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Abstract: In this work, a polymer microlens array (MLA) for a hyperspectral imaging (HSI) system
is produced by means of ultraprecision milling (UP-milling) and injection compression molding.
Due to the large number of over 12,000 microlenses on less than 2 cm2, the fabrication process is
challenging and requires full process control. The study evaluates the process chain and optimizes
the single process steps to achieve high quality polymer MLAs. Furthermore, design elements like
mounting features are included to facilitate the integration into the final HSI system. The mold insert
was produced using ultraprecision milling with a diamond cutting tool. The machining time was
optimized to avoid temperature drifts and enable high accuracy. Therefore, single immersions of the
diamond tool at a defined angle was used to fabricate each microlens. The MLAs were replicated
using injection compression molding. For this process, an injection compression molding tool with
moveable frame plate was designed and fabricated. The structured mold insert was used to generate
the compression movement, resulting in a homogeneous pressure distribution. The characterization of
the MLAs showed high form accuracy of the microlenses and the mounting features. The functionality
of the molded optical part could be demonstrated in an HIS system by focusing light spectrums onto
a CCD image sensor.

Keywords: microlens array; ultraprecision milling; injection compression molding; microstructures;
polymer optics; hyperspectral imaging

1. Introduction

The applications for polymer optics are growing significantly in recent years. Advantages in the
fabrication process and improvements in the material’s properties enable polymer optics to compete
with traditional glass lenses. Applications for polymer optics can be found in the fields of medical
engineering, automotive, illumination, sensors and measurement systems. Especially the comparably
easy and fast fabrication of freeform and micro structured optics are significant advantages compared to
traditional glass lenses. Therefore, limitations in the available refraction indices of transparent polymer
materials can be compensated by advanced form and optical design. Examples for microstructured
optics are Fresnel lenses [1], microprism arrays [2], diffractive optical elements [3], and microlens
arrays (MLA) [4].

In this work, a polymer MLA is fabricated. MLAs can be used in color imaging [5], fingerprint
identification [6], 3D light field cameras [7] and hyperspectral imaging (HSI) [8]. The fabrication of
MLAs can be performed with a multitude of methods. Examples are ultraprecision machining [9],
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LIGA (Lithographie Galvanik Abformung) [10], E-beam writing [11], laser machining [12], and electric
discharge machining [13]. The biggest challenge for most of the fabrication methods is to achieve
optical surface quality with Ra < 10 nm. With E-Beam writing and laser machining, it is possible
to create surfaces with surface roughness of about Ra = 10 nm and higher [14]. Sub-10 nm surface
roughness remains challenging. The LIGA process however is able to achieve surface qualities of
Ra < 10 nm, similar to the ultraprecision machining process [9,10]. The resulting surface quality is
also strongly depending on the substrate material which is a limitation of all technologies. When
high resolution and surface quality is needed, the machining has to be performed on soft or brittle
materials which cannot be used in injection molding. Therefore, a subsequent electroplating process
is mandatory to create a solid mold insert. An advantage of these technologies is the machining
time which can be very fast, depending on size and shape of the MLA. The fabrication of MLA mold
inserts by means of electric discharge machining is still in an early stage, so further improvements
are necessary for the technology to compete with the other methods. Especially the resulting surface
roughness with > 100 nm is not suitable for optical applications [15].

For this work, the MLA is fabricated using ultraprecision milling (UP-milling) and injection
compression molding. The UP-milling is used to produce an optical mold insert that can be transferred
into a molding tool. Therefore, a diamond milling tool with a defined cutting edge is used. UP-milling is
broadly used for the fabrication of optical mold inserts, especially freeform optics [16] and MLAs [17].
The main advantages of the technology are the resulting optical surface quality with Ra < 10 nm
without necessity of a post-treatment as well as very high form accuracy in the micrometer range [18].
However, diamond machining must be performed on non-ferrous materials when no special machining
equipment like ultrasonic machining is available. Otherwise, increased tool wear will significantly
affect the resulting surface quality and form accuracy. Therefore, nickel–phosphorous (NiP) coatings
are usually applied for the fabrication of ultraprecision machined mold insert.

Injection molding and hot embossing [19] are commonly used technologies for the replication of
polymer optics. Especially injection compression molding is used, when high quality polymer optical
components are required [20]. Injection compression molding is a process variant of regular injection
molding. Thereby, a compression stamper is used to generate a homogeneous pressure distribution
during the molding process. Thus, homogeneous material density within the polymer part is achieved,
resulting in components with low birefringence. Furthermore, improved form accuracy is possible.
A detailed description of the process can be found in the literature [21].

The MLA produced in this work is applied in a HSI system. Thereby each individual microlens
focuses a light spectrum on a photo sensor. HSI has many applications in the fields of medicine [22],
agriculture [23], astronomy [24] and food processing [25]. Due to the fact, that a spectrum is
obtained for every microlens, detailed information on the investigated object can be acquired with
spatial information.

The aim of this paper is to demonstrate a successful process chain for the fabrication of polymer
MLAs with focus on the mold design, mold insert fabrication by means of UP-milling and replication by
injection compression molding. In the first section of the paper the design of the MLA and the molding
tool are described as well as the fabrication methods. Subsequently, the results of the ultraprecision
milling and the injection compression molding are shown. In the last section of the paper, the results
are discussed and reviewed.

2. Materials and Methods

2.1. Microlens Array and Mold Design

The MLA fabricated in this work comprises of a structured area of 13 × 5 mm. Every individual
microlens has a radius of 1 mm and a spherical shape. The pitch between the microlenses is 127.5 µm,
resulting in a total of about 12,000 lenses for the whole MLA. On the polymer MLA, the microlenses
are convex with a sag height of 4 µm. Furthermore, the MLA includes mounting features to enable the
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integration into a HSI system. The microlenses have to be orientated in an angle of 26.56◦ to focus the
light onto the pixels of a photo sensor. The designed part thickness of the polymer MLA is 500 µm.
The design of the MLA is shown in Figure 1.
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Figure 1. Design of the polymer MLA with the microstructured area and mounting features.

For the replication process, an injection molding tool is required. The molding tool is designed
as an injection compression molding tool for main axis compression. For the injection compression
molding process the molding tool is equipped with a moveable frame plate. The frame plate can be
moved separately from the rest of the molding tool using pneumatic cylinders. Before every molding
process, the frame plate is moved into a front position to close the cavity before melt injection. Thus,
a compression movement can be performed after the material is injected into the cavity. This mold
setup can generate high compression forces even on electrical molding machines. The molding tool
includes two mold inserts, each on one side of the molding tool, which form the shape of the polymer
MLA. The mold insert on the fixed side represents the rear part of the MLA, consisting of a flat optical
surface. On the moveable side, the mold insert with MLA structure is included. This mold insert is
used as the moveable compression stamper during the molding process. More details on the fabrication
of the mold inserts are provided in the following sections. The molding tool consists of a single cavity
with a runner system through the center of the fixed side.

Additionally, the molding tool is equipped with a distance sensor, fixed onto the molding tool,
which is connected to the molding machine. In this way, accurate positioning of the molding tool
and compression stamper is possible which is mandatory to achieve accurate and repeatable results.
The distance sensor allows a more accurate positioning compared to the internal measurement system
of the molding machine. Accurate positioning of the mold parts is a key element when injection
compression molding is employed. The molding tool has four separate cooling circuits which are
controlled by individual tempering systems. Each mold side is tempered individually by external
water tempering systems. Furthermore, the compression stamper and the distance sensor are equipped
with separate tempering systems. Thus, precise temperature control of the individual components is
possible. A CAD drawing of the molding tool is shown in Figure 2.
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2.2. Mold Insert Fabrication

The fabrication of the mold inserts is one of the most crucial steps in the fabrication of the polymer
MLAs. Inaccuracies and form deviations cannot be compensated in the replication process. The mold
inserts are fabricated using a five-axis ultraprecision machine (Freeform 700a, AMETEK Precitech Inc.,
Keene, NH, USA). The machine is equipped with hydrostatic bearing axes, temperature control, and an
air bearing spindle. Due to the fact, that ferrous materials cannot be machined by diamond cutting tools,
the steel mold inserts are coated with a nickel–phosphorous coating (SuNiCoat® Optics, CZL Tilburg,
Tilburg, The Netherlands). After the coating, the mold insert is premachined by means of standard
milling and grinding to remove spared material. Afterwards, a fly-cutting process is used to create a
plane surface on the mold inserts with optical quality. For the mold insert on the fixed mold side, this is
the final processing step. For the microstructured mold insert, the fly-cutting process is mandatory
to create a flat and even surface for the subsequent UP-milling process. The fly-cutting tool has a
diameter of 25 mm and a diamond with a 3-mm cutting edge (Matzdorf GmbH, Nürnberg, Germany).
The spindle speed was set to 1500 1/min at a feed rate of 20 mm/min. Prior to the machining process,
the fly-cutting tool was set to an exact 90◦ angle to the mold insert surface. All machining processes on
the ultraprecision machine are performed using isoparaffin as a cooling lubrication sprayed on the
machining area and a controlled temperature in the machining chamber of 22 ◦C ± 0.1 ◦C.

The MLA microstructured mold insert is fabricated using UP-milling. Due to the large number
of microlenses that have to be machined, machining time is a significant quality factor to avoid
temperature drifts. Thus, a milling strategy with minimal machining time for each microlens has to be
chosen. Therefore, a single immersion of the diamond milling tool is applied. A detailed description of
the milling process is published elsewhere [26]. Using this strategy, the quality of the milling tool is the
most important factor, since the shape of the diamond exactly represents the resulting microlens shape.
The milling tool used in this work had a radius of 0.9993 mm with a waviness < 50 nm, measured by
the manufacturer. The milling tool was provided by Contour Fine Tooling (Contour Fine Tooling BV,
Valkenswaard, The Netherlands). A picture of the milling process as well as the diamond cutting tool
is shown in Figure 3.
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For the UP-milling process of the MLA mold insert, the spindle speed was set to 70,000 min−1.
Prior to the milling process, the milling spindle had a lead time of 10 min to reach the operating
temperature of the system. Otherwise, spindle elongation due to internal heating will affect the milling
process. Although the sag depth of each microlens is only 4 µm in the mold inset, the diamond tool
was immersed 9 µm into the material to compensate potential unevenness on the substrate surface.
The feed rate during the tool immersion was set to 2.5 m/min, during the repositioning of the milling
tool the feed rate was increased to 50 mm/min to reduce processing time. The milling tool was
immersed in a 20◦ angle to the substrate surface to compensate potential decentering of the diamond
on the tool. The machining parameters used for the fabrication of the MLA mold insert are shown in
Table 1.

Table 1. Machining parameters for the fabrication of the MLA mold insert by means of UP-milling.

Parameter Value

Spindle speed (min−1) 70,000
Tool immersion (µm) 9

Feed rate (mm/min)
Immersion 2.5

Tool positioning 50
Tool angle (◦) 20

Temperature (◦C) 22
Tool radius (mm) 0.9993

2.3. Injection Compression Molding

The injection compression molding is performed on an Arburg Allrounder 370A molding machine
(Arburg GmbH & Co. KG, Loßburg, Germany) with vertical melt injection unit. As a molding material,
Zeonex COP 330R (Zeon Cooperation, Tokyo, Japan) was used due to its low autofluorescence and
good optical properties. The injection compression molding process performed for the MLA fabrication
can be divided into five process steps, which are shown in Figure 4. At the beginning of the process,
the structured mold insert and frame plate are in a backwards position. Then, the frame plate of
the molding tool is moved into the front position by means of pneumatic cylinders. Afterwards,
the molding tool is closed. Thereby, the frame plate creates a sealed cavity even though the structured
mold insert remains in a defined backward position. This is important to ensure the complete filling of
the cavity. If the mold insert is moved to the front to early, the resulting gap is too small, preventing
the melt to completely fill the cavity due to high flow resistance. The third process step is the injection
of the melt into the cavity. With a defined delay, the compression movement with the structured
mold insert is started, moving the insert to a defined position. Thus, a homogeneous pressure within
the cavity is created. In the last step of the process, the molding tool is opened and the resulting
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MLA ejected. The most crucial aspects in the process are the positioning of the structured mold insert
prior to injection, delay of the compression movement and final position of the structured mold insert.
The interplay of these parameters has to be defined carefully to obtain high quality optical components.
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The molding parameters used for the replication of the MLAs are shown in Table 2.

Table 2. Molding parameters.

Parameter Value

Melt temperature (◦C) 235/250/265/265/255/65

Mold temperature (◦C)
Fixed side 120

Moveable side 120
Compression stamper 120

Holding pressure (bar) 300
Injection pressure (bar) 1250–1400

Injection time (s) 0.08
Cycle time (s) 28

3. Results

3.1. Mold Insert Fabrication

Two fly-cutting processes were performed on the mold inserts for the fixed and moveable mold
side. At first, the mold insert for the fixed side was machined. The machined area of the mold insert is
10 × 13 mm. Due to the fact, that the diameter of the fly-cutting tool is larger than the mold insert,
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a single cutting transit is sufficient to machine the area. The resulting surface represents the backside of
the MLA. Therefore, the quality of the surface is important for the optical performance of the resulting
polymer MLA. For the cutting process, a cutting depth of 3 µm was chosen. The resulting surface
roughness was Ra = 12 nm, measured by white light interferometry (WLI, WYKO NT9100a, Veeco
Instruments Inc., Plainview, NY, USA). The mold insert and the surface measurement are shown in
Figure 5.
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The second fly-cutting process was performed to create a flat surface for the subsequent UP-milling
process. The same cutting conditions as applied in the previous fly-cutting process were used.
The resulting surface roughness was similar to the prior process with Ra = 12 nm. The measurement
results are shown in Figure 6.
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For the fabrication of the microlenses machined into the mold insert, an UP-milling process
was used. The mold insert was positioned in a defined angle of 26.56◦. Thus, the machining of the
individual microlenses could be done in a way that they are oriented in a horizontal line. This is
an advantage during the milling process, since only two axes have to be moved (x-axis and z-axis),
resulting in reduced positioning errors. The third axis (y-axis) only has to be moved when another line
of microlenses has to be started. The milling strategy is illustrated in Figure 7. The milling time for an
individual lens was about 1 s. The resulting process time for the whole mold insert was about 4.5 h,
since the repositioning after every horizontal line adds to the machining time.



Micromachines 2018, 9, 355 8 of 14
Micromachines 2018, 9, x 8 of 14 

 

 

Figure 7. Milling strategy for the fabrication of the microlenses. 

The resulting MLA mold insert is shown in Figure 8. The surface roughness of a single 

microlens was Ra = 4 nm, measured by WLI. The roughness depth was Rt = 27 nm. For the 

evaluation of the surface roughness the overall curvature was mathematically removed. 

Furthermore the form deviation of the microlenses was analyzed using a laser autofocus probe 

measurement system (Mitaka MLP-3, Tokyo, Japan). The resulting form deviation of P-V 39.5 nm 

from the required 1 mm radius is shown in Figure 8d). The distance between the microlenses of 127.5 

µm, which equals the diameter, could be achieved very accurately and no drift in the distance could 

be measured. 

. 

Figure 7. Milling strategy for the fabrication of the microlenses.

The resulting MLA mold insert is shown in Figure 8. The surface roughness of a single microlens
was Ra = 4 nm, measured by WLI. The roughness depth was Rt = 27 nm. For the evaluation of the
surface roughness the overall curvature was mathematically removed. Furthermore the form deviation
of the microlenses was analyzed using a laser autofocus probe measurement system (Mitaka MLP-3,
Tokyo, Japan). The resulting form deviation of P-V 39.5 nm from the required 1 mm radius is shown in
Figure 8d. The distance between the microlenses of 127.5 µm, which equals the diameter, could be
achieved very accurately and no drift in the distance could be measured.
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3.2. Injection Compression Molding

The molding process was performed by starting with a regular injection molding process to
evaluate the process parameters regarding filling behavior in the cavity. Accordingly, no compression
movement was carried out. Afterwards, the compression movement was included to improve
the optical quality of the components. This approach proved to be suitable to establish injection
compression molding processes, since the quality of the parts is affected by a multitude of factors.
Splitting the process into two steps, simplifies the optimization of the molding parameters. Molding
parameters were adjusted in a way to improve form accuracy and filling behavior. Cycle time was
not a relevant factor in this work. One of the most critical aspects of this molding process was the
coordination of the moveable structured mold insert with the injection of the material. Due to the
limitation of the part thickness to 500 µm, material flow is limited and the material cooling occurs
rapidly. The result was a narrow process window in which a sufficient part quality could be obtained.
The process steps of the compression molding process are described in Section 2.3 (Figure 4). Before the
injection phase, the structured mold insert is positioned in a backward position, about 0.9 mm from the
end position. Thus, at the beginning of the material injection there is a larger cavity allowing a faster
filling of the cavity. With 0.7 s delay, the compression movement is started. At this point, the injection
phase is already completed, since the material injection only takes 0.8 s. In contrast to the part thickness,
the replication of the micro structured area is not a limiting factor. Since the microlenses are relatively
flat with no significant aspect ratio, the filling of the microlenses structures does not represent a
challenge and in combination with the application of a compression force, the micro structures are
replicated accurately without necessity of adjusting the molding parameters. An injection compression
molded MLA with sprue is shown in Figure 9. For the integration of the MLA into the HSI system,
the sprue has to be removed mechanically.
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Figure 9. Injection compression molded MLA before the sprue is removed.

The WLI measurements of the micro structures show a homogeneous distribution of the
microlenses with no visible deviations (Figure 10a). A single microlens of the molded MLA was
characterized using the Mitaka MLP-3 system (Figure 10b). The measurement shows, that the sag
height of about 4 µm is fully replicated. The form deviation from the aimed 1 = mm radius is
about P-V 80 nm for a single lens (Figure 10c). The surface roughness of a single microlens was
measured to be Ra = 6 nm. However, the measurement of the roughness depth resulted in Rt = 53 nm.
Both measurements were performed using WLI. For the evaluation of the surface roughness the overall
lens radius was mathematically removed.
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Figure 10. (a) WLI measurement of the molded microlenses; (b) SEM image of the molded MLA;
(c) Form deviation from a 1 mm radius measured with Mitaka MLP-3; (d) Roughness measurement by
WLI with Ra = 6 nm.

Since the MLA needs to be integrated into a hyperspectral imaging system, the planarity between
the mounting features on the sides and the micro structured area is an important factor for the
application. Using a laser autofocus probe measurement, the angle between the mounting features
and the structured area was measured to be 0.07◦ (Figure 11a). To show the functionality of molded
MLA, the part was integrated into a hyperspectral imaging system. The resulting image on the camera
chip is shown in Figure 11b. The light spectra generated by the hyperspectral imaging system are
homogeneously distributed throughout the whole area, showing that the molded MLA performs as
required. A detailed characterization of the hyperspectral imaging system is not part of this work and
will be published elsewhere.
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the molded MLA; (c) Close view of the light spectra at position A.
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4. Discussion

The results presented in this work show that to combination of ultraprecision machining and
injection compression molding is a suitable process chain to fabricate polymer MLAs with a high
number of microlenses. In the following, the results as well as each process step is critically reviewed
and discussed.

Fly-cutting proved to be a suitable method to prepare the optical mold inserts. It combines fast
machining with low surface roughness. The resulting surface roughness of Ra = 12 nm corresponds to
values found in the literature [27]. Particularly, since the mold inserts are not rotationally symmetric,
fly-cutting is a more suitable method to create a flat surface then ultraprecision diamond turning.
However, accurate positioning of the fly-cutting tool and the mold insert are a key to obtain an optical
surface quality.

The milling strategy that was chosen for the fabrication of the MLA mold insert proved to be
suitable to create accurate microlenses with homogeneous dimensions. Due to a single immersion of
the milling tool, machining time could be kept at 4.5 h for 12,000 microlenses. However, the applied
milling strategy also comes with several restrictions, which limits the range of application. The most
important factor for the process is the quality of the milling tool. The radius of the cutting diamond,
waviness and positioning of the cutting diamond need to be very accurate in the submicrometer range.
Notably, the milling strategy can only be applied when the MLA consists of microlenses with the
same radius. Furthermore, microlenses with aspheric or free-form shape are not possible. In these
cases, different milling strategies like spiral immersion are necessary. Changes in the radius of the
microlenses and the pitch can be easily adjusted with the proposed strategy. A critical factor in the
machining process is tool wear, since defects on the diamond cutting edge will inevitably result in
marks in the microlenses. An example of a MLA after milling with a worn cutting diamond is shown
in Figure 12.
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Figure 12. MLA on a test substrate with resulting microlenses after significant tool wear of the cutting
diamond measured by WLI.

Tool wear can be reduced when the cutting depth is kept at a minimum and cooling lubricant
is used. Nevertheless, tool wear remains a factor which is difficult to predict. Due to the fact that
the individual microlenses need to be positioned very accurately, exchanging the diamond cutting
tool during the machining process is no valid option. Recalibration of a new cutting tool cannot be
performed with the required accuracy.

Compared to other applicable fabrication technologies like e-beam writing and laser machining,
the ultraprecision machining process achieves higher surface quality, comparable to what can be
obtained with the LIGA process. Furthermore, the mold insert could be machined directly without
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any further post-treatment or electroplating process. Compared to the other technologies, machining
time is in the same range [12,28]. Laser machining can produce faster and more microlenses, when the
lenses are very small (diameter < 10 µm) [14].

The resulting MLA mold insert fulfilled all the required properties considering form accuracy of
the microlenses, surface roughness, and positioning of the microlenses. The resulting form deviation
of < 40 nm in the mold insert is very low and could only be achieved due to the high quality and form
accuracy of the diamond cutting tool. The resulting surface roughness of an individual microlens
of Ra = 4 nm in the mold insert fulfills the requirements for optical applications. It is important to
mention that the measurement of the microlens radius does not generate reliable results due to the fact
that only a small section of the 1-mm radius is available for the measurement. Small deviations and
surface roughness affect the calculation of the resulting radius, leading to high inaccuracy. Therefore,
it is advisable to analyze the form deviation from the required radius instead of only measuring
the radius.

The molded MLA was fabricated by injection compression molding. Due to the required part
thickness of 500 µm, the process window was significantly limited. The complete filling of the cavity
needed to be fast to avoid the cooling of the material before the cavity was filled. To improve the filling
behavior, the cavity was increased during the material injection by keeping the structured mold insert
in a backwards position. Due to this strategy, an injection compression molding tool was mandatory to
allow the additional movement of the molding tool. Keeping the structured mold insert in a backwards
position enabled a fast injection of material and, subsequently, the part could be compressed to the
required part thickness. However, the movements of the structured mold insert which is used as a
compression stamper is critical and needs to be timed accurately with the injection phase to obtain
accurate molded parts. A regular injection molding process was also tested, but entire parts could
not be obtained. The resulting surface roughness of Ra = 6 nm complies with the required optical
surface quality which is needed for the application. Equally, the measured form deviation of ±40 nm
is very good and sufficient for the application in the hyperspectral imaging system. Form deviation
doubled compared to the mold insert, however, form deviations in the sub-micrometer range are
extremely good. The increased form deviation is most likely a result of shrinkage and warpage during
the molding process. Since mounting features are included in the molded part, the angle between
these features and the micro structured area is critical. A large angle results in a defocus of the image
on the camera chip in the hyperspectral imaging system and, therefore, reduces the resolution of the
system. The measured 0.07◦ however does not affect the quality of the system.

5. Conclusions

To summarize the results, it can be concluded that the combination of ultraprecision milling and
injection compression molding is a suitable process chain for the fabrication of high quality molded
MLAs. The MLA fabricated in this work contains over 12,000 individual microlenses. An ultraprecision
milling strategy, where the diamond cutting tool is immersed into the material without any further
movement, was determined to be the most suitable method for the fabrication of the MLA mold
insert. Thereby, accuracy of the microlenses was the focus, as well as short machining time. Due to
the milling strategy, the milling tool is the most crucial factor regarding the quality of the mold insert,
since it exactly represents the resulting shape of the microlenses. For the replication of the MLAs,
injection compression molding was determined to be a suitable method. Due to the fact that mounting
features were included at the MLA and the part thickness was only 500 µm, a customized injection
compression molding process was mandatory. To obtain complete filling of the cavity, the structured
mold insert needed to be in a backwards position prior to the injection phase, otherwise the required
dimensions could not be reached. In summary, it can be concluded that an understanding of the
fabrication processes—as well as a high-control ultraprecision machining and injection compression
molding—are required to achieve high quality MLAs.



Micromachines 2018, 9, 355 13 of 14

Author Contributions: M.R. designed and conducted the experiments, analyzed the resulting parts and wrote
the manuscript. M.D. and T.M. supported the design and execution of the experiments. T.R. designed the molding
tool and organized the fabrication. T.G. and A.Z. critically revised the manuscript, supervised the project and
provided the funding.

Funding: Ministry of Finance and Economy of Baden-Wuerttemberg: innBW IDAK.

Acknowledgments: The research presented in this paper is supported from the budget of the Ministry of Finance
and Economy of Baden-Württemberg (Project innBW IDAK). We would like to thank the funding organization.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lin, C.-M.; Hsieh, H.-K. Processing optimization of fresnel lenses manufacturing in the injection molding
considering birefringence effect. Microsyst. Technol. 2017, 23, 5689–5695. [CrossRef]

2. Brinksmeier, E.; Gläbe, R.; Schönemann, L. Review on diamond-machining processes for the generation of
functional surface structures. CIRP J. Manuf. Sci. Technol. 2012, 5, 1–7. [CrossRef]

3. Roeder, M.; Schilling, P.; Hera, D.; Guenther, T.; Zimmermann, A. Influences on the fabrication of diffractive
optical elements by injection compression molding. J. Manuf. Mater. Process. 2018, 2. [CrossRef]

4. Lee, B.-K.; Kim, D.S.; Kwon, T.H. Replication of microlens arrays by injection molding. Microsyst. Technol.
2004, 10, 531–535. [CrossRef]

5. Tanida, J.; Shogenji, R.; Kitamura, Y.; Yamada, K.; Miyamoto, M.; Miyatake, S. Color imaging with an
integrated compound imaging system. Opt. Express 2003, 11, 2109–2117. [CrossRef] [PubMed]

6. Shogenji, R.; Kitamura, Y.; Yamada, K.; Miyatake, S.; Tanida, J. Bimodal fingerprint capturing system based
on compound-eye imaging module. Appl. Opt. 2004, 43, 1355–1359. [CrossRef] [PubMed]

7. Duparré, J.W.; Wippermann, F.C. Micro-optical artificial compound eyes. Bioinspir. Biomim. 2006, 1. [CrossRef]
[PubMed]

8. Dombrowski, M.; Catanzaro, B. Spatially Corrected Full-Cubed Hyperspectral Imager. U.S. Patent 7,242,478,
10 July 2007.

9. Scheiding, S.; Yi, A.Y.; Gebhardt, A.; Loose, R.; Li, L.; Risse, S.; Eberhardt, R.; Tünnermann, A. Diamond milling
or turning for the fabrication of microlens arrays: Comparing different diamond machining technologies.
In Proceedings of the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IV, San Diego,
CA, USA, 14 February 2011.

10. Kim, D.S.; Lee, H.S.; Lee, B.-K.; Yang, S.S.; Kwon, T.H.; Lee, S.S. Replications and analysis of microlens array
fabricated by a modified LIGA process. Polym. Eng. Sci. 2006, 46, 416–425. [CrossRef]

11. Yu, W.X.; Yuan, X.-C. Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron beam
lithography. Opt. Express 2003, 11, 899–903. [CrossRef] [PubMed]

12. Choi, H.-K.; Ahsan, M.S.; Yoo, D.; Sohn, I.-B.; Noh, Y.-C.; Kim, J.-T.; Jung, D.; Kim, J.-H.; Kang, H.-M.
Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping
technique. Opt. Laser Technol. 2015, 75, 63–70. [CrossRef]

13. Takino, H.; Hosaka, T. Shaping of steel mold surface of lens array by electrical discharge machining with
single rod electrode. Appl. Opt. 2014, 53, 8002–8005. [CrossRef] [PubMed]

14. Yong, J.; Chen, F.; Yang, Q.; Du, G.; Bian, H.; Zhang, D.; Si, J.; Yun, F.; Hou, X. Rapid fabrication of large-area
concave microlens arrays on PDMS by a femtosecond laser. ACS Appl. Mater. Interfaces 2013, 5, 9382–9385.
[CrossRef] [PubMed]

15. Takino, H.; Hosaka, T. Shaping of steel mold surface of lens array by electrical discharge machining with
spherical ball electrode. Appl. Opt. 2016, 55, 4967–4973. [CrossRef] [PubMed]

16. Fang, F.Z.; Zhang, X.D.; Weckenmann, A.; Zhang, G.X.; Evans, C. Manufacturing and measurement of
freeform optics. CIRP Ann. 2013, 62, 823–846. [CrossRef]

17. Holme, N.C.R.; Berg, T.W.; Dinesen, P.G. Diamond Micro-Milling for Array Mastering. In Proceedings of the
Laser Beam Shaping IX, San Diego, CA, USA, 17 September 2008.

18. Brinksmeier, E.; Riemer, O.; Osmer, J. Tool path generation for ultraprecision machining of free-form surfaces.
Prod. Eng. 2008, 2, 241–246. [CrossRef]

19. Peng, L.; Deng, Y.; Yi, P.; Lai, X. Micro hot embossing of thermoplastic polymers: A review. J. Micromech.
Microeng. 2014, 24. [CrossRef]

http://dx.doi.org/10.1007/s00542-017-3375-z
http://dx.doi.org/10.1016/j.cirpj.2011.10.003
http://dx.doi.org/10.3390/jmmp2010005
http://dx.doi.org/10.1007/s00542-004-0387-2
http://dx.doi.org/10.1364/OE.11.002109
http://www.ncbi.nlm.nih.gov/pubmed/19466098
http://dx.doi.org/10.1364/AO.43.001355
http://www.ncbi.nlm.nih.gov/pubmed/15008541
http://dx.doi.org/10.1088/1748-3182/1/1/R01
http://www.ncbi.nlm.nih.gov/pubmed/17671298
http://dx.doi.org/10.1002/pen.20466
http://dx.doi.org/10.1364/OE.11.000899
http://www.ncbi.nlm.nih.gov/pubmed/19461804
http://dx.doi.org/10.1016/j.optlastec.2015.05.022
http://dx.doi.org/10.1364/AO.53.008002
http://www.ncbi.nlm.nih.gov/pubmed/25607880
http://dx.doi.org/10.1021/am402923t
http://www.ncbi.nlm.nih.gov/pubmed/24070159
http://dx.doi.org/10.1364/AO.55.004967
http://www.ncbi.nlm.nih.gov/pubmed/27409126
http://dx.doi.org/10.1016/j.cirp.2013.05.003
http://dx.doi.org/10.1007/s11740-008-0086-4
http://dx.doi.org/10.1088/0960-1317/24/1/013001


Micromachines 2018, 9, 355 14 of 14

20. Sortino, M.; Totis, G.; Kuljanic, E. Comparison of injection molding technologies for the production of
micro-optical devices. Procedia Eng. 2014, 69, 1296–1305. [CrossRef]

21. Bäumer, S. Handbook of Plastic Optics; John Wiley & Sons: New Jersey, NJ, USA, 2011.
22. Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19. [CrossRef] [PubMed]
23. Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Dardenne, P.; Baeten, V.; Pierna, J.A.F. Hyperspectral imaging

applications in agriculture and agro-food product quality and safety control: A review. Appl. Spectrosc. Rev.
2013, 48, 142–159. [CrossRef]

24. Hege, E.K.; O’Connell, D.; Johnson, W.; Basty, S.; Dereniak, E.L. Hyperspectral Imaging for Astronomy and
Space Surviellance. In Proceedings of the Imaging Spectrometry IX, San Diego, CA, USA, 7 January 2004.

25. Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging—An emerging
process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598.
[CrossRef]

26. Roeder, M.; Drexler, M.; Guenther, T.; Zimmermann, A. Evaluation of Ultraprecision Milling Strategies for
Microlens Array Mould Inserts for the Replication by Injection-Compression Moulding. In Proceedings of
the 18th International Conference & Exhibition, Venice, Italy, 4–8 June 2018.

27. Zhang, S.J.; To, S.; Zhu, Z.W.; Zhang, G.Q. A review of fly cutting applied to surface generation in
ultraprecision machining. Int. J. Mach. Tools Manuf. 2016, 103, 13–27. [CrossRef]

28. Kim, C.; Sohn, I.-B.; Lee, Y.J.; Byeon, C.C.; Kim, S.Y.; Park, H.; Lee, H. Fabrication of a fused silica based mold
for the microlenticular lens array using a femtosecond laser and a CO2 laser. Opt. Mater. Express 2014, 4,
2233–2240. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.proeng.2014.03.122
http://dx.doi.org/10.1117/1.JBO.19.1.010901
http://www.ncbi.nlm.nih.gov/pubmed/24441941
http://dx.doi.org/10.1080/05704928.2012.705800
http://dx.doi.org/10.1016/j.tifs.2007.06.001
http://dx.doi.org/10.1016/j.ijmachtools.2016.01.001
http://dx.doi.org/10.1364/OME.4.002233
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Microlens Array and Mold Design 
	Mold Insert Fabrication 
	Injection Compression Molding 

	Results 
	Mold Insert Fabrication 
	Injection Compression Molding 

	Discussion 
	Conclusions 
	References

