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Abstract: In view of the large output noise and low precision of the Micro-electro-mechanical
Systems (MEMS) gyroscope, the virtual gyroscope technology was used to fuse the data of the
MEMS gyroscope to improve its output precision. Random error model in the conventional virtual
gyroscopes contained an angular rate random walk and angle random walk ignoring other noise
items and the virtual gyroscope technology can not compensate all random errors of MEMS gyroscope.
So, the improved virtual gyroscope technology based on the autoregressive moving average (ARMA)
model was proposed. First, the conventional virtual gyroscope technology was used to model the
random error of three MEMS gyroscopes, and the data fusion was carried out by a Kalman filter to
get the output of the virtual gyroscope. After that, the ARMA model was used to model the output
of the virtual gyroscope, the random error model was improved with the ARMA model, and the
Kalman filter was designed based on the improved random error model for data fusion of the MEMS
gyroscopes. The experimental results showed that the 1σ standard deviation of the output of the
virtual gyroscope based on the ARMA model was 1.4 times lower than that of the conventional
virtual gyroscope output.
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1. Introduction

With the advantages of small volume and low cost, MEMS gyroscopes are widely used in aviation,
aerospace, and other navigation fields [1,2]. But, the precision of the MEMS gyroscope is lower than
the traditional gyroscope because of the limit by the current level of technology. So, it is particularly
important to improve the detection accuracy of the MEMS gyroscope by the use of virtual gyroscope
technology [3].

The Jet Propulsion Laboratory (JPL) of the US National Space Agency (NASA) simulated
4 gyroscopes for 111 h, the performance of the gyroscope is increased by 173 times with the Kalman filter
fusion, and the virtual gyroscope technology has been proposed [4]. The virtual gyroscope technology
is used to carry out static and dynamic compensation of MEMS gyro random error [5]. The dynamic
modeling of the angle, angular velocity, and angular acceleration is carried out, which increases the
compensation precision of the virtual gyroscope in dynamic state [6]. The angular acceleration is
modeled as a first order time correlation process, and the dynamic modeling of angular velocity
is carried out to further improve the compensation precision of the dynamic virtual gyroscope [7].
The one order autoregressive model (AR (1)) is used to model the angular velocity and the optimal
estimation process is improved, which reduces the complexity of data processing and improves the
dynamic compensation performance of the virtual gyroscope technology [8]. The Allan variance and
adaptive neuro-fuzzy inference system (ANFIS) are combined to carry out the weight of the MEMS
gyroscope array. The output of each gyroscope is multiplied by weights, and the virtual gyroscope

Micromachines 2018, 9, 348; doi:10.3390/mi9070348 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
http://www.mdpi.com/2072-666X/9/7/348?type=check_update&version=1
http://dx.doi.org/10.3390/mi9070348
http://www.mdpi.com/journal/micromachines


Micromachines 2018, 9, 348 2 of 13

output is obtained by summing the product [9]. The Kalman filter is used to realize data fusion of
6 MEMS gyroscopes, which improves the output precision of MEMS gyroscope [10]. The data fusion
experiments of six gyroscopes with relatively less correlation are carried out, and the influence of noise
parameter on the fusion results is analyzed [11]. There are four MEMS gyroscopes integrated on one
chip, which improves the correlation between the gyroscopes [12]. The relationship between correlation
coefficient and data fusion results of MEMS gyroscope array is fully analyzed [13]. The design of the
MEMS gyro array with 3 × 3 plane structure is carried out [14]. The data fusion test is carried out by
using 72 MEMS gyroscopes, and the relationship between the number of gyroscopes and the effect of
the fusion is analyzed [15].

Data fusion can be achieved by using the correlation between the gyroscope random errors in
the virtual gyroscope technology, and the MEMS gyroscope random error can be compensated to a
certain extent. The current virtual gyroscope technology has the following characteristics: when static,
the compensation precision of the virtual gyroscope technology is high, but the compensation ability
of the virtual gyroscope technology is very limited when dynamic. In addition, the current virtual
gyroscope technology uses different Kalman filters in static and dynamic state, so it is necessary to use
different methods to fuse static and dynamic data respectively. Because it is difficult to model the true
value of the angular rate in a dynamic state, the effect of the true value of angular rate is usually offset
by the output difference of gyroscope, which causes the error of the Kalman filter equation to describe
the actual problem, which leads to the lower compensation precision. When static, the true value of the
angular rate is 0, the true value is modeled as noise, and the modeling accuracy is high, so the accuracy
of error compensation is good. But, the random error modeling in virtual gyroscope technology only
takes the angle random walk and the angular rate random walk, neglects other noise terms, so the
compensation precision of the virtual gyroscope technology still has some space to improve.

In this paper, the ARMA model and virtual gyroscope technology are combined, and an improved
virtual gyroscope technology based on ARMA model is proposed. This method can further improve
the random error compensation ability of virtual gyroscope technology in static state. The conventional
virtual gyroscope technology is used to model the random error of MEMS gyroscope, and the data
of three MEMS gyroscopes are fused. Then the ARMA model is used to model the virtual gyroscope
output. The improved random error model is established by combining ARMA model and random
error model in conventional virtual gyroscope technology. Based on the modified random error
model, the Kalman filter is designed for data fusion to further compensate the residual drift in virtual
gyroscope output. Finally, the feasibility of the proposed method is verified by experiments.

2. Allan Variance Analysis

Because the MEMS gyroscope is sensitive to temperature, the MEMS gyroscope array is installed
on the test-bed with zero input of the external turntable for 1 h to achieve the working temperature of
the MEMS gyroscope. The bandwidth of the used gyroscope is 40 Hz, so the sampling frequency is
100 Hz according to the sampling theorem. The total sampling time is 450 s. The static output of the
three gyroscopes is shown in Figure 1. The 3-order polynomial fitting method is used to eliminate the
trend item in the output of each gyroscope. The fitting results are shown in Figure 1, and the random
drift of the three gyroscopes is shown in Figure 2.

Allan variance is a method to analyze the stability of signal frequency in the time domain. It was
first proposed by the David Allan of the United States Standard Bureau, which is mainly used to
determine the power spectrum of the frequency fluctuation of the atomic clock [16]. The statistical
characteristics of the random drift of the MEMS gyroscope are similar to the statistical characteristics
of the atomic clock, so many scholars also identify the random errors of the MEMS gyroscope using
the Allan variance method. It is assumed that the MEMS gyroscope is sampled with the sampling
interval of τ0, and N sampling points are obtained. Dividing the sampling sequence {ω} into K groups,
K = N/M, and each group contains M data, the total sampling time for each group is related time τ,
τ = Mτ0. The mean of each group is shown in Equation (1).
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ωk(M) =
1
M

M

∑
i=1

ω(k−1)M+i, (k = 1, 2, · · ·K) (1)

The Allan variance is defined as shown in Equation (2).

σ2
A(τ) ·

1
2

〈
(ωk+1(M)−ωk(M))2

〉
=

1
2(K− 1)

K−1

∑
k=1

(ωk+1(M)−ωk(M))2 (2)

In the equation, <> represents the overall mean of the data. The Allan standard deviation curves
of the 3 MEMS gyroscopes are shown in Figure 3.Micromachines 2018, 9, x FOR PEER REVIEW  3 of 12 
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Figure 1. The original output signal of the three gyroscopes.
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Figure 2. The random drift of the three gyroscopes.
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1 

 

 

Figure 3. The Allan standard deviation curve of the three gyroscopes.

The MEMS gyroscope random errors mainly include such as angular random walk (ARW),
bias instability (BI), rate random walk (RRW), rate slope (RR), and quantization noise (QN). Other
noises such as Markov noise (MN), which is also known as exponential correlation noise and sinusoidal
noise (SN), are very small in the MEMS gyroscope errors, so it is not included in the error index in this
paper. Due to the difference of gyroscope type and testing environment, there may be random noises
of various components in the output data. It is considered that each noise is independent of each other
and the Allan variance can be expressed as the sum of all the random errors. The Allan variance is
expressed as Equation (3) [5].

σ2(τ) = σ2
ARW(τ) + σ2

BI(τ) + σ2
RRW(τ) + σ2

QN(τ) + σ2
RR(τ) + · · · (3)

The Allan variance of five random errors, such as quantization noise, angular random walk,
zero bias instability, angular rate random walk, and rate slope, and the slope in the double logarithmic
curve are shown in Table 1. The least squares method is used to fit the double logarithmic curve of
Allan standard deviation and correlation time, and the error coefficients of five kinds of random errors
are shown in Table 1. Because the rate slope is the random error of the long correlation time, this paper
does not analyze it, so the error coefficients of the rate slope of the three gyroscopes are not listed
in Table 1.

Table 1. The Allan variance of five main random errors in MEMS gyroscopes.

Error Term Allan Variance Slope Coefficient Unit Gyro 1 Gyro 1 Gyro 1

Quantization noise σ2
QN(τ) = 3Q2

τ2 −1 Q deg 0.00821 0.00726 0.00707
Angular random walk σ2

ARW(τ) = N2

τ
−1/2 N deg/h1/2 0.355 0.315 0.314

Zero bias instability σ2
BI(τ) =

B2·2ln2
π

0 B deg/h 10.318 7.790 8.533
Angular rate random walk σ2

RRW(τ) = P2τ
3 1/2 P deg/h3/2 52.323 120.310 61.357

Rate Ramp σ2
RR(τ) =

R2τ2

2 1 R deg/h2 - - -
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3. Conventional Virtual Gyroscope Technology

The conventional virtual gyroscope technology mainly uses the correlation between the MEMS
gyroscope random error to carry on the data fusion, which can improve the output precision of the
virtual gyroscope. The specific process of the virtual gyroscope technology is shown in Figure 4. First,
the static random drift data of each MEMS gyroscope is collected. The random error characteristics of
each MEMS gyroscope are obtained by analyzing the static random drift data with the Allan variance
analysis method. After that, the random error model of MEMS gyroscope array with angular random
walk and angular rate random walk is set up, and the corresponding Kalman filter is designed to fuse
the data to compensate the random drift of the MEMS gyroscope.
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3.1. Random Error Model of MEMS Gyroscope

The error of MEMS gyroscope is mainly divided into the deterministic error and the random error.
The deterministic error can be compensated by a reasonable calibration test, and the compensation of
random error is more difficult. The random error of MEMS gyroscope array is usually modeled as
Equation (4) in conventional virtual gyroscope technology [4].{

y = ω + b + n
.
b = v

(4)

In the equation, the y indicates the rate of the gyroscope output angle; ω represents the real
angular rate of MEMS gyroscope detection; b represents angular rate random walk and it can be
represented as random walk v d riven noise; n is angular random walk. The error model of the MEMS
gyroscope array consisting of three MEMS gyroscopes is shown in Equation (5).

.
B =

[
v1 v2 v3

]T
(5)

Y = I ·ω + B + V (6)

In the equation, Y =
[

y1 y2 y3

]T
, B =

[
b1 b2 b3

]T
, V =

[
n1 n2 n3

]T
,

I =
[

1 1 1
]T

.

3.2. Design of Kalman Filter

According to the random error model of MEMS gyroscope, the Kalman filter is designed to carry
out data fusion of three MEMS gyroscopes. The angular rate random walk and real angular rate are

selected as state vector of the Kalman filter, that is X =
[

b1 b2 b3 ω
]T

. The real angular rate
will not be absolutely equal to 0 due to external environment and other factors in static state. Therefore,
the real angular rate ω is modeled as white noise driven by vω.
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According to Equation (5), the Kalman filter state equation of MEMS gyroscope array is as shown
in Equation (7). According to Equation (6), the measurement equation of the system is shown in
Equation (8).

.
X = ΦX + ΓW (7)

Y = HX + V (8)

In the equation, Φ = 0 , Γ = I, W =
[

v1 v2 v3 vω

]T
, H = [I3×3

...I3×1]. I3×3 represents the
unit matrix of 3 rows and 3 columns, I3×1 represents the unit column vector of 3 rows and 1 columns.
The Equations (9) and (10) can be obtained by the discretization of the Equations (7) and (8).

Xk = Φk/k−1Xk−1 + Γk−1Wk−1 (9)

Yk = HkXk + Vk (10)

In the equation, Φk/k−1 = I, Γk−1 = T · I, T represents the period of discretization, Wk−1 is
the drive white noise sequence, Vk is the measurement noise sequence. The driving noise and the
measurement noise meet the following requirements.

E[Wk] = 0, Cov
[
Wk, Wj

]
= Qkδkj

E[Vk] = 0, Cov
[
Vk, Vj

]
= Rkδkj

Cov
[
Wk, Vj

]
= E

[
WkVT

j

]
= 0

(11)

If there is correlation between the gyroscopes in the MEMS gyroscope array, there is correlation
between the gyroscope random errors. The correlation coefficient ρ is used to characterize the
correlation degree between random errors of different gyroscopes, −1 ≤ ρ ≤ 1, ρ 6= 0. A covariance of
the driving noise is as follows.

Qk =

[
Q′k 03×1

01×3 σ′2

]
(12)

Q′k =


σ2

1 ρ12

√
σ2

1 σ2
2 ρ13

√
σ2

1 σ2
3

ρ21

√
σ2

2 σ2
1 σ2

2 ρ23

√
σ2

2 σ2
3

ρ31

√
σ2

3 σ2
1 ρ32

√
σ2

3 σ2
2 σ2

3


In the equation, σ2

i (i = 1, 2, 3) represents the RRW noise variance of the i gyroscope, ρij (i, j = 1, 2,

3) indicates the correlation between the i gyroscope and the j gyroscope, σ′2 represents the variance
of the noise vω. ρij can be obtained by solving the cross correlation coefficient between the static

random drift data of different gyroscopes. σ2
i , σ′2 can be obtained by Allan variance. Similarly, the

measurement noise covariance matrix is solved. The output data of 3 MEMS gyroscopes are fused by
using Kalman filter technology, and the output of virtual gyroscope is obtained, which is recorded
as {xt}.

The correlation coefficient between the gyroscopes is shown in Table 2. There are 6000 static
random drift data of three gyroscopes selected as the research object, and the random error model of
MEMS gyroscope array is combined with the Kalman filter technology to fuse the data of 3 gyroscopes.
The comparison between the fusion result and the original random drift of gyroscope 1 is shown
in Figure 5.
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Table 2. The correlation coefficients between each gyroscopes.

Gyroscope Number Gyro 1 Gyro 2 Gyro 3

Gyro 1 1 −1.0582 × 10−4 1.6087 × 10−3

Gyro 2 −1.0582 × 10−4 1 1.3325 × 10−2

Gyro 3 1.6087 × 10−3 1.3325 × 10−2 1

1 

 

 

 

 

 

5 

 

Figure 5. The results of random drift and data fusion.

4. Virtual Gyroscope Technology Based on ARMA Model

The conventional virtual gyroscope technology only considers angular random walk and angular
rate random walk when modeling MEMS gyroscope array random error. Because the random error
model ignores many other random noise terms, the accuracy of the model is relatively low. In this
paper, the ARMA model is used to model the output of the conventional virtual gyroscope, and the
random error model of the MEMS gyroscope array is improved, and the corresponding Kalman filter
is designed to achieve the data fusion of the MEMS gyroscope. This method can further improve the
static compensation ability of the virtual gyroscope technology.

4.1. Modeling of ARMA Model

The ARMA model uses the form of random difference equation, which can quantitatively describe
the linear relationship between the observed data, and the ARMA model has the function of predicting
the time series. The ARMA model is used to model the time series of the virtual gyroscope output,
and the accurate prediction of virtual gyroscope output is realized. For time series {xt}, the ARMA
model is shown in Equation (13).

xt +
p

∑
i=1

mixt−i =
q

∑
j=1

rjεt−j + εt (13)
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In the equation, εt is a white noise with a variance of σ. σ is the residual variance of the fitting
results of the high order AR model. mi, rj is the model parameters. For a time series with a sample
length of N, the ARMA model can be expressed as Equation (14).

X′ = H′θ+ ε (14)

X′ =
[

xp+1 xp+2 · · · xN

]T
(15)

H′ =


−xp · · · −x1 εp · · · εp+1−q
−xp+1 · · · −x2 εp+1 · · · εp+2−q
...

...
...

...
...

...
−xN−1 · · · −xN−p εN−1 · · · εN−q

 (16)

θ = [m1 · · ·mp r1 · · · rq]
T (17)

The multiple regression theory is used to solve the Equation (14) and the least squares estimation
of θ is:

θ = (H′TH′)
−1

H′TX′ (18)

The output of virtual gyroscope is {xt}, which can be described as the Equation (19) with the
determination of model parameters by Equation (18).

xt = m1xt−1 + · · ·+ mpxt−p + r1εt−1 + · · ·+ rqεt−q + εt (19)

The high order ARMA model can better describe the output characteristics of the virtual gyroscope.
However, the high order ARMA model will greatly increase the dimension and computation of the
filter. The ARMA model has a 2-order autoregressive model and 1 order moving average model,
which is ARMA (2,1) model. The ARMA (2,1) model is chosen to model the time series {xt}, which is
the output of virtual gyroscope. The comparison between the original signal of virtual gyroscope
output and the modeling results is shown in Figure 6. In the Equation (19), the model parameters are
as follows. m1 = 0.66177, m2 = 0.32011, and r1 = 0.62258, σ2 = 2.60829 × 10−8. 

2 

 

6 

 

 

Figure 6. The original signal and the modeling result of the ARMA model.
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4.2. Improved Random Error Model

The random error model in reference [2–15] only considers two random drift errors of angular
random walk and angular rate random walk, neglecting the multiple random errors, and the virtual
gyroscope technology can’t achieve the compensation of all random error. Therefore, the improved
random error model of the MEMS gyroscope is established by combining Equations (4) and (19).
The improved random error model is as shown in Equation (20).

y = ω + b + xt + n
.
b = v

xt = m1xt−1 + m2xt−2 + r1εt−1 + εt

(20)

In the equation, y indicates the rate of the gyro output angle; ω represents the real angular rate of
MEMS gyro detection; b represents angular rate random walk and it can be represented as random
walk v driven noise; n is angular random walk and xt is a compensation residual that is the output of
the virtual gyroscope. εt ∼ NID(0, σ), σ is the variance of modeling residuals.

4.3. Improved Kalman Filter Design

According to the modified random error model, the Kalman filter is designed for data fusion of
MEMS gyroscope array. The state vectors of the Kalman filter are as follows:

X =
[

b1 b2 b3 xt xt−1 ω
]T

(21)

The observation is the actual output of three MEMS gyroscope. The discrete state equation is as
Equation (22), which is obtained by combining Equations (9) and (20). Measurement equation is as
shown in Equation (23).

Xk = Fk/k−1Xk−1 + Γk−1Wk−1 (22)

Zk = HkXk + Vk (23)

In the equation,

Fk/k−1 =


I3×3 03×3

03×3

m1 1 0
m2 0 0
0 0 1

, Γk−1 =


T · I3×3 03×3

03×3

1 0 0
r1 0 0
0 0 T

, Hk =

 I3×3

1 0 1
1 0 1
1 0 1

.

Zk =
[

y1(k) y2(k) y3(k)
]T

The driving noise Wk and measurement noise Vk satisfy the conditions as the Equation (24). Qk is
a driving noise covariance matrix, and Qk is as the Equation (25). In the equation, σ2 is the variance of
noise εt, σ′2 is the variance of noise v. Rk is the measurement noise covariance matrix, which is the
same as the Rk in Section 3.2. 

E[Wk] = 0, Cov
[
Wk, Wj

]
= Qkδkj

E[Vk] = 0, Cov
[
Vk, Vj

]
= Rkδkj

Cov[Wk, Vj] = E[WkVT
j ] = 0

(24)

Qk =


Q′k 03×3

03×3

σ2

σ2

σ′2

 (25)
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The data fusion of three MEMS gyroscopes is carried out by using the designed Kalman filter to
further improve the compensation ability of the virtual gyroscope.

5. Test Analysis

Data fusion of MEMS gyroscope array is carried out by using a Kalman filter based on an
improved random error model. When the sample length of the fusion data is 6000, the comparison
results between the output of virtual gyroscope (simply marked “virtual gyroscope 1”) based on
the conventional random error model and the output of virtual gyroscope (simply marked “virtual
gyroscope 2”) based on the improved random error model is shown in Figure 7.

It is shown in Figure 7 that the method proposed in this paper can further compensate the
compensation residual of the virtual gyroscope, so the compensation effect of the virtual gyroscope 2 is
obviously better than the compensation effect of the virtual gyroscope 1. Use 1σ standard deviation
as an evaluation criterion to determine the compensation performance of different compensation
algorithms. The 1σ standard deviation of compensation results of virtual gyroscope 1 is 3.3657 ×
10−3◦/s. And the 1σ standard deviation of compensation results of virtual gyroscope 2 is 2.3518 ×
10−3◦/s, which reduced by 1.4311 times compared with virtual gyroscope 1.

In order to further verify the feasibility of the proposed method, the long-time sampling of the
MEMS gyroscope array is carried out, and 60,000 sampling data are obtained. The data fusion of the
MEMS gyroscope array is carried out by using virtual gyroscope 1 and virtual gyroscope 2, respectively.
The output contrast results of the virtual gyroscope are obtained as shown in Figure 8.

 

2 

 

6 

 

 

Figure 7. The comparison of the output of the virtual gyroscope.

As seen in Figure 8, the algorithm is modeled for the conventional virtual gyroscope compensation
residual error, and the random error model and Kalman filter are improved to increase the
compensation capability of the virtual gyroscope. The 1σ standard deviation between the compensation
result of virtual gyroscope 1 and virtual gyroscope 2 is calculated, respectively. The 1σ standard
deviation of compensation results of virtual gyroscope 1 is 3.3124 × 10−3◦/s. And the 1σ standard
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deviation of compensation results of virtual gyroscope 2 is 2.3277 × 10−3◦/s, which reduced by 1.4230
times compared with virtual gyroscope 1.

There are 90,000 sets of static data collected to carry out the third verification tests using the
proposed method. The virtual gyroscope 1 method and the virtual gyroscope 2 method are used for
data fusion, respectively, and the fusion results and their comparison results are shown in Figure 9.
The 1σ standard deviation of the two data fusion results is obtained to determine the accuracy of the
fusion results. The 1σ standard deviation of compensation results of virtual gyroscope 1 is 3.7535 ×
10−3◦/s. And the 1σ standard deviation of compensation results of virtual gyroscope 2 is 2.4656 ×
10−3◦/s, which reduced by 1.5223 times compared with virtual gyroscope 1. In summary, the feasibility
of the proposed method is verified. 

3 

 

9

 

Figure 8. The comparison of the output of the virtual gyroscope.
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6. Conclusions

In this paper, the conventional virtual gyroscope technology is used to model the random error of
three MEMS gyroscopes, and the data fusion is carried out through Kalman filter, and the output of
virtual gyroscope is obtained. Then the ARMA model is used to model the output of virtual gyroscope,
and combine the ARMA model and conventional random error model to improve the random error
model. The Kalman filter based on improved random error model is designed for data fusion of
three MEMS gyroscopes. The experimental results show that the virtual gyroscope technology based
on ARMA model can further improve the compensation ability of conventional virtual gyroscope
technology and the 1σ standard deviation of the output has been reduced by 1.4 times compared with
conventional virtual gyroscope technology.

Author Contributions: Z.S. designed the experiments. L.W. performed the experiments. H.W. analyzed the data.
J.S. wrote the paper.
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