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Abstract: This paper presents a highly integrated C-band RF transceiver front-end design consisting of
two Single Pole Double Throw (SPDT) transmit/receive (T/R) switches, a Low Noise Amplifier (LNA),
and a Power Amplifier (PA) for Ultra-Wideband (UWB) positioning system applications. When
fabricated using a 0.25 µm GaAs pseudomorphic high electron mobility transistor (pHEMT) process,
the switch is optimized for system isolation and stability using inductive resonance techniques. The
transceiver front-end achieves overall bandwidth expansion as well as the flat noise in receive mode
using the bandwidth expansion technique. The results show that the front-end modules (FEM) have a
typical gain of 22 dB in transmit mode, 18 dB in receive mode, and 2 dB noise in the 4.5–8 GHz band,
with a chip area of 1.56 × 1.46 mm2. Based on the available literature, it is known that the proposed
circuit is the most highly integrated C-band RF transceiver front-end design for UWB applications in
the same process.

Keywords: GaAs; SPDT; LNA; C-band; UWB

1. Introduction

Since the Federal Communications Commission (FCC) issued an agreement on the
definition of UWB, it has been a hotspot for research and development in the field of wireless
communications, in which CH5 (6.24–6.7392 GHz) and CH2 (3.774–4.2432 GHz) are widely
used in intelligent navigation, indoor positioning, deep-well operations supply chain
management, etc. [1–10]. Compared with wireless communication technologies, such
as Bluetooth and Wi-Fi, UWB systems have unique advantages in terms of positioning
accuracy, communication distance, anti-interference, and high efficiency. Among them,
the UWB positioning system mainly realizes high-precision positioning using the Time
Difference Of Arrival (TDOA) method, in which the positioning tag sends nanosecond
pulse signals to the surrounding area and calculates the positioning information via the
arrival time of the pulse signals. The bandwidth of the RF transceiver front-end determines
the range of the transmitted and received pulse signals of the UWB system, thus affecting
the positioning accuracy of the system. In addition, with the development of technology,
UWB systems have higher requirements for positioning accuracy and communication
distance; the receiving path needs to have a higher sensitivity and dynamic range, and
the transmitting path needs to have a higher transmitting power. In order to meet the
different needs of the transmitting mode and receiving mode, the design methods of these
two modes tend to be quite different, and even use different processes for the design,
and the addition of auxiliary circuits such as control circuits and bias circuits makes the
design of the transceiver front-end more complex, which greatly increases the difficulty of
transceiver front-end integration. Therefore, the design of the transceiver front-end needs
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to make a reasonable trade-off from the three aspects of performance, integration area, and
cost, and how to design a low-cost, highly integrated broadband design has become an
urgent problem for the current UWB positioning system.

There are two basic solutions; the first is the CMOS-based highly integrated and
low-cost transceiver front-end reported in [11–18]. Thanks to the small size of CMOS and
complementary types of transistors, CMOS-based LNA designs for the receiver branch
can achieve miniaturized broadband designs with stable bias and control circuits. In [12],
a positive feedback input matching network is used to reduce the noise while realizing
the bandwidth expansion, but its noise figure is largely limited by the transconductance
of the transistors, which results in a suboptimal noise figure. In contrast, refs. [13–18] use
different topologies, such as those cascaded and differential, to expand the bandwidth of
the LNA. However, even if CMOS has more optional topologies under the same integration
area, the noise, linearity, and gain are not ideal due to the loss and carrier mobility of the
silicon substrate and are often only applicable to the design of the receive link, which does
not satisfy the high-power requirements of the transmitter branch. The other solution is the
multi-module packaging system based on the III-V high electron mobility semiconductors
reported in [19–22], but due to its inherent instability and the lack of an ideal active device
similar to the PMOS complementary type, this results in its low integration and large chip
size. Compared to CMOS, the high electron mobility of III-V semiconductor materials
compensates for the poor performance of CMOS, though there are power consumption
limitations and trade-offs between gain fluctuations and bandwidth [23]. However, in
conclusion, III-V materials produce a better performance and are better able to meet the
high-power requirements of the transmitter branch. Among them, the GaAs pHEMT
process is more mature and less costly than the GaN and GaAs heterojunction bipolar
transistor (HBT) process, and finally, the GaAs 0.25 µm pHEMT process is selected as the
material for this design.

In addition, the isolation within the FEM is essential. The basic approach is to realize
the switching and isolation of the transmitting mode and receiving mode using the SPDT
structure described in [22]. However, conventional SPDT switches often need to sacrifice
their insertion loss performance if they want to achieve high isolation under defined
bias conditions.

In this paper, a low-cost, highly integrated RF transceiver front-end design is proposed
based on the GaAs 0.25 µm pHEMT process with the topology shown in Figure 1, which
incorporates two SPDTs, an LNA and a PA with their active bias and matching components.
There are two common terminals, ANT and OUT, corresponding to the input of the LNA
and the input of the PA. The T/R mode is switched using two control pins with voltages of
+3.3 V/0. The switch is improved on the traditional SPDT structure by adding a resonant
inductor, which improves the isolation capability of the SPDT and reduces the crosstalk
between the transmitting mode and receiving mode through the high-resistance resonance
generated by the resonant inductor and the parasitic total capacitance of the corresponding
branch, thus ensuring the stability of the system, while the transceiver front-end expands
the low-frequency bandwidth through bandwidth expansion techniques using capacitive
compensation, peaked inductance to compensate for the high-frequency gain, negative
feedback loops and inter-stage matching to achieve in-band gain flatness, thus ultimately
realizing overall bandwidth expansion as well as flat noise in the receiving mode, and
reasonably allocating power consumption to ensure high linearity. Additionally, this design
uses a relatively negative voltage method to control the switch switching, avoiding the
introduction of additional CMOS control circuits. Its own bias circuit can provide stable
active bias, avoiding the cost of an external power control chip and improving the overall
integration of the transceiver front-end. The result shows that in the 4.5–8 GHz receiving
mode, the typical gain is 18 dB, the noise is 2 dB, and the typical PA gain is 22 dB. Compared
with the same type of front-end module, it has higher integration and gain.
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Figure 1. RF transceiver front-end topology.

2. Switch Design

Since the two SPDTs have the same architecture, the switch at the ANT port is intro-
duced as an example in this paper. The switching topology is shown in Figure 2, where
the signal is transmitted by wire bonding to the ANT common port, and the other two
ports of the SPDT are connected to the input of the LNA (LNA_IN) and the output port of
the PA (PA_OUT). Capacitors for DC isolation and matching are provided in front of each
port, and the ground port and parallel Inductive Resonance Matching L1 is incorporated to
optimize the switching isolation to reduce inter-module effects. There are a total of four
depletion transistors; the source-drain terminals of each transistor are connected through
the source-drain resistor Rlink, and the gate is connected to the corresponding control bits
VC1 and VC2 through the resistor Rg. In the receiving mode, the transistors M1 and M4
are turned on, M2 and M3 are in the cutoff region, while in the transmitting mode, the
transistors are in opposite states.
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Figure 2. ANT port SPDT circuit schematic.

The switch switches modes via relative negative voltage technology. The gate-source
voltage VGS of the depletion transistor is −0.8 V. The gate of the transistor in the on state
is connected to a positive potential of 3.3 V, and due to the parasitic resistance of the
transistor itself and the loss of Rg, the voltage of the common node becomes 2.96 V, the gate
potential of the transistor in the cutoff area is 0 V, and its corresponding VGS is −2.96 V,
which realizes the relative negative voltage shutdown to avoid the use of negative voltage
charge pumps and saves the cost of external CMOS control circuits. The SPDT utilizes an
asymmetric structure to achieve the different requirements of insertion loss and isolation
for the T/R mode. At the same time, the multiple-gate structure of each transistor reduces
the interconnections between the drain and source, minimizing transistor distortion and
providing a sufficient linearity output for the T/R mode.

Fully integrated circuits have high requirements for switch isolation. Poor switching
isolation can cause the input and output port impedance of the LNA and PA to deviate
from 50 Ω, especially in the transmitting mode, and severe cases can affect the stability
of the PA, leading to system self-excitation [24,25]. However, improved isolation leads
to the deterioration of insertion loss. In this paper, L1 is introduced on the basis of the
conventional SPDT structure to improve the isolation degree in the transmitting state via
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the Inductive Resonance Matching technique. According to the equivalent model of the
switch in on and off modes introduced in [26], the isolation degree in the transmitting
mode is related to the magnitude of Coff,M1 and Roff,M1 of the transistor in the M1 cutoff
state and Ron,M2 of the transistor in the M2 on state, who determine the degree of signal
leakage, and the equivalent model is shown in Figure 3.
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For ease of calculation, orders of magnitude too small for Z12 are rounded off, and the
series equivalent capacitance CZ21 and the equivalent resistance series RZ12 are obtained;
Z12 forms a parallel resonance with the inductor L1, and the frequency of the LC resonance
high-resistance state resonance is given as Equation (2).

f =
1

2π

√√√√ CZ12

L1

(
C2

Z12
+ R2

Z12

) (2)
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Since the value is limited by the requirements of the standing wave characteristics
of the LNA in the receiving mode, the value of L1 at a fixed frequency is mainly affected
by the size of the M1 transistor as well as the influence of Z3. Meanwhile, the insertion
loss in the receiving mode is also considered as the basis for the selection of the size, and
finally, M1 is selected as 9 × 100 µm, M3 as 5 × 75 µm, and C4 as 2.8 pF. Figure 5 shows the
comparison of the isolation in the transmitting mode and the insertion loss in the receiving
mode with and without L1, respectively. It can be seen that the addition of the resonant
inductor optimizes the isolation degree, and the effect on the insertion loss is more minor
at low frequencies and has no effect on the high-frequency part. The inclusion of L1 can
increase the isolation between the transmitting and receiving modes, thus improving the
stability of the overall system and ensuring that normal operation in any one mode is not
affected by other modes.
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3. LNA Design

The LNA circuit consists of two stages in cascade, and the schematic is shown in
Figure 6. The first stage adopts a common-source topology with a gate-source compensating
capacitor C2 and a source-degradation inductor LS1 to extend the low-frequency bandwidth
and obtain good noise performance. The input matching is high-pass-filtered, and the
output matching uses a peaked inductor to compensate for the high-frequency gain. The
interstage matching uses a T-shaped matching network to realize inter-stage broadband
matching. The second stage adopts a common source and common gate structure, and a
series–parallel peaked inductor is added to the output to compensate for the gain roll-off
at high frequencies. In addition, a negative feedback network with the feedback resistor
Rf and feedback capacitor Cf are added to optimize the flatness while improving the
stability of the overall LNA circuit. The final stage of the amplifier circuit has the most
significant impact on the linearity of the overall circuit. The second stage, by selecting
a larger enhancement transistor size, allows the LNA to have a higher gain in the high-
frequency section with a better linearity output. The gate voltage of the LNA is provided
by the active biasing of the transistor, and M4 controls the operating state of the circuit.
The active bias prevents the deterioration of linearity at high power. In order to ensure
sufficient stability, the circuit suppresses oscillations by adding a resistor in front of the
bypass capacitor to improve stability.
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Figure 6. Circuit topology of LNA.

In order to ensure that the LNA has flat gain and noise at 4.5–8 GHz, the LNA is
broadband-expanded in three ways, namely, the compensation capacitor for the input
matching of the first stage and expanding the low-frequency bandwidth, the series–parallel-
peaked inductor for compensating the high-frequency gain, and input matching and inter-
stage matching in the form of a negative-feedback network and a high-pass for adjusting
the flatness. Each of these three methods is described below.

The small signal model of the LNA circuit is shown in Figure 7. Due to power
consumption limitations, in order to achieve good noise and gain for the LNA circuit, the
first stage transistor size is considered to be a small-size low-power design, which is mainly
optimized for low-frequency gain and noise, and the second stage is performed primarily
to compensate for the linearity and high-frequency gain for large power consumption. The
bandwidth of common-source amplifiers is limited due to the parasitic capacitance Cgs1
and the effect of m1Cgd1 from the Miller effect. Since the value of m1Cgd1 is too small, it is
ignored for ease of calculation. Assuming a gate parasitic resistance of Rg, the quality factor
Q of the transistor’s input impedance can be expressed as (wCgs1Rg)−1. The small size of
the transistor results in a very small Cgs1, which limits the bandwidth of the signal in the
low-frequency section. An enhancement field effect transistor with a core of 2 × 50 µm
is selected to compensate for the decrease in Cgs1 in the low-frequency band by adding a
compensation capacitor C2.
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Corresponding to the different compensation capacitance transistor input impedance,
an imaginary part of the change is shown in Figure 8a, and it can be clearly seen that as
the value of C2 becomes larger, the transistor’s low-frequency band impedance change is
gentler, and the Q value decreases, so as to realize the bandwidth of the low-frequency
band which expands.
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While analyzing from the point of view of noise, both the real and imaginary parts
of optimal noise matching are inversely proportional to Cgs1, and the addition of the
compensation capacitor also makes the optimal noise impedance decrease but does not
deteriorate the minimum noise figure [27]. According to the noise cascade equation in [28],
it can be seen that the noise of the first stage has the most significant impact on the
LNA. To keep the overall noise at a small and flat value, making the minimum noise of
the impedance electrode coincide with the maximum gain impedance point is the ideal
situation. However, the difference between these two points is usually large. At this point,
the addition of the source-level degradation inductor LS1 is very necessary, which not only
reduces the gap between the two impedance points but also improves the stability of the
circuit. Figure 8b shows the Smith chart of the 4–8 GHz input port conjugate S(1,1)* and the
optimum source reflection coefficient Sopt for different values of C2 under the value of the
degenerate inductor of 300 pH. Through the results, it can be found that the compensation
capacitance narrows the high and low-frequency gap between the input impedance and the
optimal noise source impedance under the effect of LS1, and the two curves’ impedances
gradually converge to 50 Ω with an increase in the compensation capacitance, which is
finally selected to be 200 fF in size.

The second method is the series and parallel inductance peaking technique; the output
of the first stage of the common source pole, due to the Miller effect, leads to a more
pronounced decline in high-frequency gain. By adding peaked inductors LD and L2 at the
output, the output impedance and gain of the first stage can be expressed as Equations (4)
and (5). With the increase in the frequency, the two inductors compensate for the output
impedance, thus expanding the high-frequency bandwidth. The second stage is no longer
added before point C for inductor compensation due to the characteristics of its cascade
structure to suppress the Miller effect, and the high-frequency bandwidth is compensated
by matching the access to series and parallel inductors at the output.

ZB =

[
rds1//

1
s(Cds1 + m2Cgd1)

]
+

[
1 + gm1

(
(rds1//

1
sCds1

)][
sLs1//

1
s(Cgs1 + C2)

]
(3)

Zout1 = (ZB + sLD)//sL2 (4)

Av ≈ − gm1

1 + gm1Ls1
Zout1 (5)

After the high-frequency and low-frequency bandwidths are expanded, the LNA
maintains overall gain flatness by changing the matching form and adding a negative
feedback network to the second stage. The capacitor Cf and resistor Rf at the common gate
output and common source input of the second stage can form a feedback network that
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not only optimizes flatness but also increases the stability of the LNA. The maximum gain
and stabilization factor are given in Figure 9. Adding the feedback capacitor, Cf realizes
the DC isolation, and as the value of Cf is taken to be larger, the gain decreases as the
degree of feedback increases, and the peak of the maximum gain moves towards the low
frequency. Adding resistor Rf can cut the high-frequency gain roll-off speed; the smaller
the gain roll-off in the high-frequency part, the lower the gain in the low-frequency part
and the better the gain flatness. However, large resistor values can hinder high-frequency
negative feedback, resulting in a lack of stability. The final choice of capacitance takes the
value of 0.1 pF, and the resistance takes the value of 30 Ω. In addition, input matching and
interstage matching use high-pass matching to appropriately reduce the low-frequency
gain and solve the problem of gain flatness deterioration. Due to the limitation of noise
matching, interstage matching with the resistor introduced is more accessible to achieve
flatness optimization than input matching. It consists of C3, C4, and a resistor RT in series
with inductor L3 to form a parallel branch, which, by adjusting the equivalent resistor RT,
can change the Q value of the interstage network to meet the requirements of different
frequency bands on the gain.
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4. PA Design

The PA topology is shown in Figure 10. The PA design consists of two common source
cascade stages, and the input matching consists of L1, L2, and C1. The addition of series
resonance to impedance matching can make the high-frequency and low-frequency ends of
the impedance move in opposite directions, which narrows down the impedance curve to
a minimal range in order to achieve broadband input matching. The first transistor stage is
used as the driver stage. To ensure the stability and flatness of the first stage, RC negative
feedback is used to optimize the gain flatness as well as linearity at the expense of partial
gain. The output is passed to the interstage matching network via the peaking inductor L3.
The interstage matching consists of C3, C4, and L4. In order to realize the matching between
the driving stage Zout1 of the first stage and the power stage Zs of the second stage so that
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the output impedance curve of the first stage overlaps with the source impedance curve of
the second stage, the values of several components are carefully selected to achieve high
efficiency while realizing broadband matching. The second stage uses a larger transistor
as the power stage to further increase the output power, and the gate is stabilized using
an RC stabilization network to ensure the stability of the second stage. At the output of
the circuit, since the switched receiver branch is in a high resistance state, and the parallel
switch of the transmitter branch is in the cutoff state showing capacitance, the load traction
is achieved using the parallel peaked inductor L5 and capacitor C6, the parallel parasitic
capacitor Cds, and the OP1dB which reaches 18.13 dBm, with a Power-Added Efficiency
(PAE) of 31.7%. The transistors are actively biased to provide gate voltage to the circuit and
provide compensation for circuit linearity, and their operating state is controlled by M3.
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5. Measurement Results

The microscopic picture of the chip is shown in Figure 11, and the area of the chip
is 1.56 × 1.46 mm2. The fabricated transceiver front-end was experimentally verified
by configuring it on the evaluation board. The transceiver front-end is powered by a
3.3 V power supply in both transmitting and receiving modes, and its static DC power
consumption is 41.15 mA and 27.27 mA, respectively. S-parameter measurements using a
network analyzer are shown in Figure 12a,b, which shows that the input/output match
between receiving and transmitting modes is good in the range of 4.5–8 GHz, and the range
of receiving mode gain is 14–19 dB, and that of the transmitting mode gain is 18–23 dB.
In addition, the large signal test of the chip using the spectrum, including P1dB as well
as IP3 results, are shown in Figure 12c; the input inP1dB of the receiving mode is higher
than −5.3 dBm in the frequency band, and the input inIP3 is greater than 5.7 dBm, and
the output power and PAE of the receiving mode at 6.2 GHz are depicted in Figure 12d.
Relative to the input power variation, OP1dB is greater than 16.27 dBm, and the PAE is
greater than 26%. The noise figure in the receiving mode is shown in Figure 13, and the
receiving mode in-band noise range is 1.9–2.7 dB when tested using a noise source. The
transceiver front-end has a sufficiently low noise figure and sufficient linearity. Depending
on the requirements of the UWB system for different frequency bands, external appropriate
filters can be selected to realize the dynamic range requirements in compliance with the
receiver standards.

Table 1 summarizes previously reported RF front-ends operating at similar frequency
bands and using similar processes. Compared to previously reported RF front-ends, this
design integrates both RF switches, LNA, PA, the matching network, and the bias network
for the highest level of integration. Compared with the traditional UWB RF front-end
design, this design integrates the PA and bias circuit, and control circuit into the same FEM
and does not deteriorate the performance of the receiving mode. Moreover, the chip area
is almost close to the area of other RF front-ends with low integration, and the increased
area and cost are much smaller than the area of the PA chip and the power management
chip, so it can be considered that the design in this paper has higher integration and better
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switching isolation. At the same time, the transceiver front-end in the 4.5–8 GHz frequency
band has low noise, high gain, a sufficient linearity guarantee, and relatively low power
consumption, which can basically meet the requirements of the new generation of the UWB
positioning system.

Micromachines 2024, 15, x FOR PEER REVIEW 10 of 13 
 

 

filters can be selected to realize the dynamic range requirements in compliance with the 
receiver standards. 

 
Figure 11. Microscope picture of the chip. 

  
(a) (b) 

  
(c) (d) 

Figure 12. (a) S-parameters under RX; (b) S-parameters under TX; (c) Linearity test under RX; (d) 
Linearity vs. efficiency curve of TX at 6.2 GHz. 

Figure 11. Microscope picture of the chip.

Micromachines 2024, 15, x FOR PEER REVIEW 10 of 13 
 

 

filters can be selected to realize the dynamic range requirements in compliance with the 
receiver standards. 

 
Figure 11. Microscope picture of the chip. 

  
(a) (b) 

  
(c) (d) 

Figure 12. (a) S-parameters under RX; (b) S-parameters under TX; (c) Linearity test under RX; (d) 
Linearity vs. efficiency curve of TX at 6.2 GHz. 

Figure 12. (a) S-parameters under RX; (b) S-parameters under TX; (c) Linearity test under RX;
(d) Linearity vs. efficiency curve of TX at 6.2 GHz.



Micromachines 2024, 15, 169 11 of 13Micromachines 2024, 15, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 13. Noise curve of RX. 

Table 1 summarizes previously reported RF front-ends operating at similar frequency 
bands and using similar processes. Compared to previously reported RF front-ends, this 
design integrates both RF switches, LNA, PA, the matching network, and the bias network 
for the highest level of integration. Compared with the traditional UWB RF front-end de-
sign, this design integrates the PA and bias circuit, and control circuit into the same FEM 
and does not deteriorate the performance of the receiving mode. Moreover, the chip area 
is almost close to the area of other RF front-ends with low integration, and the increased 
area and cost are much smaller than the area of the PA chip and the power management 
chip, so it can be considered that the design in this paper has higher integration and better 
switching isolation. At the same time, the transceiver front-end in the 4.5–8 GHz frequency 
band has low noise, high gain, a sufficient linearity guarantee, and relatively low power 
consumption, which can basically meet the requirements of the new generation of the 
UWB positioning system. 

Table 1. Performance comparison. 

References [29] [30] [31] [32] This Work 
Frequency (GHz) 0.5–4 3.5–7 1.5–2.7 3.1–8 4.5–8 

Topology LNA LNA LNA + SW LNA SW + LNA + PA 
RX/TX Gain (dB) 20.5 17 17.5 4 18/23 
NF (dB) for RX 4 1.8 0.75 5 2 

RX/TX inP1dB (dBm) −0.5 −3 −2.5 - −5.3/−5 
PDC (mW) NA 400 300 - 81.81 

Off-chip Components YES NO YES NO NO 
Chip Size (mm2) 1.78 1.97 1.95 2.1 2.28 

GaAs Process 2 µm HBT 0.5 µm MESFET 0.25 µm pHEMT 0.15 µm pHEMT 0.25 µm pHEMT 

6. Conclusions 
This paper presents a highly integrated transceiver front-end for UWB applications 

using the 0.25 µm GaAs pHEMT process, integrating a PA and LNA and two SPDTs, as 
well as matching and biasing circuits and logic control circuits. The transceiver front-end 
can realize both receiving and transmitting functions at the same time. The switch intro-
duces a new inductive resonance network, which improves isolation and reduces the 
crosstalk between the two modes, thereby improving the stability of the whole system via 
generating high-resistance resonance through the resonant inductance and parasitic ca-
pacitance of the switch at the input and output. The bandwidth is expanded by the band-
width expansion technique, which compensates for the gain at different frequency bands 
using compensation capacitors, peaked inductors, interstage matching, and negative feed-
back loops, respectively. Additionally, through the bandwidth expansion technique, the 

Figure 13. Noise curve of RX.

Table 1. Performance comparison.

References [29] [30] [31] [32] This Work

Frequency (GHz) 0.5–4 3.5–7 1.5–2.7 3.1–8 4.5–8
Topology LNA LNA LNA + SW LNA SW + LNA + PA

RX/TX Gain (dB) 20.5 17 17.5 4 18/23
NF (dB) for RX 4 1.8 0.75 5 2

RX/TX inP1dB (dBm) −0.5 −3 −2.5 - −5.3/−5
PDC (mW) NA 400 300 - 81.81

Off-chip Components YES NO YES NO NO
Chip Size (mm2) 1.78 1.97 1.95 2.1 2.28

GaAs Process 2 µm HBT 0.5 µm MESFET 0.25 µm pHEMT 0.15 µm pHEMT 0.25 µm pHEMT

6. Conclusions

This paper presents a highly integrated transceiver front-end for UWB applications
using the 0.25 µm GaAs pHEMT process, integrating a PA and LNA and two SPDTs, as
well as matching and biasing circuits and logic control circuits. The transceiver front-
end can realize both receiving and transmitting functions at the same time. The switch
introduces a new inductive resonance network, which improves isolation and reduces the
crosstalk between the two modes, thereby improving the stability of the whole system
via generating high-resistance resonance through the resonant inductance and parasitic
capacitance of the switch at the input and output. The bandwidth is expanded by the
bandwidth expansion technique, which compensates for the gain at different frequency
bands using compensation capacitors, peaked inductors, interstage matching, and negative
feedback loops, respectively. Additionally, through the bandwidth expansion technique,
the transceiver front-end achieves a typical value of 18 dB of gain in the receiving mode and
−4.5 dBm of inP1dB and 7.5 dBm of inIP3, with a noise figure of 2 dB. In the transmitting
mode, the typical value of gain is 22 dB, and the OP1dB can reach 16 dBm, with a power
additive efficiency better than 26%. The transceiver front-end, to meet the requirements
of low cost, high integration, and in both modes, can work with mutual instability as the
simulation and measurement trends are basically the same. In addition, compared with
other transceivers, the front-end has lower power consumption and higher gain.

However, there are still many areas of this design that need to be improved. Due to
modeling and simulation errors, the actual test of the DC bias circuit of this design has
a higher current than the simulation results. Together with the problem that the cascade
circuit is more sensitive to the bias circuit, it leads to the second stage circuit of the receiving
mode, which is used to compensate for the high-frequency gain, to be tested when shifted
toward a lower frequency than the simulation. So, the issue of the robustness of the bias
circuit is the key to be studied as the next step. In addition, the functions of band selection
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and out-of-band suppression are not purposely designed in this paper, which will also
form the research direction of the next design.
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