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Abstract: The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions
and plays an important role in various pathological and physiological processes. In many chronic
diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two
decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed
as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors
and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies
have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the
current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting
PTP in HCC.

Keywords: protein-tyrosine phosphatase inhibitors; hepatocellular carcinoma; signaling pathways;
therapeutic targets

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and ranks second
as a cause of cancer mortality [1]. Although liver transplantation and/or surgical resection are
the most common and effective treatments for this disease, they still can only be used to treat
early-stage HCC. Current therapeutic options for advanced HCC are still limited, and the overall
survival rate of advanced HCC patients remains poor because of tumor invasiveness, metastasis,
recurrence and resistance to chemotherapy [2]. In order to develop novel and effective therapeutic
strategies against HCC, a better understanding of the molecular mechanisms of HCC development and
progression is mandatory. Many signaling pathways which involved in cell proliferation, migration,
apoptosis and invasion were found to participate in the development of HCC. The accelerated
fibrosarcoma/mitogen-activated protein kinase/extracellular-signal-regulated kinase (Raf/MEK/ERK)
pathway is one of the key oncogenic pathways involved in the development of HCC. Platelet derived
growth factor receptor (PDGFR) and vascular endothelial growth factor receptor (VEGFR) are the
two receptors that play an important role in activation of the Raf/MEK/ERK cascade. On the other
hand, the signal transducer and activator of transcription 3 (STAT3) pathway is another key pathway
participated in the development of HCC. Aberrant STAT3 activation in HCC tumor tissue is associated
with proliferation, metastasis and invasion. In addition, over-activation of phosphatidylinositol-3-OH
kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway
leads to enhanced proliferation and metastasis in HCC [3,4].
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Protein tyrosine phosphorylation plays a central role in cellular physiology and in diseases
including cancer [5]. The elaborated balance of tyrosine phosphorylation of proteins in cell is controlled
reciprocally by both protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). PTKs
are responsible for the phosphorylation of tyrosine residues in proteins. In contrast, PTPs remove
phosphate at tyrosine residues from phosphorylated proteins. Tyrosine phosphorylation is required
for the activation of signaling pathways involved in multiple cellular processes such as proliferation,
adhesion and migration. Studies have shown that disturbance of the balance between PTKs and PTPs
plays a critical role in the pathogenesis of HCC. In this review, we will focus on the role of different
PTPs in the development of HCC and further discuss their importance as a therapeutic target for the
treatment of HCC.

2. PTPs Involved in HCC

PTPs consist of a large protein superfamily with 107 members that can be divided into four
families—Class I, Class II, Class III and Class IV—according to differences in the amino acid sequence
of their catalytic domains [6]. The catalytic residues of Class I, II and III are cysteine, and the catalytic
residue of Class IV is aspartate. The Class I PTPs are the largest family with 99 members, which
can be further divided into the classical PTPs (38 members) including the receptor PTPs (PTPR)
(21 members) and non-receptor PTPs (PTPN) (17 members), and the dual specificity phosphatases
(DUSPs) (61 members) capable of dephosphorylating serine, threonine and tyrosine residues. Class
II PTPs only contains the low molecular weight phosphatase (LMWPTP) at present. Class III PTPs
contain three tyrosine/theronine specific phosphatases (CDC25 A, B and C). Class IV PTPs comprises
four tyrosine and serine/tyrosine phosphatases (Eya1, Eya2, Eya3 and Eya4). So far, only 16 PTPs,
all belonging to Class I PTPs, were reported to participate in the development or progression of
HCC (summarized in Table 1). Most of these PTPs act as tumor suppressors in HCC. But some PTPs
such as Src homology 2-containing phosphotyrosine phosphatase 2 (SHP-2) and protein tyrosine
phosphatase 1B (PTP1B) can also act as oncogenes depending on the stages of HCC or presence of
their differential interacting partners (Figure 1).Cancers 2018, 10, x FOR PEER REVIEW  4 of 21 

 

 

Figure 1. Schematic overview of the role of protein tyrosine phosphatases (PTPs) in hepatocellular 
carcinoma (HCC). EGFR: epidermal growth factor receptor; PI3K: phosphotidylinsitol-3-OH kinase; 
Akt: alpha serine/threonine-protein kinase; Mtor: mechanistic target of rapamycin; JAK: janus kinase; 
STAT3: signal transducer and activator of transcription-3; SHP: Src homology 2-containing 
phosphotyrosine phosphatase; PTPRO: protein tyrosine phosphatase receptor type O; PTPN: protein 
tyrosine phosphatase non-receptor; Ras: rat sarcoma; Raf: Rapidly accelerating fibrosarcoma; MEK: 
MAP kinase kinases; ERK: extracellular signal-regulated kinase; MET: mesenchymal-epithelial 
transition factor; PTP1B: protein tyrosine phosphatase 1B; PTPRF: protein tyrosine phosphatase 
receptor type F; DUSP1: dual specificity phosphatase 1; RASA1: Ras p21 protein activator 1; PITX: 
pituitary homeobox; PRL-1: phosphatase of regenerating liver-1; GSK3β: glycogen synthase kinase 3β. 

2.1. The Role of Classical Receptor PTPs in Hepatocellular Carcinoma 

Protein tyrosine phosphatase receptor delta(PTPRD), also known as PTPδ, is composed of an 
extracellular region which contains three Ig-like and eight fibronectin type III-like domains, a single 
transmembrane segment and two tandem cytoplasmic catalytic domains. Tumor suppressive 
properties of PTPRD were reported in several human tumors such as glioblastoma multiforme 
[29,30], melanoma [30], gastric adenocarcinoma [31], lung cancer [32], neuroblastoma [33], and 
laryngeal squamous cell carcinoma [34]. PTPRD was first suggested as a tumor suppressor in HCC 
by Urushibara et al. whose results showed selective reduction of PTPRD mRNAs in HepG2 cell line 
and chemically-induced rat primary hepatoma tissue [35]. It was also reported that PTPRD 
expression was found to be down-regulated or even completely absent in human HCC cell lines and 
tumor tissues [7,8]. Patients with high expression of PTPRD have better long-term survival rate and 
less chance of liver cancer recurrence [7]. The reduction of PTPRD expression in HCC is probably due 
to DNA methylation as the promoter of PTPRD was found hypermethylated and 5-AzaC and/or 
trichostatin A (TSA) treatment restored PTPRD expression [8]. In addition to promoter 
hypermethylation, deletion and mutation of PTPRD gene were also identified in HCC cell lines and 
tumor tissues [30,36]. In hepatitis C virus (HCV)-infected liver tissues, PTPRD expression is 
impaired due to up-regulation of miR-135a-5p targeting PTPRD mRNA, resulting in activation of 
STAT3 signaling and hepatocarciogenesis [7].  

Protein tyrosine phosphatase receptor type F (PTPRF) is also known as leukocyte common 
antigen-related (LAR) and composed of an extracellular domain containing three immunoglobulin 
domains and eight fibronectin type III domains, a single transmembrane region and two tandem 
cytoplasmic catalytic domains D1 and D2. PTPRF was frequently down-regulated in HCC patients, 
and up-regulation of PTPRF was associated with better prognosis [9]. Using a loss-of-function 
screening of phosphatome to identify genes suppressing tumor initiation in HCC, PTPRF was 
characterized as one of the top-scoring tumor suppressor candidates. PTPRF suppressed cell 
proliferation and colony formation in Huh7 and SK-Hep1 cells and inhibited HepG2 xenograft tumor 
growth in nude mice. The phosphatase activity of PTPRF is required for its tumor suppressor 
function. PTPRF knockdown led to enhanced phosphorylation of extracellular signal-regulated 

Figure 1. Schematic overview of the role of protein tyrosine phosphatases (PTPs) in hepatocellular
carcinoma (HCC). EGFR: epidermal growth factor receptor; PI3K: phosphotidylinsitol-3-OH kinase;
Akt: alpha serine/threonine-protein kinase; Mtor: mechanistic target of rapamycin; JAK: janus
kinase; STAT3: signal transducer and activator of transcription-3; SHP: Src homology 2-containing
phosphotyrosine phosphatase; PTPRO: protein tyrosine phosphatase receptor type O; PTPN: protein
tyrosine phosphatase non-receptor; Ras: rat sarcoma; Raf: Rapidly accelerating fibrosarcoma; MEK:
MAP kinase kinases; ERK: extracellular signal-regulated kinase; MET: mesenchymal-epithelial
transition factor; PTP1B: protein tyrosine phosphatase 1B; PTPRF: protein tyrosine phosphatase receptor
type F; DUSP1: dual specificity phosphatase 1; RASA1: Ras p21 protein activator 1; PITX: pituitary
homeobox; PRL-1: phosphatase of regenerating liver-1; GSK3β: glycogen synthase kinase 3β.
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Table 1. Protein tyrosine phosphatases (PTPs) discussed in this review with their potential role in
hepatocellular carcinoma.

PTPs Observations TSG or Onco Ref.

Receptor PTPs

PTPRD
PTPRD expression was downregulated or loss; High expression

of PTPRD has a long-term survival rate and less chance of
recurrent liver cancer.

TSG [7,8]

PTPRF

PTPRF was frequent downregulated in most of HCC patients,
and upregulation of PTPRF associated with better prognosis.

PTPRF suppressed cell proliferation, colony formation in vitro
and inhibited tumor growth in vivo.

TSG [9]

PTPRH

PTPRH expression in moderately differentiated HCCs and in all
poorly differentiated HCCs was greatly reduced or loss.

Overexpression of PTPRH reduce both migratory activity and
growth rate of cells

TSG [10]

PTPRO

PTPRO expression was significantly reduced in human HCC
specimens. Overexpression of PTPRO promoted apoptosis i and
nhibited proliferation in vitro, and tumor size and number were

increased in PTPRO knockout mice.

TSG [11]

PTPRS

Downregulation of PTPRS was observed in HCC cell lines and
samples, and significantly associated with decreased overall

survival and high risk of recurrence. PTPRS silencing promoted
cell proliferation, migration and invasion both in vitro and

in vivo.

TSG [12]

PTPRT Increased expression of PTPRT in HepG2-x∆127 cells treated
decreased the tumor weight and volume in vivo TSG [13]

non-receptor
PTPs

PTP1B

PTP1B prime protein degradation of PITX1 to reduce
p120RasGAP transcription. Onco [14]

Patients with low PTP1B expression had either shorter
disease-free survival or worse overall survival. PTP1B could
reduce phosphorylation of MET receptor to block vascular

invasion and metastasis.

TSG [15,16]

PTPN9

PTPN9 expression was significantly reduced in tumor tissues,
and low expression of PTPN9 predicted poor survival. PTPN9

silencing reduced apoptosis and promoted proliferation in
HepG2 cells.

TSG [17]

PTPN12
PTPN12 expression is frequently decreased or loss in HCC

tissues. down-regulation of PTPN12 also significantly increased
the migration of HCC cell lines.

TSG [18]

PTPN13

PTPN13 expression was often downregulated or loss in HCC
tissues and HCC cell lines, and positively correlated with

overall survival but negatively correlated with the recurrence
rate. Overexpression of PTPN13 inhibit EMT in

HCC progression.

TSG [19,20]

SHP-1
SHP-1 expression has a negative correlation with p-STAT3

Tyr705 in HCC, and SHP-1 overexpression abolished
TGF-β1-induced p-STAT3 Tyr705.

TSG [21]

SHP-2

SHP2 knockout mice result in development of tumors and
enhance diethylenenitrite (DEN)-induced HCC development. Onco [22]

low Shp2 expression was significantly associated with short
overall survival time. SHP2 could promote HCC cell growth
and metastasis by coordinately activating the Ras/Raf/Erk

pathway and the PI3-K/Akt/mTOR cascade.

TSG [23]

DUSPs

PRL1

High PRL-1 expression was associated with more aggressive
phenotype and poorer prognosis in HCC patients. Overpression

of PRL-1 markedly enhanced migration and invasion of
HCC cells.

Onco [24,25]

PRL-3

PRL-3 expression (both mRNA and protein) was significantly
associated with poor differentiation and prognosis, and positive

correlation with matrix metalloproteinase MMP1, MMP9,
MMP10 and MMP12.

Onco [26]

DUSP1
High DUSP1 expression was associated with better prognosis.
In rat models, low DUSP1 expression was more susceptible to

develop HCC.
TSG [27,28]

TSG: Tumor suppressor gene; Onco: Oncogene; PTPRD: protein tyrosine phosphatase receptor delta; PTPRF:
protein tyrosine phosphatase receptor type F; PTPRH: protein tyrosine phosphatase receptor type H; PTPRO:
protein tyrosine phosphatase receptor type O; PTPRS: protein tyrosine phosphatase receptor S; PTPRT: protein
tyrosine phosphatase receptor T; PTP1B: protein tyrosine phosphatase 1B; PTPN: protein tyrosine phosphatase,
non-receptor; SHP: Src homology 2-containing phosphotyrosine phosphatase; PRL: phosphatase of regenerating
liver; DUSPs: dual specificity phosphatases; HCC: hepatocellular carcinoma; MET: mesenchymal-epithelial
transition factor; STAT3: signal transducer and activator of transcription 3; Tyr705: tyrosine 705; TGF: transforming
growth factor; Ras/Raf/Erk:rat sarcoma/ rapidly accelerating fibrosarcoma/ extracellular signal-regulated kinase;
PI3-K/Akt/mTOR: phosphotidylinsitol-3-OH kinase/ alpha serine/threonine-protein kinase/mechanistic target
of rapamycin.
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2.1. The Role of Classical Receptor PTPs in Hepatocellular Carcinoma

Protein tyrosine phosphatase receptor delta(PTPRD), also known as PTPδ, is composed of an
extracellular region which contains three Ig-like and eight fibronectin type III-like domains, a single
transmembrane segment and two tandem cytoplasmic catalytic domains. Tumor suppressive
properties of PTPRD were reported in several human tumors such as glioblastoma multiforme [29,30],
melanoma [30], gastric adenocarcinoma [31], lung cancer [32], neuroblastoma [33], and laryngeal
squamous cell carcinoma [34]. PTPRD was first suggested as a tumor suppressor in HCC by
Urushibara et al. whose results showed selective reduction of PTPRD mRNAs in HepG2 cell line and
chemically-induced rat primary hepatoma tissue [35]. It was also reported that PTPRD expression was
found to be down-regulated or even completely absent in human HCC cell lines and tumor tissues [7,8].
Patients with high expression of PTPRD have better long-term survival rate and less chance of liver
cancer recurrence [7]. The reduction of PTPRD expression in HCC is probably due to DNA methylation
as the promoter of PTPRD was found hypermethylated and 5-AzaC and/or trichostatin A (TSA)
treatment restored PTPRD expression [8]. In addition to promoter hypermethylation, deletion and
mutation of PTPRD gene were also identified in HCC cell lines and tumor tissues [30,36]. In hepatitis C
virus (HCV)-infected liver tissues, PTPRD expression is impaired due to up-regulation of miR-135a-5p
targeting PTPRD mRNA, resulting in activation of STAT3 signaling and hepatocarciogenesis [7].

Protein tyrosine phosphatase receptor type F (PTPRF) is also known as leukocyte common
antigen-related (LAR) and composed of an extracellular domain containing three immunoglobulin
domains and eight fibronectin type III domains, a single transmembrane region and two tandem
cytoplasmic catalytic domains D1 and D2. PTPRF was frequently down-regulated in HCC patients,
and up-regulation of PTPRF was associated with better prognosis [9]. Using a loss-of-function screening
of phosphatome to identify genes suppressing tumor initiation in HCC, PTPRF was characterized
as one of the top-scoring tumor suppressor candidates. PTPRF suppressed cell proliferation and
colony formation in Huh7 and SK-Hep1 cells and inhibited HepG2 xenograft tumor growth in nude
mice. The phosphatase activity of PTPRF is required for its tumor suppressor function. PTPRF
knockdown led to enhanced phosphorylation of extracellular signal-regulated kinase 1 (ERK1) (Y204)
and extracellular signal-regulated kinase 2 (ERK2) (Y187), as PTPRF can directly interact with the
upstream factors of ERK v-src avian sarcoma viral oncogene homolog (SRC) and protein phosphatase
2A(PP2A), removing phosphate group from SRC at Y416 and PP2AC (the catalytic subunit C of PP2A)
at Y307, leading to suppression of SRC activity and activation of PP2A [9].

Protein tyrosine phosphatase receptor type H (PTPRH), also named stomach cancer-associated
protein tyrosine phosphatase-1 (SAP-1), was first identified as a receptor PTP in the human stomach
cancer cell line KATO-III [37]. The structure of PTPRH is composed of an extracellular region containing
eight fibronectin type III-like repeats and multiple N-glycosylation sites, a single transmembrane region
and a single intracellular catalytic domain. Noguchi and colleagues showed that PTPRH inhibits
cell proliferation by suppressing growth factor-elicited mitogenic signaling and inducing apoptotic
cell death [38]. Investigation in HCC specimens revealed that PTPRH expression in moderately
differentiated HCCs and in all poorly differentiated HCCs was greatly reduced or lost compared
with that in the adjacent tissues. Overexpression of PTPRH in highly motile human HCC cell lines
(HLF and HLE) resulted in a change in cell morphology and remarkable reduction of both migratory
activity and growth rate of the cells [10]. These results indicated that PTPRH may play an important
role in the progression of HCC, but the underlying mechanism is not yet clear.

Protein tyrosine phosphatase receptor type O (PTPRO), also known as glomerular epithelial
protein 1 (GLEPP1), was first discovered in the human renal glomerulus [39]. The structure of PTPRO
is composed of a single intracellular catalytic domain that catalyzes the dephosphorylation of tyrosine
peptides and a transmembrane domain. PTPRO was found to act as a tumor suppressor in human
cancers such as chronic lymphocytic leukemia [40], lung [41], and breast cancer [42]. In HCC, PTPRO
expression was significantly reduced in the tumor specimens compared with adjacent tissue [11,43],
which is probably caused by hypermethylation on PTPRO promoter. In a rat model of HCC induced
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by folate/methyl deficient diet (FMD), PTPRO mRNA was significantly reduced and its gene was
found hypermethylated at the site located immediate upstream of the transcription start in a genome
wide screen for hypermethylated genes. However, PTPRO gene was methylation free in the livers
of animals on normal diet. Expression of PTPRO mRNA was confirmed after the transplanted
hepatoma was treating with 5-azacytidine. In addition, an investigation on human HCC samples also
showed that the CpG island of PTPRO is significantly hypermethylated [43]. The cell proliferation
was inhibited and apoptosis was promoted in PTPRO overexpressing HCC cell lines, and tumor
number and size were enhanced in PTPRO knockout mice [11]. Multiple signaling pathways are
involved in the tumor suppressor function of PTPRO in HCC. Investigation on the correlation between
PTPRO expression and STAT3 activity showed that PTPRO expression was negatively correlated with
STAT3 activity in HCC tissues, indicating that PTPRO might suppress HCC via control of STAT3
activation. Indeed, PTPRO mediates STAT3 Y705 dephosphorylation via janus kinase 2 (JAK2) and
S727 dephosphorylation via PI3K signaling [11]. In addition, it was reported that Toll-like receptor 4
(TLR4) activity protects against hepatocellular tumorigenesis and progression by regulating expression
of DNA repair protein Ku70 in a mouse model [44]. PTPRO expression positively correlates with TLR4
expression in HCC specimens, and TLR4 expression and activity increased in PTPRO-overexpressing
HCC cells stimulated with lipopolysaccharide (LPS). Further studies revealed that PTPRO regulates
TLR4 via nuclear transcription factor-κB (NF-κB) activation, as the phosphorylation levels of IκBα and
NF-κB/P65 increased in PTPRO-overexpressing HCC cells [45]. Further, PTPROt, a truncated isoform
of PTPRO, was shown to play an important role in anti-tumor immunity in HCC microenvironment in
a mouse model. PTPROt deficiency attenuated T cell-mediated anti-tumor immunity and remarkably
promoted mouse HCC growth [46].

Protein tyrosine phosphatase receptor S (PTPRS), also known as PTPσ, was first identified
in 1988 from a human placenta genomic DNA library [47]. The structure of PTPRS is composed
of an extracellular region containing multiple Ig-like and fibronectin type III-like domains, a single
transmembrane segment and two tandem intracytoplasmic catalytic domains. PTPRS was demonstrated
to play an important role in the development of nervous system [48,49]. Recently, PTPRS was reported
as tumor suppressor in a variety of cancers [29,50,51]. Mutation or deletion of PTPRS was detected in
several human cancers including head and neck squamous-cell carcinoma [52], colorectal cancer [51],
malignant melanoma [29], and cholangiocarcinoma [50]. Down-regulation of PTPRS was observed
in HCC samples compared with non-tumor liver samples, and low expression of PTPRS was also
observed in most of HCC cell lines [12]. Low expression of PTPRS was significantly associated with
decreased overall survival and high risk of postoperative recurrence in HCC patients. PTPRS silencing
promoted cell proliferation, migration and invasion both in vitro and in vivo. PTPRS could form a
complex with epidermal growth factor receptor (EGFR) and regulate phosphorylation of EGFR at
three tyrosine residues (Tyr 992, Tyr1045, and Tyr1068). HCC cell migration and invasion induced by
PTPRS silencing can be inhibited by EGFR down-regulation, and overexpression of EGFR reversed the
inhibition on cell migration and invasion induced by PTPRS silencing [12]. Both PI3K inhibitor and
MEK1/2 inhibitor effectively inhibited the cell migration and invasion induced by enhanced EGFR
phosphorylation, indicating EGFR/PI3K/MEK signaling was downstream of PTPRS in HCC.

Protein tyrosine phosphatase receptor T (PTPRT), also known as PTPρ, is composed of an
extracellular domain, a single transmembrane region containing a meprin-A5 antigen-PTP (MAM)
domain, an Ig-like and four fibronectin type III-like repeats, and two tandem intracellular catalytic
domains. Several evidences suggested that PTPRT functions as a tumor suppressor in human cancers
including colorectal cancer [53], head and neck squamous cell carcinoma [54], and retinoblastoma [55].
HBx∆127, a natural mutant of the hepatitis B virus (HBV) X protein (HBx) gene with COOH-terminal
deletion from 382 to 401 bp, could remarkably increase the proliferation and migration of HCC cells
compared with wild type HBx [56]. The mechanism underlying this phenomenon is that HBx∆127
up-regulates miR-215 expression which down-regulates PTPRT protein expression in HCC cells [13].
Increased expression of PTPRT in HepG2 cells with HBx∆127overexpression was able to decrease the
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tumor weight and volume in vivo [13]. Moreover, PTPRT is frequently mutated in human cancers
such as colon, lung, skin and gastric cancer [53,57]. PTPRT with a mutation (A1022E) in the catalytic
domain resulted in increased phosphorylation of STAT3 in head and neck squamous cell carcinoma
(HNSCC) cells [54]. However, mutational analysis showed that PTPRT phosphatase domain mutations
were not detected in HCC samples [57].

2.2. The Role of Classical Non-Receptor PTPs in Hepatocellular Carcinoma

PTP1B is encoded by the PTPN1 gene. The structure of PTP1B is composed of an N-terminal
catalytic domain, two proline-rich sequences, and a C-terminal hydrophobic region. PTP1B acts
as a critical regulator in the pathogenesis such as diabetes and obesity [58,59]. Recently, pituitary
homeobox 1 (PITX1) was reported to act as a tumor suppressor in hepatocarcinogenesis by activating
the expression of p120RasGAP (also known as Ras p21 protein activator 1 (RASA1)), triggering Ras
inactivation by converting GTP into GDP [60]. Downregulation of PITX1 mRNA and protein expression
was frequently detected in the HCC patient samples with poorer prognosis [61]. PTP1B can prime
PITX1 for proteasome-mediated degradation by directly dephosphorylating PITX1 at Y160, Y175, and
Y179 residues, and decline of PITX1 reduced p120RasGAP transcriptional activity [14]. Through
PITX1-p120RasGAP signaling axis, PTP1B possesses tumor promoting effects in HCC. Another
study showed that PTP1B is recruited to MET receptor to reduce its phosphorylation by leukocyte
cell-derived chemotaxin 2 (LECT2), and contributes to the blockage of vascular invasion and metastasis
of HCC [15]. Zheng et al. showed that expression of PTP1B was low or lost in 65.7% HCC tumor tissues.
Patients with lower PTP1B expression group had either shorter disease-free survival or worse overall
survival [16], suggesting that PTP1B acts as a tumor suppressor in HCC. These studies indicated that
PTP1B can be both oncogene and tumor suppressor depending on the substrates involved. In recent
years, contrasting findings suggest that PTP1B plays two faces in other cancers too [62]. For example,
PTP1B acts as a tumor suppressor in leukemia and lymphoma but can be as an oncogene in breast
cancer and non-small cell lung cancer. It has been reported that PTP1B acts as an oncogene through
interacting with several oncogenic substrates such as Src [63,64], ERK1/2 [65], p62dok [66,67], human
epidermal growth factor receptor 2 (HER2) [68,69], and p130Cas [70]. Conversely, PTP1B can also
act as a tumor suppressor by negatively regulating several oncogenic kinases such as Bcr-Abl [71],
JAK-STAT [72,73], and β-catenin [74].

SHP-1, also known as HCP, HCPH, HPTP1C, PTP-1C, SHP-1L or SH-PTP1, is encoded by the
PTPN6 gene on chromosome 12. The SHP-1 protein contains two tandem Src homolog (SH2) domains
which act as protein phospho-tyrosine binding domains, a catalytic protein tyrosine phosphatase (PTP)
domain and a C-terminal tail [75]. SHP-1 has been reported as a tumor suppressor and a negative
regulator of STAT3 in various cancer types [66,76–78]. The HCC cell lines with lower expression of
SHP-1 showed higher expression of p-STAT3 Tyr705, and statistical analysis on HCC samples showed
expression of SHP-1 had a negative correlation with p-STAT3 Tyr705 [21]. In transforming growth
factor (TGF)-β1-induced STAT3 activated PLC5 cell model, SHP-1 overexpression strongly decreased
the levels of p-STAT3 and depletion of SHP-1 increased levels of p-STAT3 [21]. Pyruvate kinase M2
(PKM2) was known to promote tumourigenesis through dimer formation of p-PKM2 Tyr105 [79,80].
Chen and colleagues confirmed that SHP-1 can directly dephosphorylate PKM2 at tyrosine Tyr105 to
inhibit PKM2 activity in HCC, which is required for the proliferative function of PKM2 [81].

PTPN9, also called megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2), was cloned with
sequence homologous to retinaldehyde-binding protein and yeast SEC14p [82]. The structure of PTPN9
contains an N-terminal domain that shares a significant similarity with yeast SEC14. High expression
of PTPN9 was detected in brain, leukocytes and endocrine cells [83], and required for embryonic
development [84], erythroid cell development [85,86], and intracellular secretary homotypic vesicle
fusion in hematopoietic cells [87]. PTPN9 is also involved in numerous cellular processes including
cell proliferation, differentiation and migration through the regulation of signaling pathways [88].
Dysfunction of PTPN9 causes a variety of human diseases such as cancer [89,90]. The expression level
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of PTPN9 was significantly reduced in HCC tumor tissues compared to non-tumorous tissues. PTPN9
expression was inversely associated with tumor size, and low expression of PTPN9 predicted poor
survival in HCC patients [17]. Silencing of PTPN9 significantly reduced cell apoptosis and promoted
cell proliferation in HCC cell line HepG2. Depletion of PTPN9 expression up-regulated tyrosine
phosphorylation of STAT3 at Tyr705 site [17]. How PTPN9 affects tyrosine phosphorylation level of
STAT3 in HCC still remains unclear. In breast cancer, PTPN9 indirectly inhibits activity of STAT3 and
STAT5 through direct dephosphorylation of EGFR and HER2 [90]. PTPN9 also directly interacts with
STAT3 and mediates its dephosphorylation in breast cancer cells [91]. The researches in breast cancer
may provide some references for STAT3 regulation by PTPN9 in HCC.

SHP-2, also known as PTPN11, was cloned in early 1990s as a non-receptor PTP [92]. The SHP-2
protein is composed of two SH2 domains which function as phospho-tyrosine binding domains
and mediate the interaction of this PTP with its substrates, a catalytic protein-tyrosine phosphatase
(PTPase) domain, and a C-terminal tail. SHP-2 has been considered as a proto-oncogene in several
human cancers including leukemia [93], glioblastoma [94], gastric carcinoma [95,96], lung cancer [97],
and breast cancer [98]. Somatic gain of-function mutations of PTPN11 gene have been reported in
about half of Noonan syndromes and certain types of leukemias [99,100]. However, SHP-2 does not
just act as an oncogene, but also as a tumor suppressor in cancer progression. The higher protein
expression of SHP-2 in colorectal cancer is related to better survival [101]. Recent studies demonstrated
that SHP-2 may possess bi-directional functions in HCC. In a mouse model, hepatocyte-specific
SHP-2 knockout resulted in regenerative hyperplasia and development of tumors [22], which may
be due to compensatory hepatocyte proliferation triggered by inflammation [102], and increased
synthesis of bile acid together with subsequent activation of Yap [103,104]. In contrast, Han et al.
showed that SHP-2 silencing suppressed the proliferation of human HCC cells in vitro and inhibited
the growth of HCC xenografts in vivo. Down-regulation of SHP-2 attenuated the adhesion and
migration of HCC cells and diminished metastasized HCC formation in a mouse model. SHP-2
could promote HCC growth and metastasis by coordinately activating the Ras/Raf/Erk pathway
and the PI3K/Akt/mTOR cascade [105]. SHP-2 sumoylation at lysine residue 590 may contribute
to the activation of ERK signaling. Deng et al. recently reported that sumoylated SHP-2 facilitated
the formation of SHP2-Gab1 complex to promote ERK activation [106]. SHP-2 increases β-catenin
accumulation by inhibiting glycogen synthase kinase 3β (GSK3β)-mediated β-catenin degradation in
liver cancer stem cells to enhance the self-renewal of liver cancer stem cells. Moreover, SHP-2 enhances
β-catenin nuclear translocation via dephosphorylating CDC73 in liver cancer cells to promote the
dedifferentiation of hepatoma cells, which finally promoted the expansion of cancer stem cells in
cancer cell population [107]. In clinical samples, Jiang et al. reported decreased SHP-2 expression in
tumor tissues compared with adjacent tissues and the positive rate was 66.1% and 96.7%, respectively.
Further, lower SHP-2 expression in was significantly associated with shorter overall survival time
in HCC [107], supporting SHP-2 as a tumor suppressor. However, Han et al. also examined HCC
patient samples. They found elevated expression of SHP-2 in the majority of human HCC samples,
and overexpression of SHP-2 correlated with advanced stage, poor differentiation and metastasis of
HCC [105]. These opposite findings suggested the complexity of SHP-2 in HCC development. The role
of SHP-2 in HCC needs to be further clarified.

PTPN12, also known as PTP-PEST, was first cloned from human skeletal muscle [108]. The structure
of PTP N12 contains a C-terminal PEST motif which serves as a protein-protein interaction domain.
PTPN12 regulates multiple oncogenic tyrosine kinases such as HER2 and EGFR [109], and is required
for embryonic development [110]. PTPN12 regulates cell migration and cell-cell junctions through
the interaction with cytoskeletal and signaling proteins [111,112]. PTPN12 was characterized as
tumor suppressor in various human malignancies including breast cancer [109,113], colon cancer [112],
ovarian cancer [114], nasopharyngeal carcinoma [115], and esophageal squamous cell carcinoma [116].
PTPN12 also plays an important role in the development of HCC. PTPN12 protein expression is
frequently decreased or lost in human HCC tissues, and the decreased PTPN12 expression may
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represent an acquired recurrence phenotype of HCC [18]. Kodama and colleagues identified 233
candidate cancer genes using cell-based transposon mutagenesis screen assay, and the subsequent
trunk driver analysis identified 23 candidate cancer genes that appear to function early in tumorigenesis.
PTPN12 is one of these candidate cancer genes. The functional analysis showed that PTPN12
regulates epithelial-mesenchymal transition (EMT) in HCC cells, and down-regulation of PTPN12 also
significantly increased the migration of HCC cell lines, SNU-387 and SNU-475 [117]. PTPN12-deficient
mice displayed a failure of liver development and subsequent lethality [118], suggesting that PTPN12
may be critical for liver development as well. The decreased expression of PTPN12 and the mechanism
underlying its inhibitory role towards migration and EMT in HCC still remain to be fully clarified.

PTPN13, also known as protein tyrosine phosphatase-Basophil (PTP-BAS), human protein
tyrosine phosphatase 1E (hPTP1E), PTPLE, protein-tyrosine phosphatase-L1 (PTPL1) or Fas-associated
phosphatase 1 (FAP-1), was cloned independently by three groups [119–121]. The structure of PTPN13
is composed of a catalytic PTP domain at its C-terminus and two major structural domains: a region
with five PDZ domains and a FERM domain that binds to plasma membrane and cytoskeletal elements.
Accumulating evidences suggested that PTPN13 acts as a tumor suppressor in human cancers such
as colorectal cancer [53], and breast cancer [122]. PTPN13 expression was often down-regulated or
lost in HCC clinical samples and HCC cell lines. PTPN13 expression was positively correlated with
overall survival, but negatively correlated with the cumulative recurrence rate [19,20]. The promoter
of PTPN13 was detected hypermethylated with low PTPN13 expression [20], indicating that the
promoter methylation may contribute to the down-regulation of PTPN13. HCC cell lines with low
expression of PTPN13 demonstrated higher metastatic potential [19]. Overexpression of PTPN13
up-regulated the epithelial marker E-cadherin and down-regulated mesenchymal markers such as
Snail, Slug and Matrix metallopeptidase 9 (MMP9) [19], suggesting PTPN13 can inhibit EMT in
HCC progression. Overexpression of PTPN13 in HCC cell lines MHCC97H and HepG2 significantly
reduced phosphorylation of ERK1/2 and STAT3 but not Src, indicating that PTPN13 may act as a
tumor suppressor via ERK1/2 and/or STAT3 signaling in HCC.

2.3. The Role of Dual Specificity Phosphatases in Hepatocellular Carcinoma

The phosphatases of regenerating liver (PRL) belong to the dual-specificity superfamily. The PRL
family includes three members PRL-1, PRL-2 and PRL-3. PRL-1, also known as PTP4A1, was originally
identified as an immediate-early growth response gene in regenerating liver and mitogen-stimulated
cells [123]. The protein structure of PRL-1 contains a PTP domain and a characteristic C-terminal
prenylation motif. Overexpression of PRL-1 in NIH 3T3 cells resulted in altered cellular growth,
enhanced cell proliferation, migration and invasion in vitro and enhanced cell metastasis in vivo [124–127].
Chinese hamster ovary (CHO) cells expressing PRL-1 developed metastatic tumors in mice [126].
Protein expression levels of PRL-1 were significantly higher in HCC tissues, and associated with
more aggressive phenotype and poorer prognosis in HCC patients [24,25]. Overexpression of PRL-1
markedly up-regulated migration and invasion of HCC cells [25]. These findings suggested that PRL-1
acts as an oncogene in HCC. Jin and colleagues showed that PRL-1 regulated E-cadherin expression
in HCC cells at both the mRNA and protein levels [25]. Loss of E-cadherin is correlated with tumor
progression and metastasis in a variety of human cancers [128]. Further studies showed that PRL-1
can enhance phosphorylation of AKT at Ser474 and GSK3β at Ser9, which results in elevated levels of
Snail expression and decreased E-cadherin expression [25], suggesting PRL-1 may regulate E-cadherin
via PI3K/AKT/GSK3β pathway.

PRL-3, also known as PTP4A3, exhibits 76% of sequence identity with PRL-1 [110]. Like PRL-1, PRL-3
also displays oncogenic activity to promote cell proliferation, migration, invasion and metastasis [124].
PRL-3 was found to be overexpressed in many human cancers such as colorectal cancer [129],
melanomas [130], breast cancer [131], gastric cancer [132], esophageal squamous cell carcinoma [133],
acute myeloid leukemia [134], and ovarian [135]. Investigation on PRL-3 expression and its correlation
with the clinical pathological features and prognosis in HCC by Mayinuer et al. showed that PRL-3
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was up-regulated in patients with poorer differentiation, and higher expression of PRL-3 (both mRNA
and protein) was significantly associated with poorer prognosis. Their studies also found that
expression of PRL-3 in HCC patients was significantly correlated with the expression of several
matrix metalloproteinases (MMPs) including MMP1, MMP9, MMP10 and MMP12 [26], which are
key enzymes for invasion through the basement membrane and interstitial extracellular matrix [136].
The regulation of PRL-3 expression in physiological and pathological conditions involved many aspects
such as transcription, translation and post-translation [137]. However, in HCC the molecular pathways
involved in PRL-3 expression regulation and its downstream signaling still remain unclear.

Dual-specificity phosphatase-1 (DUSP1), also known as MAP kinase phosphatase1 (MKP1),
human VH1 phosphatase homolog (HVH1) or protein tyrosine phosphatase non-receptor 10 (PTPN10),
belongs to a family of phosphatases with dual specificity for threonine and tyrosine, which was
first found in cultured murine cells [138]. The structure of DUSP1 is composed of an N-terminal
non-catalytic domain and a C-terminal catalytic domain. DUSP1 plays an important role in cell
proliferation, cycle arrest, differentiation, transformation and apoptosis [139], and is involved in
development and progression of many cancers such as prostatic cancer [140], pancreatic cancer [141],
lung cancer [142], breast cancer [143] and gastric cancer [144], head and neck squamous cell
carcinoma [145] and gallbladder cancer [146]. The mechanism and function of DUSP1 in cancers varies
dependent on the cancer type. DUSP1 can promote carcinogenesis of prostatic cancer [140], pancreatic
cancer [141], lung cancer [142], breast cancer [143] and gastric cancer [144]. The mechanism underlying
the oncogenic function of DUSP1 in these cancers is probably due to DUSP1-medaited inhibition of
JNK activation and subsequent escape from JNK-induced apoptosis of the cancer cells. In head and
neck squamous cell carcinoma, DUSP1 suppresses carcinogenesis via decreasing IL-1β expression in
tumor pro-inflammatory microenvironment [145]. In gallbladder cancer, DUSP1 also inhibits cancer
cell growth and metastasis via targeting the DUSP1-pERK-MMP2/VEGF signaling pathway [146].
In human HCC, the mRNA levels of DUSP1 were found significantly higher in tumors with better
prognosis even compared with normal or non-tumorous surrounding tissues [27]. Sharply declined
DUSP1 protein expression was observed in all HCC patient samples with poorer prognosis [27] and
Tsujita et al. showed that patients with positive staining for DUSP1 have a longer survival [147]. In rat
models, Fisher 344 (F344) rats with lower DUSP1 were susceptible to HCC development, while Brown
Norway (BN) rats with higher DUSP1 were resistant HCC development [28,148]. These findings
suggested that DUSP1 could suppress carcinogenesis in HCC. Up-regulation of active ERK1/2 was
detected in HCC tissues, and the highest levels of ERK1/2 appeared in patient samples with poorer
prognosis [27]. In rat modes, declined DUSP1 expression and elevated ERK activation were observed
in susceptible F344 rats compared with resistant BN rats [28]. DUSP1 reactivation led to suppression
of ERK activity, inhibition of proliferation and induction of apoptosis in human HCC cell lines [27].
A reciprocal regulation between ERK and DUSP1 was discovered. DUSP1 dephosphorylates ERK to
inactivate it [149], while active ERK phosphorylates DUSP1 at ser296, which facilitates its ubiquitination
and proteasomal degradation [150,151]. Declined DUSP1 expression may interrupt the positive
regulatory loop between ERK and DUSP1 and promote development and progression of HCC.

3. Targeting the PTPs for Therapy in Hepatocellular Carcinoma

HCC is one of the most lethal cancers. Many drugs were developed in clinical to therapy HCC, but
to date the therapy to HCC continues to pose a challenge, in part because of the poor chemosensitivity
or chemoresistance [152]. As described above, PTPs plays an important role on the formation and
development of HCC. Targeting PTPs for the therapy to HCC may provide an alternative choice.
The strategy of targeting PTPs should depend on its function on HCC. To PTPs as tumor suppressor,
it is a anticancer strategy to develop agonists to activate these PTPs activity or increase these PTPs
expression. To PTPs as tumor promoter, it is an anticancer strategy to develop inhibitors to inhibit
these PTPs activity.
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STAT3 is a key regulator of inflammation, cell survival, and tumorigenesis in liver cells [153].
It was reported that nearly 60% of clinical HCC tumor samples showed nuclear phosphorylated-STAT3
staining [154], suggesting that targeting STAT3 signaling pathway may be an effective treatment
for HCC with constitutively or inductively active STAT3. Sorafenib was originally developed to
inhibit the Ras-Raf-MEK1/2-ERK1/2 signaling pathway by specifically targeting Raf-1 kinase [155].
But sorafenib and its derivatives were found to inhibit tumor growth via a kinase-independent
mechanism in HCC. Sorafenib and its derivatives can form a salt bridge with the D61 residue of
SHP-1 in the N-SH2 domain, which releases the auto-inhibition of SHP-1 and activates SHP-1 [153].
Accumulating data showed that sorafenib and its derivatives can effectively suppress tumor of
HCC through SHP1/STAT3 axis [21,75,156–160]. Some sorafenib derivatives displayed more potent
anti-HCC activity than sorafenib, even for sorafenib-resistant HCC cells [157,158].

Other kinase inhibitors, such as nintedanib [161], regorafenib [162], and dovitinib [163], induced
significant anti-HCC activity independent of kinase inhibition activity by relieving auto-inhibition of
SHP-1 to activate its activity. Increasing the transcription of SHP-1 is another approach to suppress
STAT3 signaling for anti-HCC therapy. SC-2001, an obatoclax analogue, showed potential antitumor
effect on HCC cells [164–166]. The mechanism of SHP-1 activation by SC-2001 is that it induced
Regulatory factor X-1 (RFX-1)-1 to bind to the SHP-1 promoter, and activated SHP-1 transcription [164].
Transcription of SHP-1 is activated by other small molecules, such as emodin [167], evodiamine [168],
honokiol [169], and TFPA [170], from natural plants. These molecules also displayed effective anti-HCC
activity. In addition to SHP1, several other PTPs such as PTPRD, PTPRO, PTPN9, and PTPN13, also
dephosphorylate STAT3 at tyrosine 705 to reduce STAT3 activity in HCC cells [7,11,17,19]. Development
of some strategies to activate their activity or increase their transcription might provide new therapeutic
strategy for HCC patients.

The combination of SHP-1 agonists and conventional therapies, such as radiation therapy or
chemical therapy, can help improve the effectiveness of traditional therapies. Dovitinib, a SHP-1 agonist,
enhanced the effect of radiation therapy against HCC in vitro and in vivo [171]. The combination of
dovitinib and tigatuzumab restored the sensitivity of HCC cells to TRAIL (tumor necrosis factor-related
apoptosis-inducing ligand)- and tigatuzumab-induced apoptosis [172]. The combination of sorafenib
and SC-43 decreased tumor size and prolonged survival in mouse model [173]. The combination of
SC-2001 and sorafenib strongly inhibited tumor growth in both wild-type and sorafenib-resistant HCC
cell bearing xenograft models [165]. SHP-1 agonist SC-59 displays a better synergistic effect when used
in combination with radiotherapy for the treatment of HCC [174]. SHP-2 silencing by siRNA increased
the sensitivity of hepatoma cells to sorafenib [105], suggesting that combined use of SHP-2 inhibitor
with sorafenib might improve anti-HCC therapeutic efficacy.

Moreover, Baburajeev et al. reported that a synthesized small molecule inhibitor of PTP1B,
6-(2-benzylphenyl)-3-phenyl-[1,2,4]triazolo[3][1,3,4]thiadiazole (BPTT), showed effective inhibition on
cell invasion and tumor volume of HCC [175]. In addition, sorafenib can up-regulate PITX-p120RasGAP
axis via inhibition of PTP1B [14], indicating inhibition of PTP1B may be effective for the treatment
of HCC.

4. Conclusions

Here we have illustrated that PTPs play a growing important role in HCC progression via
regulation of cell proliferation, migration and invasion. Different strategies need to be employed to
target different types of PTPs. Among the 16 reported PTPs involved in HCC, most of them act as
tumor suppressor, e.g., PTPRD, PTPRF, PTPRH, PTPRO, PTPRS, PTPRT, PTPN9, PTPNN12, PTPN13,
SHP-1 and DUSP1. Although developing small molecule agonists of proteins are much more difficult
than developing small molecule inhibitors, it is not impossible. Several agonists against SHP-1 showed
effective suppression towards HCC tumor. Moreover, expression of some PTP tumor suppressors,
such as PTPRD, PTPRO, PTPN12, PTPN13 and DUSP1, is reduced due to epigenetic silencing (Table 2).
Restoring these PTPs expression by demethylating agents can also be an activation strategy. On the
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contrary, both PRL1 and PRL3, displayed oncogenic activities in HCC making the blockade of their
activity through developing small molecule inhibitors a potential therapy for HCC. Last, SHP2 and
PTP1B displayed both oncogenic and tumor suppressive activities in HCC. Therefore, extra caution
need to be taken when targeting SHP2 and PTP1B in HCC.

At present, the 16 reported PTPs involved in HCC regulation all belong to the Class I family of
PTP. The effect of Class II, Class III and Class IV PTPs on HCC are not clear. To fully understand
the roles of PTPs in HCC, it is necessary to carry out a thorough investigation of the expression and
mutation of tyrosine phosphatome in HCC samples, in order to fully identify critical PTPs in HCC.
In addition, the dissection of the key molecular signaling pathways underlying the functions of these
critical PTPs need to be understood. The improvement of our knowledge on PTPs and the relevant
pathways may shed light in the development of new anti-cancer reagent for HCC.

Table 2. The mechanisms responsible for regulation of PTPs in HCC.

PTPs Mechanisms for PTPs Regulation in HCC

PTPRD
Epigenetic silencing is partly responsible for the reduction of PTPRD expression [8].

Deletion and mutation of PTPRD gene are also identified in HCC cell lines and tumor
tissues [30,36], miR-135a-5p targeting PTPRD mRNA impairs PTPRD expression [7].

PTPRF NA

PTPRH NA

PTPRO Epigenetic silencing is responsible for the reduction of PTPRO expression [43].

PTPRS Epigenetic silencing is responsible for the reduction of PTPRS expression [12].

PTPRT miR-215 targets PTPRT and down-regulates its protein expression in HepG2 cells [13]

PTP1B NA

SHP-1 NA

PTPN9 NA

SHP-2 SHP-2 activation may be due to protein SUMOylation at lysine residue 590 [106].

PTPN12 NA

PTPN13 Epigenetic silencing is responsible for the reduction of PTPN13 expression [20].

PRL-1 Copy number amplification may be responsible for the increase expression of PRL-1 [25]

PRL-3 NA

DUSP1 DUSP1 inactivation is due to ubiquitination or promoter hypermethylation associated with
loss of heterozygosity at the DUSP1 locus [27].

NA = Not Available.
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