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Abstract: Silicon waveguides are essential to integrated photonics, which is where optical and
electronic components are coupled together on a single silicon chip. These waveguides allow
for the integration of signal processing and optical transmission, which advances data centers,
telecommunications, and other optical applications. Thus, our study involves the simulation of
essential all-optical logic operations, namely XOR, AND, OR, NOT, NOR, NAND, and XNOR,
and utilizes M-shaped silicon optical waveguides at a wavelength of 1.55 µm. This simulation is
conducted through Lumerical FDTD solutions. The suggested waveguide comprises four identical
slots, configured in the shape of the letter ‘M’, and all of which are formed of core silicon and silica
cladding. These logic operations work based on constructive and destructive interferences that
are caused by phase changes in the input optical beams. The contrast ratio (CR) is employed to
quantitatively and comparatively assess the degree to which the target logic operations are efficiently
executed. The simulation results indicate that, compared to other reported designs, the considered
logic functions constructed using the proposed waveguide can be implemented with higher CRs. The
outcomes of this paper can be utilized regarding the implementation of optoelectronic combinational
logic circuits of enhanced functionality.

Keywords: optical logic operations; silicon-on-silica waveguide; contrast ratio

1. Introduction

Silicon (Si) is widely utilized in the electronics industry as a semiconductor, making it
a crucial material in the production of computer chips, solar cells, waveguides, etc. Silica
refers to silicon dioxide (SiO2), a compound made up of silicon and oxygen atoms. It is
one of the most abundant compounds on Earth and is found in various forms, such as
quartz, sand, and agate. Si waveguides, on the other hand, are typically made of silicon-on-
insulator (SOI) substrates, where a thin layer of silicon is sandwiched between layers of SiO2.
These waveguides guide light through the Si core by exploiting the refractive index contrast
between Si and the surrounding SiO2. The high refractive index of Si ensures that the light is
confined within the Si core, preventing it from spreading into the cladding. Si waveguides
are applied in various fields, including telecommunications, data communications, optical
interconnects, and sensors. They play a crucial role in connecting different components
on a photonic integrated circuit, such as lasers, modulators, detectors, and other passive
elements. Additionally, Si waveguides offer several advantages, including compatibility
with existing CMOS technology, which enables cost-effective manufacturing. They also
allow for the integration of photonics with existing electronic integrated circuits on a
single chip, creating opportunities for more efficient and compact devices [1–8]. On the
other hand, optical logic operations can have potential advantages in terms of speed and
energy efficiency as compared to traditional electronic circuits [9,10]. Indeed, optical logic
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gates have recently been designed and/or constructed utilizing a variety of waveguide
designs [11–41]. Implementing complete optical computing systems based on optical logic
functions is a challenging task because it involves maintaining signal integrity over long
distances, dealing with issues such as signal loss and dispersion, and developing practical
devices that can be integrated into larger systems. The compact Si waveguide that we
propose in this work is capable of executing seven optical logic operations (XOR, AND, OR,
NOT, NOR, NAND, and XNOR) at 1.55 µm simultaneously, while the majority of the other
reported designs have used photonic crystals (PhCs) [11–22] or noble metals [32–37] to
implement only one or, at most, two logic operations. Four identical slots, configured in the
shape of the letter ‘M’, comprise the suggested waveguide; these slots are all composed of
Si on top of SiO2. Compared to our pervious Si designs [26–31], this proposed waveguide is
easier to use in the communications network, as well as in the design of many computational
logic circuits. The variety of waveguide designs allows engineers and designers to choose
the most appropriate structure for a given application, taking into account factors like
frequency range, mode handling, size, polarization, materials, manufacturing constraints,
and specialized requirements. This versatility enables the optimization of performance and
efficiency in a wide range of electromagnetic wave-based systems. In this paper, the logic
operations work is based on constructive interference (CI) and destructive interference
(DI) that results from the input optical beams’ phase variations. The performance of
the logic operations is evaluated utilizing the contrast ratio (CR) metric [26–31] through
Lumerical finite-difference-time-domain (FDTD) solutions [42], with the convolutional
perfectly matched layer (PML) as an absorbing boundary condition [43]. The incident light
will be absorbed with a minimal number of reflections under the PML absorbing boundary
conditions. However, spurious numerical reflections occur in a discretized FDTD space
even when the PML is perfectly capable of absorbing incident beams. The coordinate
stretching variables inside the PML might be graded to lessen these reflections [43]. In
this case, the XYZ axis mesh accuracy is set to 0.05 µm, 0.05 µm, and 0.01 µm, respectively.
The simulation findings show that the examined logic functions generated when using
the suggested waveguide can be achieved with higher CRs when compared to other
reported designs [11,16–18,22,23,34,35,40,41] (see Table 8). These findings complement and
generalize our relevant research that has been conducted so far [26–31], and essentially
extends the technological suite in the quest for providing different design and building
options for Si waveguide-based core logic modules.

2. Waveguide Principle

Figure 1 depicts the schematic illustration and electric field intensity distributions of
the proposed waveguide, which is made up of four identical slots configured in the shape
of the letter ‘M’, all of which are implemented on an SOI platform of a core Si layer and SiO2
cladding. All slots have a fixed length (L) of 1.0 µm, width (w) of 0.22 µm, thickness (d)
of 0.3 µm, and angle (θ) of 60◦. The FDTD simulations have been run iteratively until we
were strongly confident about their applicability and validity.
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The spectral transmission (T) of Si depends on the thickness of the Si wafer and the
specific type of Si (e.g., crystalline or amorphous). Crystalline Si has good transmission in
the infrared region, but it starts to absorb light in the visible and ultraviolet regions. A trans-
verse magnetic (TM) mode polarized pulse at 1.55 µm excites the input ports. The outcomes
of the simulations are captured by setting FDTD monitors, i.e., T = Iout/Iin= |Eout|2/|Ein|2,
where Iout is the intensity at the output port (i.e., port 4), and Iin = I1 + I2 + I3, which is the
sum of the intensities at three input ports [26–31]. The value of 0.2 is assigned to the nor-
malized threshold transmission (Tth), which is the minimum normalized power required
to generate T. To optimize T, the incident beams have to meet suitable phase-matching
conditions [44,45]. From a logical perspective, port 4 produces an output of ‘1’ only if
T > Tth and ‘0’ if T ≤ Tth.

The interaction between silicon waveguides and an incident optical signal is typically
described by the phenomenon of mode coupling [46–48]. Mode coupling refers to the
interaction between different guided modes within the waveguide structure. When an
incident signal encounters a waveguide, it can excite various guided modes depending on
factors such as wavelength, polarization, and the waveguide’s geometric and refractive
index properties. In the context of silicon waveguides, the interaction involves the coupling
of the incident signal to specific guided modes supported by the waveguide. These guided
modes can include fundamental modes (e.g., TE or TM modes) and higher-order modes,
each with its unique spatial distribution of the electric field within the waveguide. Under-
standing and controlling mode coupling is crucial for designing efficient photonic devices
and circuits. Engineers and researchers use numerical simulations, as well as experimental
techniques, to analyze and optimize mode coupling in silicon waveguides for specific
applications, such as signal routing, modulation, waveguides, and detection in integrated
optical systems.

In Figure 2, the illustration specifically showcases how the normalized spectral trans-
mission (T) of the M-shaped silicon waveguide varies with the operating wavelength (λ),
assuming that all incident beams are uniformly launched at the three input ports with the
same phase of 180◦. At the wavelength of 1.55 µm, the proposed waveguide demonstrates
an impressive high T of 0.894. A more detailed examination of the figure emphasizes that
this waveguide consistently operates with high T over a broader wavelength spectrum,
spanning from 1.2 µm to 1.6 µm. This extended range underscores the versatility and relia-
bility of the waveguide’s performance across different wavelengths, making it a promising
candidate for various optical applications.
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The angle between slots (i.e., θ) may affect how light or signals are manipulated within
the waveguide. The effect of θ on T at 1.55 µm is thus simulated in Figure 3. Upon the
examination of this figure, it is evident that the maximum T = 0.894 is achieved at θ = 60◦.
Consequently, this is the optimum value specified for θ, which is accordingly used as fixed
throughout our simulations. Expanding on this figure, it is also evident that altering the
value of θ results in an increase in the light scattering and absorption within the materials,
thereby reducing T.
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The dimensions of a Si waveguide can significantly impact its performance, especially
in the context of integrated photonics. For example, the length of the waveguide influences
the overall propagation losses. Longer waveguides tend to have higher losses, and mini-
mizing the length is often crucial for device efficiency. A more narrow waveguide tends to
have lower losses [49]. Therefore, Figure 4 illustrates how the slot length (L) and width (w)
affect T. As seen in this figure, high T is produced by the suggested Si waveguide across a
broad range of L and w, or L = 0.5–2.5 µm and w = 0.1–0.5 µm.
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3. Logic Operations
3.1. XOR, AND, OR

Two input beams are injected into Pin2 and Pin3, and Pin1 must supply a clock beam
(CLK) with an angle of 180o to execute the XOR, AND, and OR logic operations. Establish-
ing a reference phase difference between input beams that results in either CI or DI can
be done using the CLK (all ‘1’s). A ‘1’ output is produced by CI when all input beams are
launched with the same phase, but a ‘0’ output is produced by DI when these beams exhibit
different phases. It is noteworthy to observe that the output logic operation occurs in
between the two signals launched into the proposed waveguide from Pin2 and Pin3. Using
the M-shaped Si waveguide at 1.55 µm, the field intensity distributions of the XOR, AND,
and OR operations are shown in Figures 5–7, respectively.
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The suggested waveguide proved successful in achieving a high CR. The simulation
results for the AND, OR, and XOR logic operations at 1.55 µm in terms of T and CR are
summarized in Tables 1–3, respectively.

Table 1. XOR simulation results (Tth = 0.20).

ΦCLK Φ2 Φ3 Pout T CR (dB)

180◦ - - 0 0.024

14.94
180◦ 180◦ - 1 0.586
180◦ - 180◦ 1 0.786
180◦ 90◦ 0◦ 0 0.021

Table 2. AND simulation results (Tth = 0.20).

ΦCLK Φ2 Φ3 Pout T CR (dB)

180◦ - - 0 0.024

15.36
180◦ 90◦ - 0 0.028
180◦ - 0◦ 0 0.026
180◦ 180◦ 180◦ 1 0.894

Table 3. OR simulation results (Tth = 0.20).

ΦCLK Φ2 Φ3 Pout T CR (dB)

180◦ - - 0 0.024

15.20
180◦ 180◦ - 1 0.586
180◦ - 180◦ 1 0.786
180◦ 180◦ 180◦ 1 0.894

3.2. NOT, NOR, NAND, XNOR

In order to perform NOT, NOR, NAND, and XNOR logic operations, a Clk with
ΦClk = 0◦ is injected into Pin3, while two beams are injected into Pin1 and Pin2 (see Figure 1).
When the input beams are launched at different angles, they interact destructively and incur
a logical ‘0’ at Pin4. However, when launched at identical angles, they interfere construc-
tively and make a logical ‘1’ appear at Pin4. Figures 8–11 display the field intensity distribu-
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tions of the NOT, NOR, NAND, and XNOR operations, respectively, using the suggested
Si waveguide at 1.55 µm.
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Tables 4–7 provide a summary of the simulation findings for the NOT, NOR, NAND,
and XNOR operations at 1.55 µm, respectively. These tables indicate that our design
achieves acceptable performance.

Table 4. NOT simulation results (Tth = 0.20).

Φ1 ΦCLK Pout T CR (dB)

180◦ 0◦ 0 0.024
15.10- 0◦ 1 0.775

Table 5. NOR simulation results (Tth = 0.20).

Φ1 Φ2 ΦCLK Pout T CR (dB)

- - 0◦ 1 0.775

15.28
180◦ - 0◦ 0 0.024

- 180◦ 0◦ 0 0.026
90◦ 180◦ 0◦ 0 0.021

Table 6. NAND simulation results (Tth = 0.20).

Φ1 Φ2 ΦCLK Pout T CR (dB)

- - 0◦ 1 0.775

14.65
0◦ - 0◦ 1 0.575
- 0◦ 0◦ 1 0.484

90◦ 180◦ 0◦ 0 0.021

Table 7. XNOR simulation results (Tth = 0.20).

Φ1 Φ2 ΦCLK Pout T CR (dB)

- - 0◦ 1 0.775

15.24
180◦ - 0◦ 0 0.024

- 180◦ 0◦ 0 0.027
0◦ 0◦ 0◦ 1 0.894

A comparison of our waveguide with the other published designs-based optical logic
operations [11,16–18,22,23,34,35,40,41] is given in Table 8. This comparison includes both
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theoretical and practical results using various optical structures. This table proves that the
suggested design has several advantages, such as being created with cost-effective materials
like Si and SiO2, as well as being more compact, and providing a better performance.
Additionally, with the possibility of designing using electron beam lithography or laser
techniques, the suggested design enables seamless integration with electronic components
on a single chip. These advantages make our compact waveguides a popular choice in the
development of integrated photonic circuits for other optical applications.

Table 8. Comparison of proposed and other waveguide-based waveguides of optical logic functions.

References Functions Design Materials Size (µm2) Wavelength (nm) CR (dB)

[11] AND, XOR, OR, NOT,
NAND, NOR XNOR PhC waveguides Si/air 9 × 5 1550 5.42–9.59

[16–18] AND, XOR, XNOR T-shaped PhC
waveguides Si/air - 1550 8.29–33.05

[22] AND, OR 2D PhC design Si/air 19.8× 12.6 1520 9.74 and 17.95
[23] AND, NOR, XNOR Si photonics platform 1550 >10 dB

[34] NOT, XOR, AND, OR,
NOR, NAND, XNOR Metal slot waveguide Silver/SiO2 1.5 × 2.36 632.8 6–16

[35] NOT, XOR, AND, OR,
NOR, NAND, XNOR

Metal-insulator-metal
structures Air/silver 5.33 × 0.42 632.8 15

[40] AND, NAND, OR, XOR,
NOR, XNAOR, NOT

Plasmonic logic gates
design Silver/SiO2 0.25 × 0.25 850 4.14–14.46

[41] AND, OR, NOT, NAND Inverse design on Si
platforms Si/SiO2 1.0 × 1.5 1300 0.5–5.79

This work XOR, AND, OR, NOT,
NOR, XNOR, NAND

M-shaped Si
waveguides Si/SiO2 1.0 × 1.0 1550 14.65–15.36

Fabricating nanometer-scale waveguides demands sophisticated techniques in micro-
fabrication and nanotechnology. Key methodologies, such as advanced photolithography
(e.g., extreme ultraviolet lithography or electron beam lithography), are pivotal for crafting
silicon-on-silica waveguides. Achieving high precision and control in optical structure
creation is facilitated by femtosecond direct writing. Etching processes, like reactive ion
etching or deep reactive ion etching, play a crucial role in precisely shaping silicon and
forming the intricate waveguide structures. The deposition of thin silicon layers on silica
substrates can be achieved through either chemical vapor deposition or physical vapor
deposition. It’s worth noting that the selection of specific techniques depends on the unique
requirements of the waveguide design, as well as the available fabrication facilities. In this
dynamic field, staying abreast of the latest research and developments in nanotechnology
and microfabrication is imperative. It is noteworthy that ongoing advancements in these
technologies continually unfold, emphasizing the importance of remaining current with
emerging methodologies. Despite the intricacies involved, the experimental validation
of the proposed waveguide is within reach due to the accessibility of an advanced manu-
facturing processes. Rather than presenting an insurmountable obstacle, the fabrication
challenge becomes a practical matter with potential solutions. Furthermore, recent reports
highlight successful experimental implementations of multiple optical logic gates based
on various optical waveguides. These findings, documented in references [23,32,34,50–58],
signify a significant stride forward and pave the way for analogous implementations in
the future. The footprint of other waveguide-based implementations of optical logic gates
is even smaller, as reported, for instance, in reference [40] and cited in the corresponding
column of Table 8.

4. Conclusions

We have proposed and demonstrated, through Lumerical FDTD simulations, all-
optical XOR, AND, OR, NOT, NOR, NAND, and XNOR logic operations at 1.55 µm using
four identical slots configured in the shape of the letter ‘M’, all of which are formed of
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core Si and SiO2 cladding. The constructive and destructive interferences that result from
the phase shifts, induced by the inserted input optical beams, constitute the fundamental
principles for the physical realization of these logic operations. According to the theoretical
findings, the suggested waveguide allows for the construction of the target logic operations
while exhibiting higher CRs than other reported designs. The outcomes of this work
can open new possibilities for the practical design and implementation of optoelectronic
combinational logic circuits of advanced functionality.
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