditional parameter optimization technique
based on a grid search is time-consuming and labor-intensive. It is more common to use
swarm intelligence optimization techniques [16], such as a genetic algorithm (GA) and
cuckoo search (CS). Jiang et al. first introduced GA into XGBoost for training parameters
and demonstrated its high accuracy in pedestrian detection [17]. In addition, Yu et al.
introduced the GA-XGBoost method to disease risk and cost prediction and showed that
GA-XGBoost could improve prediction accuracy [18]. Although GA has a fast convergence
rate that can help find the optimal hyperparameters faster and more accurately, it is prone
to mature [19]. Zhang et al. introduced CS into XGBoost in 2022 for an insulator pollution
degree detection problem and found it could improve classification accuracy [20]. Though
CS has few parameters and its convergence rate is not sensitive to parameter changes, it
does not easily fall into local optimization. However, its convergence is still slow and lacks
vitality [21]. It can be seen that a single swarm intelligence optimization search technique
has its shortcomings.

For this reason, this paper proposes a modeling method of CS-GA-XGBoost, integrat-
ing GA’s crossover operator into CS, making full use of the advantages of CS’s strong
global search ability and GA’s fast rate of convergence [19,21], and applying it to XGBoost’s
optimal parameter search, to achieve a more rapid rate of convergence and optimization
ability. This paper validates the effectiveness of the proposed CS-GA-XGBoost using
measured data of the 2.5-GHz-GaN class-E PA and 2.2–6.5-GHz CMOS PA under three
different temperatures (−40 ◦C, 25 ◦C, and 125 ◦C). The experimental results show that
compared to XGBoost, GA-XGBoost, and CS-XGBoost, the modeling accuracy of CS-GA-
XGBoost improved by one order of magnitude or more, and the modeling time shortened
by one order of magnitude or more. In addition, compared with classic machine learning
algorithms, including gradient boosting, random forest, and support vector regression
(SVR), the proposed CS-GA-XGBoost can improve modeling accuracy by three orders of
magnitude or more and shorten modeling time by two orders of magnitude, proving the
superiority of the proposed CS-GA-XGBoost in terms of modeling accuracy and speed.

The rest of the paper is organized as follows. Section 2 provides a detailed introduction
to the principle, advantages, and modeling procedure of the CS-GA-XGBoost proposed
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in this paper. Section 3 provides a detailed analysis of the modeling results using CS-GA-
XGBoost based on the measured data of the 2.5-GHz-GaN class-E PA and 2.2–6.5 GHz
CMOS PA under three different temperatures (−40 ◦C, 25 ◦C, and 125 ◦C). Section 4
summarizes the overall content of this paper.

2. CS-GA-XGBoost
2.1. XGBoost

Chen et al. [22] proposed XGBoost in 2016. It is an ensemble learning algorithm based
on decision trees and uses a gradient-boosting framework. The XGBoost model is shown in
Figure 1. It is the same as gradient boosting. They are based on the idea of serial iterations,
using the value of the negative gradient of the loss function in the current model as the
approximate in the boosting tree algorithm of the regression problem and using this value
as the goal to train a primary learner for collection, to update the model [23]. The difference
is that the loss function in XGBoost contains a regularization term [22] to prevent overfitting,
which can effectively control the complexity of the model, prevent overfitting, and improve
the model’s prediction accuracy.
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Given a training set S = {(xi, yi)}N
i=1, gradient boosting (XGBoost) aims to minimize

the loss function L(y, F(x)) to find the optimal approximate solution F̂(x) of the function
F∗(x). Assuming the initial values F∗(x) = f0(x), and regarding F∗(x) as a whole, the
optimal function after T iterations is as follows [13]:

F∗(x) = ∑T
t=0 ft(x), (1)

where ft(x) is as follows [13]:

ft(x) = ft−1(x) + ∆ ft(x) = ft−1(x)− αt ∗ γ, (2)

where αt represents the weight of the function ft(x), and γ represents the parameters
calculated from the negative gradient of the loss function in the current mode [13]:
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γ = −
[

∂L(y, F(x))
∂F(x)

]
, (3)

where L(y, F(x)) is the loss function. In gradient boosting, L(y, F(x)) is the squared dif-
ference loss function. In XGBoost, an additional regularization term is added to prevent
overfitting [13]:

LXGBoost(y, F(x)) = (y− F(x))2 + ∑T
t=1 ϕ( ft(x)), (4)

where ϕ( ft(x)) represents the additional regularization term.
Hyperparameters largely influence the performance of XGBoost. There are more than

ten hyperparameters in XGBoost, but their impact on the accuracy of XGBoost varies.
Three hyperparameters have the most significant impact: (1) n_estimators represent the
number of trees established in the model. Typically, the larger the n_estimators are, the
more accurate the model is, but it is also prone to overfitting. (2) learning_rate represents
the step size when iterating the decision trees. Generally, the more significant the learning
rate, the faster the iteration speed is, but it may not converge to the best. The lower the
learning rate is, the more likely it is to find a more accurate optimal value, but the iteration
speed slows down. (3) max_depth represents the maximum depth of the tree. Usually, the
larger max_depth is, the more complex the trees are, and the better the model accuracy is,
but it is prone to overfitting [15,16].

Generally, a grid search is chosen to determine these three parameters. A grid search is
a technique that adopts the idea of class enumeration, which finds the optimal parameters
by comparing all results within a specified parameter range. However, undoubtedly, this
will significantly increase search time, and accuracy is also limited by parameters [19]. A
more popular parameter search method is the meta-heuristic algorithm, introduced by
Glover [24] in the tabu search (TS) algorithm in 1989. It is a product of a combination of
random and local search algorithms based on computational intelligence mechanisms to
solve complex problems with optimal or satisfactory solutions. Meta-heuristic optimization
algorithms can be divided into three categories: evolutionary algorithms, physics-based
algorithms, and swam intelligence algorithms [25].

2.2. Genetic Algorithm (GA)

The concept of biological evolution in nature inspires the evolutionary algorithm.
The typical evolutionary algorithm is the genetic algorithm (GA), which John Holland
of the United States proposed in the 1970s [26]. Figure 2 is the flow chart of GA. The
search principle of GA is based on the mechanism of natural selection and natural genetics;
that is, survival of the fittest and chromosome exchange mechanism simulating biological
evolution. The essential GA comprises three operators: selection; crossover; and muta-
tion. Improved genes can be preserved through the evolution of several generations of
populations. The algorithm defines a fitness function to evaluate whether genes are good
enough [26]. The GA is unaffected by problem properties and optimization criteria and
only utilizes objective functions for global adaptive search under guidance probability. It
can handle complex problems that traditional optimization methods find challenging to
solve. However, if selection methods, crossover, and mutation are inappropriate, the GA
will exhibit some issues, such as being prone to premature maturation and falling into local
optimization [27].

2.3. Cuckoo Search (CS)

In 1989, Gerardo Beni and Jing Wang first proposed the concept of swarm intelligence
(SI) in the context of cellular robots [28]. It utilizes information exchange and cooperation
between groups to achieve optimization through simple and limited personal interaction.
The core idea is to simulate the behavior of insects, cattle, birds, fish, and other groups
cooperatively searching for food. Each group member constantly changes the direction of
their search by learning from their own experience and the experiences of other members.
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Cuckoo search (CS) was proposed by Yang and Deb [29] in 2009. Figure 3 is the flow chart
of CS. CS is a swarm intelligence search technology that combines cuckoo nests and levy
parasitism. The eggs produced by the cuckoo in the selected nest can be regarded as a
solution to the problems to be solved. The eggs produced by the cuckoo in the following
more optimal nest are the optimal solutions to the problem to be solved. Cuckoos searching
for nests and laying eggs are seeking the optimal solution to the problem. The eggs
produced by the optimal nest selected by more cuckoos will form optimal solutions [28].
Cuckoo has few search parameters, and the convergence rate is not sensitive to parameter
changes, therefore it does not easily fall into local optimization and has a strong global
search ability. However, its searchability is at the cost of a slow convergence rate, lacking
vitality [21].
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2.4. CS-GA

Considering the advantages and disadvantages of CS and GA, this paper first proposes
an optimization algorithm for CS-GA. By integrating GA’s crossover operator into CS,
taking full advantage of CS’s strong global search ability and GA’s fast rate of convergence,
the improved CS-GA can expand the size of the bird nest population and reduce the search
range of the bird nest population, enabling the model to have a faster rate of convergence
and optimization ability. The flow chart of the proposed CS-GA is shown in Figure 4. The
following provide a specific description:
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(1) Initialize the algorithm. Initialize parameters such as nest size N, dimension D,
discovery probability P, nest boundary value lb, and ub.

(2) Calculate the fitness value of the bird’s nest.
(3) Update the optimal nest position Xbest and the optimal solution fmin.
(4) Update the current birds’ nest location and compare it with the previous generation

to update their nest gt with better adaptability.
(5) If R > P, update the birds’ nest position and compare with the birds’ nest position

gt, and update the birds’ nest position pt with better adaptability. If R < P, randomly
change the position of the bird’s nest.

(6) Perform GA’s crossover and mutation on the best set of bird nest positions.
(7) Update the current optimal nest position Xbest and the optimal solution fmin.
(8) Determine the stop conditions. If it meets, record the parameters and end. Otherwise,

return to step (2) for a new round of training.
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The construction of CS is based on three ideal assumptions: (1) each cuckoo will only
lay one egg at a time, and the nest will be randomly selected for laying eggs; (2) only
produce the best eggs in the best nest; (3) the probability of foreign bird eggs being
discovered is P ∈ [0, 1], and after being discovered by the host, they will directly abandon
the nest or bird eggs. Based on these three rules, the formula for updating the location and
path of cuckoos searching for their nests is [21]:

x(t+1)
i = xt

i + α⊕ L(λ), (5)

where xt
i represents the position of i-th nest at iteration t. α(> 0) is the step size, ⊕ is the

product, L(λ) follows the Levy distribution, essentially providing a random step size:

Levy(λ) ∼ µ = t−λ(1 < λ ≤ 3) (6)

For x, a roulette wheel strategy is used to select individuals for cross-operation. The
intersection of two individuals x1 and x2 [26]:

xnew
1 = ω·x1 + (1−ω)·x1 (7)

xnew
2 = ω·x2 + (1−ω)·x2 (8)

where x1 and x2 are parent individuals, while xnew
1 and xnew

2 are sub entities. ω is a random
number with a weight of 0 to 1. Mutation particles are randomly selected, and the mutation
operational definition is defined as follows.

xnew = x + ω·(xmax − xmin) (9)

where the generated xnew is added to the birds’ nest population.
The improved CS-GA first uses CS to find the optimal location for contemporary bird

nests and then propagates the elite bird nests through cross-mutation operations. On the
one hand, this has expanded the size of the birds’ nest group. On the other hand, it has
narrowed the search scope of the birds’ nest group. Compared with CS, CS-GA can find
the optimal solution with fewer iteration rounds, so it has a faster convergence rate and
optimization ability.

2.5. CS-GA-XGBoost

Figure 5 shows the modeling procedure based on CS-GA-XGBoost. Specifically, it can
be described by the following steps:

(1) Data acquisition. By measuring a 2.5-GHz-GaN class-E PA, obtain the input and
output data required for modeling.

(2) Data division. Divide the obtained experimental data equally into two parts: training
and validation data.

(3) Build a CS-GA-XGBoost model.
(4) Model training and calculating training errors. To evaluate the performance of differ-

ent modeling techniques, mean squared error (MSE) is selected as the model accuracy
evaluation standard [30]:

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (10)

where yi represents the actual value and ŷi represents the predicted value. The smaller
the MSE is, the more accurate the model is.
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Suppose the training error is greater than the expected error. In that case, it indicates
that the model is underfitting [31], and it is necessary to adjust the parameters and return
to step (3) to rebuild the model. If the training error is less than expected, the model has
completed training and entered step (5).

(5) Model validation and calculating the validation errors. Suppose the validation error
is greater than the expected error. In that case, the model is underfitting [31], and the
parameters must be adjusted before returning to step (3) for remodeling. Suppose
the validation error is less than expected, while the difference between the training
and validation errors is more significant than one order of magnitude. In that case,
it indicates that the model is overfitting [31], and it is also necessary to adjust the
parameters and return to step (3) to remodel. Suppose the validation error is less than
the expected error, and the difference between the training and validation errors is
less than one order of magnitude. In that case, the model performance is good [31],
and the modeling is completed.

3. Results and Discussion
3.1. Experimental Setup

A schematic diagram of the measurement environment and connections for measuring
a 2.5-GHz-GaN class-E PA at different ambient temperatures is given in Figure 6a. The
2.5-GHz-GaN class-E PA uses the CREE GaN HEMTs with a model number CGH40010F,
and the selected plate was Rogers 5880 with a dielectric constant of 2.2 and a thickness
of 31 mils. The whole measurement process was carried out in an environmental test
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chamber. A signal generator, a DC power supply, and a spectrum analyzer were used in
the measurement process, whose primary roles were to provide an input signal to the PA
to be tested, to provide an operating bias, and to obtain an output signal, respectively.
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We measured the PA’s input and output power at three different temperatures (−40 ◦C,
25 ◦C, and 125 ◦C). The temperature characterization of the RF amplifier was performed
in an environmental chamber (SC3 1000 MHG from Vötsch Industrietechnik (Gie&szlig,
Germany)) with a measured temperature range of −40 ◦C to +125 ◦C. A total of 28 data
points was measured in each turn. Half of the data points in the experiment were assigned
as the training data, and the rest were set as the validation data.

We also measured the S21 of the PA in 2.2–6.5 GHz under three different temperatures
(−40 ◦C, 25 ◦C, and 125 ◦C). The experimental setup is shown in Figure 6b. As shown
in Figure 6a, the S21 of the 2.2–6.5 GHz CMOS PA was also carried out in an ambient
temperature chamber (SC3 1000 MHG), where a DC power supply provided bias voltages
and currents to the PA and a vector network analyzer (VNA) was used to measure the S21 of
the PA. A total of 800 data points were measured in each turn. Half of the data points in the
experiment were assigned as the training data, and the rest were set as the validation data.

3.2. Modeling Results

Figure 7 shows the modeling results using XGBoost, GA-XGBoost, CS-XGBoost, and
CS-GA-XGBoost based on the measured input and output data of 2.5-GHz-GaN class-E
PA under different temperatures. Table 1 provides the training MSE, validation MSE, and
modeling time based on the above models. Among them, training MSE and validation
MSE were reflections of model accuracy. The smaller the MSE is, the higher the modeling
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accuracy is. Modeling time reflects modeling speed. A shorter modeling time is a faster
modeling speed.
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The hyperparameters max_depth, learning_rate, and n_estimators greatly influence
the modeling performance, so it was necessary to determine the optimal hyperparameter
values before conducting modeling training. A traditional grid search method uses GA, CS,
and CS-GA to search hyperparameters. The hyperparameter iterations for each algorithm
were 30. In Table 1, we give the final optimal hyperparameters of each algorithm.

As shown in Figure 7a,b, when the data transitions from linear to nonlinear (as shown
in the orange box), that is, when the output power approached saturation, XGBoost and
GA-XGBoost exhibited significant fitting errors, indicating that the fitting accuracy of
XGBoost and GA-XGBoost was poor. As shown in Figure 7c,d, CS-XGBoost and CS-GA-
XGBoost exhibited good fitting performance. Based on the data in Table 1, the training and
validation the MSE of CS-XGBoost and CS-GA-XGBoost were much better than those of
XGBoost and GA-XGBoost. This is because CS has a strong global search ability, which
enables it to search for the optimal parameters of the model more accurately. However,
the global search capability of CS comes at the cost of longer modeling time, which is one
order of magnitude higher than GA-XGBoost. This paper combined CS and GA, taking
their respective advantages.
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Table 1. Training and validation MSE and modeling time of XGBoost, GA-XGBoost, CS-XGBoost,
and CS-GA-XGBoost of Pin-Pout for PA at 2.5 GHz.

Temperature (◦C) Model Training
MSE

Validation
MSE

Modeling
Time (s)

−40

XGBoost
(* md = 1; * lr = 0.10; * ns = 60) 1.82 × 10−2 1.27 × 10−2 13.91

GA-XGBoost
(md = 2; lr = 0.20; ns = 59) 2.06 × 10−3 1.74 × 10−3 5.331

CS-XGBoost
(md = 3; lr = 0.25; ns = 61) 3.58 × 10−4 3.01 × 10−4 12.88

CS-GA-XGBoost
(md = 3; lr = 0.28; ns = 57) 3.75 × 10−5 3.14 × 10−5 0.309

25

XGBoost
(md = 1; lr = 0.31; ns = 32) 1.73 × 10−2 1.39 × 10−2 12.89

GA-XGBoost
(md = 2; lr = 0.20; ns = 60) 1.85 × 10−3 1.78 × 10−3 6.339

CS-XGBoost
(md = 3; lr = 0.27; ns = 50) 2.01 × 10−4 2.13 × 10−4 11.17

CS-GA-XGBoost
(md = 3; lr = 0.33; ns = 45) 4.23 × 10−5 4.68 × 10−5 0.299

125

XGBoost
(md = 1; lr = 0.15; ns = 45) 1.55 × 10−2 1.47 × 10−2 16.39

GA-XGBoost
(md = 2; lr = 0.19; ns = 58) 1.73 × 10−3 2.70 × 10−3 5.279

CS-XGBoost
(md = 3; lr = 0.20; ns = 25) 3.73 × 10−4 3.08 × 10−4 12.01

CS-GA-XGBoost
(md = 3; lr = 0.3; ns = 33) 5.06 × 10−5 5.61 × 10−5 0.339

* (md: max_depth; or: learning_rate; ns: n_estimators).

On the one hand, it can expand the size of the bird nest population and retain the
strong global search ability of CS. On the other hand, it reduces the bird nest population’s
search scope and shortens modeling time. Therefore, according to the data in the table,
compared to XGBoost, GA-XGBoost, and CS-XGBoost, CS-GA-XGBoost had improved
modeling accuracy by one order of magnitude or more while shortening modeling time by
one order of magnitude or more.

To further demonstrate the superiority of the CS-GA-XGBoost proposed in this paper,
classic machine learning algorithms, gradient boosting, random forest, and SVR, were also
selected for comparison. Among them, the hyperparameters in gradient boosting, random
forest, and SVR were all determined through a grid search. A grid search is a parameter
searching method that uses exhaustive search. Among all candidate hyperparameter
selections, by iterating and representing each possibility, the best-performing parameter to
be found is the hyperparameter [32]. For gradient boosting, the hyperparameters found
were the max_depth of decision trees, learning_rate, and the number of trees n_estimators.
For random forest, the hyperparameters to be found were the number of decision trees
n_estimators and the max_depth of the decision tree. For SVR, the hyperparameters found
were the penalty parameter c and the kernel function coefficient γ. In the experiment, the
hyperparameter iterations for each algorithm were 30. In Table 2, we give the final optimal
hyperparameters of each algorithm.

Figure 8 shows the modeling results based on the four algorithms mentioned above.
Table 2 provides the corresponding training MSE, validation MSE, and modeling time.
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Table 2. Training and validation of the MSE and modeling time of gradient boosting, random forest,
support vector regression, and CS-GA-XGBoost of Pin-Pout for PA in 2.5 GHz.

Temperature (◦C) Model Training
MSE

Validation
MSE

Modeling
Time (s)

−40

Gradient Boosting
(md = 4; or = 82; ns = 0.15) 1.14 × 10−2 1.81 × 10−2 10.46

Random Forest
(md = 3; ns = 55) 1.98 × 10−1 3.51 × 10−1 10.76

SVR
(c = 32; γ = 0.11) 2.99 × 10−1 2.32 × 10−1 11.99

CS-GA-XGBoost
(* md = 3; * lr = 0.28; * ns = 57) 3.75 × 10−5 3.14 × 10−5 0.309

25

Gradient Boosting
(md = 3; lr = 115; ns = 0.11) 1.10 × 10−2 1.34 × 10−2 10.83

Random Forest
(md = 2; ns = 81) 3.84 × 10−1 4.04 × 10−1 13.21

SVR
(c = 45; γ = 0.10) 2.01 × 10−1 2.33 × 10−1 13.90

CS-GA-XGBoost
(md = 3; lr = 0.33; ns = 45) 4.23 × 10−5 4.68 × 10−5 0.299

125

Gradient Boosting
(md = 3; lr = 120; ns = 0.18) 1.71 × 10−2 1.97 × 10−2 10.36

Random Forest
(md = 3; ns = 62) 3.46 × 10−1 4.92 × 10−1 10.97

SVR
(c = 49; γ = 0.15) 2.13 × 10−1 2.04 × 10−1 14.43

CS-GA-XGBoost
(md = 3; lr = 0.3; ns = 33) 5.06 × 10−5 5.61 × 10−5 0.339

* (md: max_depth; lr: learning_rate; ns: n_estimators).

As shown in Figure 8a–c, random forest exhibited significant segmentation character-
istics during the modeling process, and its modeling accuracy was not as good as gradient
boosting, which is consistent with the results in [14]. However, gradient boosting had
the best modeling accuracy among the three, but it still showed deviations at some data
turning points. Based on the data in Table 2, compared to gradient boosting, random forest,
and SVR, CS-GA-XGBoost improved modeling accuracy by three orders of magnitude or
more and shortened modeling time by two orders of magnitude, showing the excellent
modeling results of CS-GA-XGBoost.
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Figure 8. Modeling results of 2.5-GHz-GaN PA under −40 ◦C, 25 ◦C, 125 ◦C with four dif-
ferent models: (a) Gradient Boosting; (b) Random Forest; (c) Support Vector Regression (SVR);
(d) CS-GA-XGBoost.

S21 is the forward transmission coefficient commonly used to characterize the small
signal gain of PA. Here, S21 was also selected for modeling to demonstrate the proposed
CS-GA-XGBoost’s superiority further. Figure 9 and Table 3 show the results of modeling
S21 of PA operating under −40 ◦C, 25 ◦C, and 125 ◦C with bandwidth ranging from 2.2 to
6.5 GHz by XGBoost, GA-XGBoost, CS-XGBoost, and CS-GA-XGBoost. The hyperparam-
eter iterations for each algorithm were 20. To show clearly, we present 80 data points in
the figures. The figures and tables show that XGBoost, which used traditional grid search
techniques for hyperparameters optimization, exhibited the poorest modeling accuracy
and speed. This is because a grid search limits the searching range of parameters, affecting
modeling accuracy, and using enumeration will significantly increase modeling time [32].
GA-XGBoost performs well in modeling speed due to its fast convergence speed [27], but
in terms of modeling accuracy, GA is prone to falling into local optima, affecting modeling
accuracy [27]. CS-XGBoost exhibited high modeling accuracy as its convergence speed is
not sensitive to parameter changes and is not easily trapped in local optima [29]. However,
due to the slow convergence speed of CS, the modeling speed of CS-XGBoost was also
slow [29]. Compared to XGBoost, GA-XGBoost, and CS-XGBoost, the proposed CS-GA-
XGBoost improved the accuracy of the model by two orders of magnitude, or more, while
also increasing the modeling speed by one order of magnitude or more. It is because CS-GA
integrates GA’s crossover operators into CS, making full use of the global solid search
ability of CS and the fast rate of convergence.
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Table 3. Training and validation MSE and modeling time of XGBoost, GA-XGBoost, CS- XGBoost,
and CS-GA-XGBoost of S21 of PA with 2.2–6.5 GHz.

Temperature (◦C) Model Training
MSE

Validation
MSE

Modeling
Time (s)

−40

XGBoost
(* md = 2; * lr = 0.10; * ns = 32) 4.42 × 10−1 4.82 × 10−1 191.3

GA-XGBoost
(md = 3; lr = 0.19; ns = 32) 1.42 × 10−2 2.82 × 10−2 34.87

CS-XGBoost
(md = 5; lr = 0.28; ns = 71) 9.51 × 10−3 9.76 × 10−3 188.5

CS-GA-XGBoost
(md = 5; lr = 0.28; ns = 71) 3.08 × 10−5 1.65 × 10−5 6.582

25

XGBoost
(md = 2; lr = 0.12; ns = 28) 3.03 × 10−1 3.74 × 10−1 188.3

GA-XGBoost
(md = 3; lr = 0.23; ns = 38) 1.27 × 10−2 2.64 × 10−2 36.87

CS-XGBoost
(md = 5; lr = 0.35; ns = 58) 9.56 × 10−3 9.88 × 10−3 169.8

CS-GA-XGBoost
(md = 5; lr = 0.35; ns = 58) 2.69 × 10−5 1.72 × 10−5 5.485

125

XGBoost
(md = 2; lr = 0.15; ns = 25) 2.18 × 10−1 2.96 × 10−1 189.2

GA-XGBoost
(md = 3; lr = 0.29; ns = 31) 3.14 × 10−2 4.19 × 10−2 33.87

CS-XGBoost
(md = 4; lr = 0.38; ns = 35) 9.53 × 10−3 0.86 × 10−3 170.8

CS-GA-XGBoost
(md = 5; lr = 0.31; ns = 65) 3.87 × 10−5 3.02 × 10−5 6.183

* (md: max_depth; lr: learning_rate; ns: n_estimators).

Figure 10 and Table 4 show the results of modeling S21 of PA operating under −40 ◦C,
25 ◦C, and 125 ◦C with bandwidth ranging from 2.2 to 6.5 GHz by gradient boosting, ran-
dom forest, SVR, and CS-GA-XGBoost. The hyperparameter iterations for each algorithm
were 20. Among them, the optimal hyperparameters of gradient boosting, random forest,
and SVR were still determined by grid search and presented in Table 4. The figure and
table show that random forest and SVR exhibited poorer modeling accuracy and speed,
especially when there was a turning point in the data point. It is easy to show significant
fitting errors.
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Figure 10. Modeling results of S21 at 2.2–6.5 GHz PA−40 ◦C, 25 ◦C, 125 ◦C with four different models:
(a) Gradient Boosting; (b) Random Forest; (c) Support Vector Regression (SVR); (d) CS-GA-XGBoost.

Table 4. Training and validation MSE and modeling time of gradient boosting, random forest, support
vector regression, and CS-GA-XGBoost of S21 of PA with 2.2–6.5 GHz.

Temperature (◦C) Model Training
MSE

Validation
MSE

Modeling
Time (s)

−40

Gradient Boosting
(* md = 3; * lr = 0.17; * ns = 71) 1.94 × 10−2 1.41 × 10−2 129.3

Random Forest
(md = 5; ns = 31) 1.16 × 10−1 1.21 × 10−1 189.4

SVR
(c = 22; γ = 0.11) 5.17 × 10−1 5.64 × 10−1 196.3

CS-GA-XGBoost
(md = 5; lr = 0.28; ns = 71) 3.08 × 10−5 1.65 × 10−5 6.582

25

Gradient Boosting
(md = 3; lr = 0.15; ns = 82) 1.84 × 10−2 176 × 10−2 126.9

Random Forest
(md = 5; ns = 18) 1.17 × 10−1 1.33 × 10−1 197.2

SVR
(c = 18; γ = 0.16) 5.44 × 10−1 6.83 × 10−1 194.3

CS-GA-XGBoost
(md = 5; lr = 0.35; ns = 58) 2.69 × 10−5 1.72 × 10−5 5.485
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Table 4. Cont.

Temperature (◦C) Model Training
MSE

Validation
MSE

Modeling
Time (s)

125

Gradient Boosting
(md = 3; lr = 0.12; ns = 58) 1.54 × 10−2 1.32 × 10−2 125.9

Random Forest
(md = 5; ns = 22) 1.27 × 10−1 1.37 × 10−1 189.2

SVR
(c = 11; γ = 0.21) 5.06 × 10−1 7.50 × 10−1 195.3

CS-GA-XGBoost
(md = 5; lr = 0.31; ns = 65) 3.87 × 10−5 3.02 × 10−5 6.183

* (md: max_depth; lr: learning_rate; ns: n_estimators).

In contrast, the modeling accuracy and speed of gradient boosting have been improved,
consistent with the conclusion in [14]. However, as shown in Figure 10a, gradient boosting
cannot accurately fit every data point, and some data points may deviate slightly. Compared
to gradient boosting, random forest, and SVR, the proposed CS-GA-XGBoost can improve
modeling accuracy by three orders of magnitude or more while also increasing modeling
speed by two orders of magnitude.

By fitting the Pin–Pout and S21 data under different temperatures, the superiority in
modeling accuracy and speed of the proposed CS-GA-XGBoost was demonstrated.

4. Conclusions

This paper proposed a PA modeling method based on CS-GA-XGBoost. CS-GA
integrates GA’s crossover operator into CS, making full use of the strong global search
ability of CS and the fast rate of convergence of GA so that the improved CS-A can expand
the size of bird nest populations while reducing the search range of bird nest population,
and attain better optimization ability and rate of convergence. The experimental results
showed that compared to XGBoost, GA-XGBoost, and CS-XGBoost, the proposed CS-GA-
XGBoost improved the modeling accuracy by one order of magnitude or more and shorten
the modeling time by one order of magnitude or more. In addition, compared to classic
machine learning algorithms, including gradient boosting, random forest, and SVR, the
proposed CS-GA-XGBoost improved modeling accuracy by three orders of magnitude
or more and shortened modeling time by two orders of magnitude, demonstrating the
superiority of the CS-GA-XGBoost in terms of modeling accuracy and speed. The CS-GA-
XGBoost model presented in this paper can also be used for modeling other microwave/RF
devices or circuits.
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