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Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) are garnering considerable
scientific interest, prompting discussion regarding their prospective applications in the fields of
nanoelectronics and spintronics while also fueling groundbreaking discoveries in phenomena such
as the fractional quantum anomalous Hall effect (FQAHE) and exciton dynamics. The abundance of
binary compound TMDs, such as MX2 (M = Mo, W; X = S, Se, Te), has unlocked myriad avenues of
exploration. However, the exploration of ternary compound TMDs remains relatively limited, with
notable examples being Ta2NiS5 and Ta2NiSe5. In this study, we report the synthesis of a new 2D
ternary compound TMD materials, Ta3VSe8, employing the chemical vapor transport (CVT) method.
The as-grown bulk crystal is shiny and can be easily exfoliated. The crystal quality and structure
are verified by X-ray diffraction (XRD), while the surface morphology, stoichiometric ratio, and
uniformity are determined by scanning electron microscopy (SEM). Although the phonon property is
found stable at different temperatures, magneto-resistivity evolves. These findings provide a possible
approach for the realization and exploration of ternary compound TMDs.

Keywords: Ta3VSe8; 2D materials; ternary compound TMDs; synthesis

1. Introduction

Transition metal dichalcogenides (TMDs) stand as a significant family within the field of
materials science, garnering widespread interest across various scientific domains [1–3]. They
form a layered structure, and the transition metal atom layers are generally sandwiched
between the chalcogen atom layers. They exhibit a van der Waals structure [4–9] similar to
graphite, highlighting their potential for exfoliation. TMDs boast an array of distinctive
properties, including an adjustable band gap [10,11], strong light-matter interactions [12,13],
spin-orbit coupling [14–16], and valley-selective responses [17–19]. Owing to this wealth of
unique attributes, TMDs are deemed promising candidates for a multitude of applications,
including electronics, optoelectronics, thermoelectrics, nano-mechanics, and valleytronics.

Prior investigations have predominantly concentrated on binary compound TMDs.
Notable findings include the observation of fractional quantum anomalous Hall effect
(FQAHE) in twisted MoTe2 [20,21]. Charge density wave transition has been identified in
1T-TaS2 [22] and 2H-NbSe2 [23]. Superconductivity has been detected in 2H-TaS2 [24],
2H-WS2 [25–27], 2H-MoTe2 [26,27], 2H-MoS2 [26], and 1T-NbSeTe [28]. The exciton
physics [29–32] of MoS2, MoSe2, WS2, and WSe2 have been extensively explored as well.
Defect and chemical engineering [33,34] in MoS2, as well as strain engineering [35] in WSe2
and WS2, also have piqued considerable interest. However, studies regarding ternary
compound TMDs (with two metal elements confined in transition metal) are compara-
tively scarce. Ta2NiSe5, for instance, has been identified as an excitonic insulator [36–39].
Photodetectors [40–44] fabricated based on Ta2NiS5 and Ta2NiSe5 present unique optoelec-
tronic responses. The introduction of a new ternary compound TMD may broaden the
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horizons of existing research on TMDs. For instance, ternary compound TMDs offer sup-
plementary parameters to modulate a sample’s characteristics, and, specifically, they can
impact comprehensive properties by altering the elements’ proportion [45,46]. Additionally,
ternary TMDs containing magnetic elements may even make the material itself naturally
valley-polarized, thereby making a contribution to the research of valley electronics [47–50].

In this work, we report the synthesization of a new ternary compound TMD, Ta3VSe8.
The single crystals are grown by chemical vapor transport (CVT) in a dual-zone furnace.
We harvest the crystals from the colder end of the ampoule, with their sizes ranging from
about 9 to 25 mm2. X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX)
analysis are conducted on Ta3VSe8 to ascertain the crystal quality and the homogeneity of
its elemental distribution. Terrace features are witnessed on the surface using both optical
microscopy and scanning electron microscopy (SEM). Through temperature-dependent Ra-
man spectroscopy, we documented stable phonon vibrations across a series of temperatures
ranging from liquid nitrogen temperature to room temperature. Furthermore, positive
magnetoresistance is demonstrated around liquid helium temperature and becomes gradu-
ally suppressed at higher temperatures. Our findings on a new ternary compound TMD
provide a possible playground in multi-element TMD research areas.

2. Materials and Methods
2.1. Sample Synthesis

Due to the interesting properties founded in TaSe2 [51,52] and VSe2 [53–55], we
synthesized the Ta3VSe8 flakes using chemical vapor transport (CVT) and by employing
Tantalum (Ta) powders, Vanadium (V) powders, and Selenium (Se) shots (Figure 1a).
Stoichiometric mixtures of the raw materials were sealed in quartz tubes under an argon
(Ar) atmosphere. The Iodine (I2) shots were added as the transport agent to facilitate the
synthesis process. Subsequently, the sealed ampoules were evacuated and strategically
positioned into a dual-zone furnace with a temperature gradient of 200 K (1223 K at high-
temperature zone and 1023 K at low-temperature zone). Following a week-long controlled
cooling process, single crystals were harvested from the cold zone of the ampoules.
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Figure 1. The synthesis and characterization of Ta3VSe8. (a) Schematic plot of the growth configura-
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is then placed in a dual-zone furnace with Iodine as a transport agent. (b) Image of single crystals. 
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millimeter graph paper is 1 × 1 mm in size. Right panel: Metallurgical microscopic images. Terrace 
features are presented in the sample surface. The scale bar is 20 µm. (c) Schematic of the crystal 
structure. The structure belongs to the P-3m1 (No. 164) space group. The beige and brown balls 
represent the Ta (V) and Se atoms, respectively. (d) X-ray diffraction (XRD) pattern of Ta3VSe8. The 
diffraction peaks at 14.3°, 43.9°, and 59.7° are indicative of the (001) crystallographic plane, revealing 
the lattice constant along the c-axis to be 6.18 Å. 

2.2. Sample Characterization 
Energy dispersive X-ray spectroscopy (EDX), based on a scanning electron micro-

scope (SEM, Zeiss GeminiSEM450) [56,57], was employed to determine the elemental 
composition of the Ta3Vse8 flakes. The elemental mapping (Figure 2a) validated the chem-
ical ratio and homogeneous distribution within the crystals. X-ray diffraction analysis 
(Malvern Panalytical Empyrean) was performed to ascertain the crystallographic infor-
mation of Ta3VSe8, confirming that Ta3VSe8 belongs to the P-3m1 (No. 164) space group. 
We studied the phonon and electron properties due to their importance in determining 
the crystal property in condensed matter. For temperature-dependent Raman spectro-
scopic experiments, we utilized a home-built optical setup (Figure 3a) integrated with a 
grating spectrometer (Oxford Andor Shamrock 500i). A helium-neon (He-Ne) laser beam 
(Thorlabs HNL225R) with a wavelength of 632.8 nm served as the excitation source. The 
beam was focused on the sample via an objective lens, and the scattered light was subse-
quently collected through the same lens. The light then flowed into the grating spectrom-
eter to form Raman spectra. Critical to our temperature-dependent analysis, the sample 
was placed in a nitrogen-cooled cryostat system (Oxford MicrostatN) to realize tempera-
ture control from liquid nitrogen temperature to room temperature.  

Figure 1. The synthesis and characterization of Ta3VSe8. (a) Schematic plot of the growth configura-
tion. Starting materials are loaded in an evacuated ampule according to chemical ratios. The ampule
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is then placed in a dual-zone furnace with Iodine as a transport agent. (b) Image of single crystals.
Left panel: Stereo-microscopic images. The size of the sample is 9 to 25 mm2. The unit square of the
millimeter graph paper is 1 × 1 mm in size. Right panel: Metallurgical microscopic images. Terrace
features are presented in the sample surface. The scale bar is 20 µm. (c) Schematic of the crystal
structure. The structure belongs to the P-3m1 (No. 164) space group. The beige and brown balls
represent the Ta (V) and Se atoms, respectively. (d) X-ray diffraction (XRD) pattern of Ta3VSe8. The
diffraction peaks at 14.3◦, 43.9◦, and 59.7◦ are indicative of the (001) crystallographic plane, revealing
the lattice constant along the c-axis to be 6.18 Å.

2.2. Sample Characterization

Energy dispersive X-ray spectroscopy (EDX), based on a scanning electron microscope
(SEM, Zeiss GeminiSEM450) [56,57], was employed to determine the elemental composition
of the Ta3Vse8 flakes. The elemental mapping (Figure 2a) validated the chemical ratio
and homogeneous distribution within the crystals. X-ray diffraction analysis (Malvern
Panalytical Empyrean) was performed to ascertain the crystallographic information of
Ta3VSe8, confirming that Ta3VSe8 belongs to the P-3m1 (No. 164) space group. We studied
the phonon and electron properties due to their importance in determining the crystal prop-
erty in condensed matter. For temperature-dependent Raman spectroscopic experiments,
we utilized a home-built optical setup (Figure 3a) integrated with a grating spectrometer
(Oxford Andor Shamrock 500i). A helium-neon (He-Ne) laser beam (Thorlabs HNL225R)
with a wavelength of 632.8 nm served as the excitation source. The beam was focused on
the sample via an objective lens, and the scattered light was subsequently collected through
the same lens. The light then flowed into the grating spectrometer to form Raman spectra.
Critical to our temperature-dependent analysis, the sample was placed in a nitrogen-cooled
cryostat system (Oxford MicrostatN) to realize temperature control from liquid nitrogen
temperature to room temperature.

Micromachines 2024, 15, x FOR PEER REVIEW 4 of 11 
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elemental mapping. The observed chemical ratio of the crystal is Ta:V:Se = 24.7:9.3:66.0, which aligns 
with the expected stoichiometry. (c) Scanning electron microscopy (SEM) photo of the same crystal 
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Tantalum (Ta) is depicted in green (ii), blue (iii), and purple (iv), respectively. The scale bar is 2 µm.
It points out the homogeneity within the Ta3VSe8 composition. (b) EDX results derived from the
elemental mapping. The observed chemical ratio of the crystal is Ta:V:Se = 24.7:9.3:66.0, which aligns
with the expected stoichiometry. (c) Scanning electron microscopy (SEM) photo of the same crystal
in (a). The scale bar is 10 µm. The photo reveals the presence of terrace features on the surface of
the sample.
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(b) False-color pattern of temperature-dependent Raman spectra. (c) Stacking plot of Raman spectra 
at different temperatures. According to (b,c), the Raman peaks of Ta3VSe8 illustrate stability as the 
temperature changes. 

2.3. Magneto-Transport Measurement 
The sample was affixed to a DIP16 sample holder using GE varnish, followed by a 

connection between the sample and the electrodes using silver wires. The device was then 
incorporated into a commercial sample probe. The measurement was conducted in a su-
perconducting magnet. Data acquisition was undertaken by a lock-in amplifier (Stanford 
SR860) paired with a voltage-controlled current source (Stanford CS580), ensuring a pre-
cise collection of magnetoresistance. We executed a series of magnetoresistance measure-
ments, spanning a broad temperature range (Figure 4).  

Figure 3. Temperature-dependent Raman spectroscopy. (a) The schematic of the Raman spectroscopy
experimental setup. The excitation beam (λ = 632.8 nm) is generated by a helium-neon (He-Ne)
laser source and is subsequently focused on the Ta3VSe8 through an objective lens. The scattering
light is then harvested by the same lens and collected by the spectrometer directly. To realize the
temperature control during the experiment, the sample is mounted in the cryostat system carefully.
(b) False-color pattern of temperature-dependent Raman spectra. (c) Stacking plot of Raman spectra
at different temperatures. According to (b,c), the Raman peaks of Ta3VSe8 illustrate stability as the
temperature changes.

2.3. Magneto-Transport Measurement

The sample was affixed to a DIP16 sample holder using GE varnish, followed by a
connection between the sample and the electrodes using silver wires. The device was
then incorporated into a commercial sample probe. The measurement was conducted in a
superconducting magnet. Data acquisition was undertaken by a lock-in amplifier (Stanford
SR860) paired with a voltage-controlled current source (Stanford CS580), ensuring a precise
collection of magnetoresistance. We executed a series of magnetoresistance measurements,
spanning a broad temperature range (Figure 4).
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Figure 4. Magneto-transport measurement. (a) Experimental setup of transport measurement.
(b,c) Temperature-dependent Magnetoresistance. We perform measurements across a range of
temperatures extending from 2 K to over 100 K, as represented by a gradient of colors from red to blue
in the plot. From this plot, we observe that Ta3VSe8 demonstrates a mildly positive magnetoresistivity
at low temperatures and becomes suppressed at higher temperatures.

3. Results and Discussion

Utilizing CVT growth with the precise chemical ratios of raw materials (Figure 1a),
we successfully produce shiny single crystals at the low-temperature end of the ampule.
As depicted in the figure, the vibrant yellow, green, and purple cubes symbolize the three
raw materials: Tantalum (Ta) powders, Vanadium (V) powders, and Selenium (Se) shots,
respectively. The proportional relationship between these cubes visually emulates the
actual stoichiometric balance, Ta:V:Se = 3:1:8. The brown cubes represent the transport
agent Iodine (I2), which is essential for the growth process (about 5 mg/cm3). The sizable
red cube stands for the product, Ta3VSe8. Preliminary examination of the samples under
a stereomicroscope (referenced in Figure 1b, left panel) confirms their shiny surfaces and
substantial sizes, ranging from 9 to 25 mm², affirming their robust growth and suitability for
future experimentation. To closely inspect the sample surface, we resort to a metallurgical
microscope (Figure 1b, right panel). Terrace features are presented on the sample’s surface,
which are further confirmed by scanning electron microscopy in Figure 2c. The struc-
ture of the crystal is constructed by Visualization for Electronic and STructural Analysis
(VESTA) [58] in Figure 1c, adhering to the P-3m1 space group. Within this arrangement, Ta
(V) and Se atoms are represented by spheres of differing colors, which are labeled beige and
brown, respectively. Subsequently, we perform the X-ray diffraction analysis on Ta3VSe8 to
evidence its well-grown nature and determine its lattice constant. The diffraction peaks are
located at 2θ = 14.3◦, 43.9◦, and 59.7◦. On the one hand, the distinct (00n) peak observed in
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the diffraction pattern attests to the crystalline state of the samples. On the other hand, com-
bined with the wavelength of Cu Kα (λ = 1.5418 Å) and the peak positions, we calculated
the lattice constant (d) along c-axis to be approximately d = nλ

2 sin θ = 6.18 Å.
To ascertain the actual elemental composition of the sample, we use EDX elemental

mapping based on SEM. The elemental mapping, focusing on the area demarcated by the
white square (i), is exhibited in Figure 2a. The distribution of, Vanadium (V), Selenium (Se),
and Tantalum (Ta) is depicted in green (ii), blue (iii), and purple (iv), respectively. The nearly
uniform spread of these colors across the mapping area demonstrates the homogeneity of
the sample composition. The EDX results extracted from the mapping highlight the actual
chemical stoichiometry within the sample as Ta:V:Se = 24.7:9.3:66.0. Judging from these
results, we confirm that the crystal used in our experiment maintains an elemental ratio
that mirrors the expectations. Meanwhile, we capture an SEM image (Figure 2c) of the
crystal, which confirms the terrace features previously observed with the metallurgical
microscope (see Figure 1b, right panel).

In an effort to delve deeper into the phonon dynamics of Ta3VSe8, we conduct
temperature-dependent Raman spectroscopy utilizing a home-built optical system, as
illustrated in Figure 3a. A He-Ne laser is chosen as the excitation laser source, which
emits a beam with a wavelength of 632.8 nm. This beam is initially reflected by a mirror
before being focused onto the sample surface via an objective lens. The lens not only
directs the light toward the sample but also collects the scattered light, which encompasses
the information regarding the phonon dynamics. Eventually, the light enters the grating
spectrometer for analysis. To control the experimental temperature precisely, a cryostat
system is used. The sample is securely affixed onto the system’s holder, and the cryostat
features a glass window transparent to the He-Ne laser beam. The experimental tempera-
ture is continuously set between liquid nitrogen temperature and room temperature. The
Raman spectroscopic results, graphically represented in Figure 3b,c, are displayed both
as a false-color map and a stacking plot. Two prominent peaks of around 182 cm−1 and
234 cm−1 stand out in the spectra. As observed in both representations, these peak intensi-
ties and positions remain nearly consistent across the entire temperature range, from liquid
nitrogen temperatures to room temperature. This consistency underscores the stability
of phonon vibrations in Ta3VSe8 through the whole temperature regime and suggests a
negligible thermal expansivity within the interested experimental conditions. This trait
sets it apart from the usual behavior seen in typical TMDs like MoS2, WSe2, and Ta2NiSe5,
which exhibit distinct temperature-dependent phonon dynamics [59–61].

We further proceed with a magneto-transport measurement to uncover the magne-
toresistance of Ta3VSe8. The schematic of our experimental configuration is illustrated
in Figure 4a. Silver conductive paint ensured a solid connection of the four silver wires
between the sample and the electrodes on the sample holder. This four-probe setup offers
the advantage of minimizing the effects of contact resistance, a notable improvement over
a simpler two-probe configuration. In our experimental framework, the voltage (V+ and
V−) detected between the two probes near the middle of the sample gives the sample’s
longitudinal resistance. The dependence of this resistance upon an applied magnetic field
defines the sample’s magnetoresistance. In this setup, the lock-in amplifier acts both as a
voltmeter to capture the longitudinal voltage and as a source to generate a constant voltage
signal. This constant voltage (Vsource) is then converted into a constant current (Iout) by a
voltage-controlled current source, enabling us to calculate the longitudinal resistance (Rxx)
by the formula Rxx = V+−V−

Iout
.

The magnetoresistance measurements, spanning a temperature range from 2 K to
160 K, are illustrated in Figure 4b, highlighting the sample’s magnetoresistance at lower
temperatures. We also calculate the longitudinal resistance into magnetoresistance (MR) to
clarify the variation in resistance clearly in Figure 4c, MR = Rxx(B)−Rxx(0)

Rxx(0)
× 100%. Our find-

ings indicate that, above 100 K, the variations in magnetoresistance are minimal, remaining
essentially within the bounds of the signal-to-noise ratio. As the figure suggests, the sample
manifests a slightly positive magnetoresistance behavior as the magnetic field increases
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from 0 to 7 T. This indicates an increase in electronic scattering events with the strengthening
magnetic field. Of additional interest is an observed fluctuation in the zero-field resistance,
which differs from a simple monotonic temperature dependence. As the sample temper-
ature climbs (transitioning from red to blue in the plot), the resistance behavior shows
an initial decrease, followed by an increase, then subsequently a decrease, and ultimately
an increase again. This characteristic diverges from that of MoS2, WSe2, and Ta2NiSe5,
which exhibit a monotonic temperature-dependence in their resistance [36,62,63]. Previous
studies may address this phenomenon on the Lifshitz transition [64–66], metal-insulator
transition [67], or the exotic metallic state, which shows bad metal behavior [68–70] in
resistance-temperature curves. The mechanism behind the fluctuation of zero-field resis-
tance remains unclear, and it raises the hypothesis that the material may experience a phase
transition as the temperature varies.

4. Conclusions

In summary, we have synthesized Ta3VSe8, a new 2D ternary TMD material, using
the CVT method. The resultant single crystals, approximately 9–25 mm2 in size, boast a
shiny appearance and can be easily exfoliated with terrace features on the sample surface.
While the EDX elemental mapping confirms the homogeneity of element distribution, the
XRD analysis confirms its structure symmetry and lattice constant, which further supports
the single-crystalline nature of the sample. Through temperature-dependent Raman spec-
troscopy spanning from the liquid nitrogen temperatures to the room temperature, stable
intensity and the position of Raman peaks reveal the stability of sample lattice and phonon
modes. Moreover, positive magnetoresistance is found at low temperatures and gradually
suppressed at higher temperatures. Our work may provide a material platform for growing
and researching ternary compound TMD materials.
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