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Abstract: Recent studies suggest that glioblastomas (GBMs) contacting the subventricular zone (SVZ)
as the main adult neurogenic niche confer a dismal prognosis but disregard the unique molecular and
prognostic phenotype associated with isocitrate dehydrogenase 1 (IDH1) mutations. We therefore
examined location-dependent prognostic factors, growth, and recurrence patterns in a consecutive
cohort of 285 IDH1-wildtype GBMs. Based on pre-operative contrast-enhanced MRI, patients were
allotted to four location-dependent groups with (SVZ+; groups I, II) and without (SVZ−; groups III,
IV) SVZ involvement or with (cortex+; groups I, III) and without (cortex−; groups II, IV) cortical
involvement and compared for demographic, treatment, imaging, and survival data at first diagnosis
and recurrence. SVZ involvement was associated with lower Karnofsky performance score (p < 0.001),
lower frequency of complete resections at first diagnosis (p < 0.0001), and lower non-surgical treatment
intensity at recurrence (p < 0.001). Multivariate survival analysis employing a Cox proportional
hazards model identified SVZ involvement as an independent prognosticator of inferior overall
survival (p < 0.001) and survival after relapse (p = 0.041). In contrast, multifocal growth at first
diagnosis (p = 0.031) and recurrence (p < 0.001), as well as distant recurrences (p < 0.0001), was more
frequent in cortex+ GBMs. These findings offer the prospect for location-tailored prognostication and
treatment based on factors assessable on pre-operative MRI.
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1. Introduction

Glioblastoma (GBM) World Health Organization (WHO) grade IV, the most common and lethal
primary brain tumor, is a clinically, radiographically, and molecularly heterogeneous disease. Standard
therapy comprising maximal safe resection, irradiation, and temozolomide (TMZ)-based chemotherapy
confers a median survival of less than 15 months [1], with high inter-individual variability and only
3–5% of patients experiencing long-term survival (LTS) of more than three years [2]. Understanding
the ontogeny of GBM, and mechanisms leading to its heterogeneity, will help to tailor individualized
treatments based on personalized prognostication and improve patient outcomes.

Mounting evidence suggests that glioma ontogeny is linked to a subpopulation of neural stem
(NSC) and progenitor (NPC) cells persisting in neurogenic niches throughout adulthood, in particular
NSC-like astrocytes in the subventricular zone (SVZ) lining the walls of the lateral ventricles [3,4].
In animal models, inactivation of tumor suppressor genes (TP53, NF1, PTEN) or activation of oncogenes
(Akt, Ras) resulted in the formation of astrocytomas through malignant transformation of NSCs [5–8].
In humans, the SVZ was identified as a reservoir of malignant precursor clones by employing a
novel approach of intraoperative fluorescence-guided multiple sampling of GBMs and their adjacent
fluorescent SVZ [9]. Accordingly, targeting the ipsilateral SVZ by postoperative irradiation has
been shown to confer improved progression-free (PFS) and overall (OS) survival [10]. Ultimately,
several studies have reported that the proximity of GBM to the SVZ is associated with inferior
patient outcomes [11–16]. However, none of these studies considered isocitrate dehydrogenase 1
(IDH1) mutation status for survival analysis, although IDH1-mutant (IDH1-mut) gliomas comprise
a molecularly distinct GBM subgroup with favorable patient outcomes [17,18]. This has prompted
the 2016 WHO classification of CNS tumors to discriminate between IDH1-wildtype (IDH1-wt) and
IDH1-mut GBMs [19]. Moreover, conflicting data exist regarding the impact of SVZ involvement on
growth and recurrence patterns of GBM. Initially, Lim et al. reported a series of 53 GBMs assigned
to four groups dependent on their spatial relationship to the SVZ and the cortex [20]. Group I GBMs
(contacting SVZ and cortex) were most frequently multifocal at the first diagnosis and recurred in
a remote location, while group IV GBMs (neither contacting SVZ nor cortex) were always solitary
lesions with tumor recurrence exclusively adjacent to the resection cavity [20]. Accordingly, Adeberg
et al. reported that distant and multifocal progression was more common in GBMs contacting the
SVZ [21]. In contrast, Kappadakunnel et al. found the highest rate of multifocal disease in group III
GBMs (involving cortex but not SVZ), while the presence of distant tumor recurrence was independent
of tumor location [12]. Intriguingly, in a MRI analysis of 49 GBM patients, no location-dependent
recurrence pattern was observed [22]. Finally, computerized simulation of glioma growth provided
evidence that GBMs involving the SVZ do not necessarily originate in the periventricular region,
but also in the white matter with centrifugal growth and ultimate contact to the SVZ, dependent on
increasing tumor size [23]. To shed light into these conflicting data, possibly owing to small sample
sizes and the inherent molecular bias conferred by IDH1 mutations, we sought to analyze a large cohort
of 285 patients with newly diagnosed IDH1-wt GBM with respect to location-dependent survival,
growth, and recurrence patterns.

2. Results

2.1. Location-Dependent IDH1 Mutation Status and Treatment-Inherent Differences

Altogether, 302 consecutive newly diagnosed GBM patients were allocated to one of the four
location groups depicted in Figure 1A. Group I consisted of contrast-enhancing lesions (CEL) contacting
the SVZ and infiltrating the cortex, group II of CELs contacting the SVZ only, group III of CELs
contacting the cortex only, and group IV of CELs residing in the subcortical white matter, neither
contacting SVZ nor cortex. Location-dependent molecular and clinical aspects, growth and recurrence
patterns and patient outcome were investigated in each of the following comparisons: SVZ+ (groups I, II)
vs. SVZ− (groups III, IV); cortex+ (groups I, III) vs. cortex− (groups II, IV); and group II (“pure”
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SVZ involvement) vs. group III (“pure” cortical involvement). IDH1 mutations were identified in
17/302 patients (5.6%), leaving 285 IDH1-wt patients for further comparison. Noteworthy, IDH1-mut
tumors were more common among GBMs without SVZ involvement (SVZ+ vs. SVZ−: p = 0.04).
Demographic, radiographic, treatment-related and outcome data of the IDH1-wt GBM cohort are
summarized in Table 1. Radiographic classification assigned the majority of tumors to group III
(cortical involvement only; 37%) and group I (SVZ and cortical involvement; 34%) with a balanced
distribution between SVZ+ (52%) and SVZ− (48%) patients (Table 1, Figure 1B). No location-dependent
age difference was observed. Karnofsky performance score (KPS) was significantly lower in patients
with SVZ involvement (SVZ+ vs. SVZ−: p < 0.001; II vs. III: p = 0.002). At first diagnosis, gross total
resection (GTR) was achieved significantly more often in patients without SVZ involvement (group III:
47%; group IV: 45%; SVZ+ vs. SVZ−: p < 0.0001; II vs. III: p = 0.003), while intensified postoperative
treatment was independent of tumor location. At relapse, MRI was available in 187/285 patients (66%)
of whom 163 patients (87%) received any kind of salvage therapy. Neither the number of re-resections,
nor the extent of resection (EOR), showed location-dependent differences; however, the number of
non-surgical interventions (“non-surgical treatment intensity”) was significantly higher among SVZ−
GBM patients (p < 0.001).
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Figure 1. As exemplified in (A), 285 IDH1-wt GBM patients were allocated to four different location
groups based on the CEL’s contact to the SVZ and/or the cortex on pre-operative MRI. Groups were
further pooled into GBMs with (SVZ+) and without (SVZ−) SVZ involvement or with (cortex+) and
without (cortex−) cortical involvement. (B) At 1st diagnosis, most GBMs were allocated to groups III
(37%) and I (34%). (C) SVZ involvement increased from 1st diagnosis to recurrence, as depicted for
“pure” SVZ (group II) and “pure” cortical (group III) GBMs. Group III tumors now recurred as SVZ+
GBM in 38.5% of cases while only 11% of group II tumors shed their SVZ contact and recurred as SVZ−
GBM. (D) No predilection was found for each of the four groups regarding location of recurrent tumor.
Most group I and III GBMs recurred at the same location, while recurrences of group IV GBMs were
distributed throughout all groups.



Cancers 2019, 11, 122 4 of 17

Table 1. Patient Characteristics of the IDH1-Wildtype Cohort.

Patients; n (%)
Group I Group II Group III Group IV Total All SVZ +/− cortex +/− II vs. III

96 (34) 53 (18) 105 (37) 31 (11) 285 (100) p-value

Age (years); median (range) 67 (20–84) 60 (30–81) 61 (36–87) 64 (38–78) 64 (20–87) 0.095 0.404 0.218 0.443

Sex; n (male/female) 58/38 34/19 67/38 19/12 178/107 0.953 0.808 1.0 1.0

KPS pre-op; median (range) 85 (20–100) 80 (30–100) 90 (40–100) 90 (50–100) 90 (20–100) 0.002 <0.001 0.092 0.002

Survival Data

Death; n (%) 93 (97) 49 (91) 95 (90) 25 (81) 272 (95) 0.032 0.031 0.152 0.775

OS (months);
median (range) 10 (0–69) 8 (0–83) 14 (0–99) 18 (0–68) 12 (0–99) <0.001 <0.0001 0.701 0.018

PFS (months);
median (range) 4.5 (0–57) 3 (0–43) 4 (0–90) 5 (0–57) 4 (0–90) 0.197 0.189 0.978 0.271

Survival after relapse (months);
median (range)

5
(0–49)

6
(0–43)

9
(0–78)

11.5
(0–63)

8
(0–78) 0.041 0.032 0.286 0.91

LTS (> 36 months); n (%) 7 (7) 4 (8) 11 (10) 5 (16) 27 (9) 0.478 0.229 0.66 0.775

STS (> 6 < 10 months); n (%) 21 (22) 11 (20) 16 (15) 4 (13) 52 (18) 0.512 0.167 1.0 0.381

Molecular Data (n = 285)

MGMT meth; n (%)
- Yes
- No
- N/A

96 (100)
32 (33)
24 (25)
40 (42)

53 (100)
14 (26)
16 (31)
23 (43)

105 (100)
20 (19)
42 (40)
43 (41)

31 (100)
9 (29)

12 (39)
10 (32)

285 (100)
75 (26)
94 (33)

116 (41)

0.203 0.045 0.944 0.394

Radiographic Characteristics at 1st Diagnosis (n = 285)

Multifocal growth; n (%)
- CE
- FLAIR

96 (100)
14 (15)
12 (13)

53 (100)
4 (8)
3 (6)

105 (100)
18 (17)
19 (18)

31 (100)
2 (6)
2 (6)

285 (100)
38 (13)
36 (13)

0.235
0.100

0.602
0.212

0.056
0.031

0.146
0.049

Radiographic Characteristics at Recurrence (n = 187)

Imaging available; n (%)
- Yes
- No
- Alive & no recurrence

96 (100)
57 (59)
39 (41)
0 (0)

53 (100)
28 (53)
25 (47)
0 (0)

105 (100)
83 (79)
20 (19)
2 (2)

31 (100)
19 (61)
11 (35)
1 (3)

285 (100)
187 (66)
95 (33)
3 (1)

Location at recurrence; n (%)
- Group I (rec)
- Group II (rec)
- Group III (rec)
- Group IV (rec)

57 (100)
47 (82)
2 (3.5)
4 (7)
4 (7)

28 (100)
16 (57)
9 (32)
2 (7)
1 (4)

83 (100)
24 (29)
8 (9.5)
38 (46)

13 (15.5)

19 (100)
3 (16)
5 (26)
6 (32)
5 (26)

187 (100)
90 (48)
24 (13)
50 (27)
23 (12)

<0.0001

<0.0001 0.0003

<0.0001
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Table 1. Cont.

Patients; n (%)
Group I Group II Group III Group IV Total All SVZ +/− cortex +/− II vs. III

96 (34) 53 (18) 105 (37) 31 (11) 285 (100) p-value

Recurrence pattern; n (%)
- Local
- Distant
- Local & Distant

57 (100)
41 (72)

3 (5)
13 (23)

28 (100)
27 (96)

0 (0)
1 (4)

83 (100)
51 (61)
8 (10)

24 (29)

19 (100)
19 (100)

0 (0)
0 (0)

187 (100)
138 (74)

11 (6)
38 (20)

0.0001 0.078

<0.0001 0.0002

Multifocal growth; n (%)
- Multifocal CE (rec)
- Multifocal FLAIR (rec)

57 (100)
18 (32)
7 (12)

28 (100)
2 (7)
2 (7)

83 (100)
28 (34)
18 (22)

19 (100)
2 (11)
2 (11)

187 (100)
50 (27)

29 (15.5)
0.013
0.193

0.409
0.106

0.001
0.164

0.006
0.096

Treatment at 1st Diagnosis (n = 285)

EOR; n (%)
- GTR
- Partial
- Biopsy
- Unknown

96 (100)
19 (20)

62 (64.5)
1 (1)

14 (14.5)

53 (100)
10 (19)
30 (57)
6 (11)
7 (13)

105 (100)
49 (47)
42 (40)

3 (3)
11 (10)

31 (100)
14 (45)
15 (48)

0 (0)
2 (7)

285 (100)
92 (32)

149 (52)
10 (4)

34 (12)

0.0005 <0.0001 0.556 0.003

Adjuvant therapy; n (%)
- RT
- TMZ concomitant
- Stupp
- Clinical trial

96 (100)
77 (80)
46 (48)
22 (23)
29 (30)

53 (100)
44 (83)
34 (64)
12 (23)
17 (32)

105 (100)
92 (88)
63 (60)
35 (33)
40 (38)

31 (100)
27 (87)
19 (61)
10 (32)
8 (26)

285 (100)
240 (84)
162 (57)
79 (28)
94 (33)

0.289
0.509

0.064
0.451

0.773
0.492

0.199
0.488

Treatment at Recurrence (n = 187)

Salvage-therapy; n (%)
- Treatment received
- No treatment received
- Lost to follow-up
- Alive & no recurrence

57 (100)
50 (88)

30
17
0

28 (100)
23 (82)

23
8
0

83 (100)
73 (88)

19
14
2

19 (100)
17 (89)

4
9
1

187 (100)
163 (87)

76
48
3

0.008 0.004 0.037 0.002

Re-resection; n (%)
- GTR
- Partial
- Unknown

10 (20)
4 (8)
5 (10)
1 (2)

5 (22)
2 (9)
2 (9)

0

24 (33)
15 (21)

5 (7)
1 (1)

6 (35)
3 (18)
1 (6)

2 (12)

45 (28)
24 (15)
13 (8)
4 (2)

0.24 0.194 0.45 0.538

Non-surgical therapies; n (%)
- 0 (re-resection only)
- 1
- 2–5

57 (100)
2 (4)

34 (68)
14 (28)

28 (100)
1 (4)

13 (57)
9 (39)

83 (100)
1 (1)

29 (40)
43 (59)

19 (100)
0

5 (29)
12 (71)

187 (100)
4 (2)

81 (50)
78 (48)

0.013 <0.001 0.789 0.209

KPS. Karnofsky Performance Score; OS: overall survival; PFS: progression-free survival; LTS: long-term survivor; STS: short-term survivor; MGMT: O6-methylguanin-DNA-methyltransferase;
CE: contrast-enhancing; FLAIR: fluid-attenuated inversion recovery; EOR: extent or resection, GTR: gross total resection; RT: radiotherapy; TMZ: temozolomide; and Stupp: Stupp protocol
including >3 cycles TMZ.
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2.2. Location-Dependent Growth and Recurrence

Next, conflicting data in the recent literature on location-dependent GBM growth and recurrence
patterns prompted us to investigate these features in our large, molecularly homogeneous dataset.
Multifocal disease noncontiguous with the primary CEL was evaluated both on contrast-enhancing
(CE) T1-weighted (T1-w) and fluid-attenuated inversion recovery (FLAIR) images. At first diagnosis,
multifocal disease was detected mainly in GBMs with cortical involvement (group III: 17% (CE), 18%
(FLAIR); group I: 15% (CE), 13% (FLAIR)) with a significant increase in multifocal FLAIR lesions
in cortex+ vs. cortex− (p = 0.031) or group III vs. II GBMs (p = 0.049), but not in SVZ+ vs. SVZ−
GBMs (Figure 2A,B). Longitudinal analysis of all patients with MRI available at tumor relapse (n = 187)
revealed an increase in patients with multifocal disease compared to the first diagnosis, again with
a significant difference in cortex+ vs. cortex− (CE: p = 0.001; FLAIR: p = 0.164) or group III vs. II
GBMs (CE: p = 0.006; FLAIR: p = 0.096), but this time particularly in CELs (group III: 34% (CE), 22%
(FLAIR); group I: 32% (CE), 12% (FLAIR)) (Figure 2C,D). Thus, multifocal disease was primarily found
in cortical GBMs and increased with tumor relapse.
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Figure 2. Multifocal growth and distant recurrences were hallmarks of cortical IDH1-wt GBMs. At 1st
diagnosis (n = 285), multifocal FLAIR lesions were significantly increased in cortex+ vs. cortex− (A)
and group III vs. group II GBMs (B), but not in SVZ+ vs. SVZ− GBMs. At recurrence (n = 187),
multifocal CELs were significantly enhanced in cortex+ (C) and group III GBMs (D). Local and distant
recurrence patterns differed markedly within location-specific groups. Distant tumor growth remote
from the initial resection site was significantly more frequent in GBMs with cortical involvement
((E) cortex+ vs. cortex−; (F) group II vs. group III).
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While most GBMs were evenly allocated to groups III (37%) and I (34%) at first diagnosis, group I
GBMs represented the majority of tumors at relapse (48%; Table 1). Accordingly, SVZ involvement was
increased to 61% of all recurrent GBMs compared to 52% at first diagnosis (Table 1). When comparing
the two most unambiguous location groups II (SVZ involvement only) and III (cortical involvement
only), group III GBMs now were found to extend towards the SVZ and recur as SVZ+ GBMs in
38.5% of cases while only 11% of group II GBMs shed their SVZ contact and recurred as SVZ− GBMs
(Figure 1C). No predilection was found for each of the four groups regarding the location of recurrent
tumor, although most group I and III GBMs recurred at the same location (group I: 82% rec group I;
group III: 46% rec group III; Table 1, Figure 1D). In contrast, recurrences of group IV GBMs (neither SVZ
nor cortical involvement) were observed throughout all groups (Table 1, Figure 1D). Of 187 patients
with recurrent GBM, the vast majority (94%; n = 176) presented with local tumor recurrence adjacent
to the primary resection site, among those 38 patients (20%) with concurrent distant tumor growth.
Tumor growth exclusively remote from the primary resection site occurred in only 11 patients (6%)
(Table 1). Local and distant recurrence patterns differed markedly within location-specific groups
(p = 0.0001). Distant tumor growth was most commonly observed in group III (30%) and I (28%) GBMs
resulting in a significant increase in distant tumor recurrences in GBMs with cortical involvement
(cortex+ vs. cortex−: p < 0.0001; II vs. III: p = 0.0002) (Figure 2E,F).

In summary, tumor location had a distinct impact on tumor growth and recurrence: GBMs with
cortical involvement were prone to grow at multifocal sites and to recur distant from the primary
resection site.

2.3. Location-Dependent Patient Outcome

Previous studies reported that GBMs with SVZ involvement confer inferior survival [11–16]
but disregarded the IDH1 mutation status as a major prognostic confounder. Since we found
IDH1-mut tumors to be more frequent among SVZ− GBMs, we analyzed location-dependent survival
exclusively in IDH1-wt GBMs. To this end, we compared SVZ+ vs. SVZ− GBMs as well as group
II vs. III GBMs, the latter being the most unambiguous separation between GBMs with SVZ and
cortical involvement. In univariate analysis of the complete IDH1-wt cohort (n = 285), both OS and
survival after relapse differed significantly with longest median survival observed in group IV and
shortest median survival in group II patients (OS: p < 0.001; survival after relapse: p = 0.041 (Table 1,
Table S2, Figure 3A,B). Noteworthy, PFS was comparable between groups (p = 0.197). In general, SVZ
involvement conferred inferior OS (p < 0.0001) and survival after relapse (p = 0.023) (Figure 3C,D).
There was no location-dependent preponderance of STS or LTS (Table 1). Since cortical GBMs showed a
tendency to extend towards the SVZ upon tumor relapse, we included SVZ involvement at recurrence
(SVZ+ rec) into our prognostic model and found this also to be negatively associated with OS and
survival after relapse (OS: p < 0.001; survival after relapse: p < 0.001; Table S2). Beside tumor location,
well-known demographic and clinical parameters were identified as prognostic factors for OS (age at
1st diagnosis, pre-operative KPS, GTR and intensified treatment at the first diagnosis and recurrence),
PFS (age, GTR and intensified treatment at the first diagnosis), and survival after relapse (age at the
first diagnosis; GTR and intensified treatment at 1st diagnosis and recurrence) (Table S2). Interestingly,
multifocal disease at the first diagnosis also predicted inferior OS (CEL: p = 0.003; FLAIR lesions:
p = 0.028), PFS (CEL: p = 0.034; FLAIR lesions: p = 0.002) and survival after relapse (CEL: p = 0.005)
(Table S2). The important prognostic impact of SVZ involvement was confirmed by multivariate
analysis in which SVZ involvement at the first diagnosis was identified as an independent prognostic
factor of inferior OS (p = 0.008) and SVZ involvement at the recurrence of inferior survival after relapse
(p = 0.015) (Table 2).

Previous outcome studies analyzed group I and II tumors together. However, group I GBMs are
voluminous tumors extending from the SVZ throughout the white matter to the cortex and may as
well originate from the cortex spreading towards the SVZ. Consequently, we performed a survival
analysis, exclusively comparing group II (SVZ involvement only) and III (cortical involvement only)
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patients. In line with our previous findings, OS was significantly shorter for “pure” SVZ patients
(p = 0.028) (Figure 3E). Likewise, SVZ involvement at recurrence was associated with inferior survival
after relapse (p = 0.045; Table S3, Figure 3F). Consistent with the complete cohort, age, EOR, intensified
treatment as well as multifocal disease on CE and FLAIR images at 1st diagnosis were predictive of OS
and PFS, while EOR and intensified treatment at recurrence were predictive of survival after relapse
(Table S3). In multivariate analysis, SVZ involvement was confirmed as an independent prognostic
factor for OS (p = 0.007), while tumor location no longer impacted survival after relapse (Table 3).Cancers 2019, 11, x 9 of 18 
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Figure 3. Kaplan-Meier plots depicting the negative prognostic impact of SVZ involvement in
285 IDH1-wt GBM patients; numbers at risk are given. OS and survival after relapse, but not PFS
differed significantly when comparing all location groups (A,B), SVZ+ vs. SVZ− GBMs (C,D) and
group II vs. group III GBMs (n = 155) (E,F). Shortest median OS and survival after relapse were observed
in group I (10 and 5 months) and group II (8 and 6 months) patients. For comparison of survival after
relapse in group II vs. group III GBMs, SVZ involvement at recurrence (SVZ+/− rec) was valued.
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Table 2. Multivariate Analysis of Overall Survival (n = 253), Progression-free Survival (n = 253),
and Survival after Relapse (n = 150) for the Complete IDH1-Wildtype Cohort.

Clinical and Radiographic Factors p-Value HR 95% CI

Overall Survival

SVZ+ (1st diagnosis) 0.008 ** 1.434 1.099–1.872

Age (above median) 0.036 * 1.343 1.02–1.77

KPS pre-operative 0.110 0.993 0.985–1.002

EOR: STR (1st diagnosis) <0.0001 *** 1.923 1.423–2.599

Intensified Treatment (1st diagnosis) <0.0001 *** 0.302 0.221–0.412

Multifocal disease CE (1st diagnosis) 0.022 * 1.56 1.067–2.280

Progression-Free Survival

SVZ+ (1st diagnosis) 0.529 0.918 0.703–1.199

EOR: STR (1st diagnosis) <0.0001 *** 1.811 1.348–2.433

Intensified Treatment (1st diagnosis) <0.0001 *** 0.431 0.322–0.579

Multifocal disease FLAIR (1st diagnosis) 0.013 * 1.614 1.108–2.350

Survival after Relapse

SVZ+ (at relapse) 0.015 * 1.575 1.092–2.273

Cortex+ (at relapse) <0.001 *** 2.069 1.355–3.157

Treatment Intensity (at relapse) <0.001 *** 0.768 0.67–0.88

Multifocal disease FLAIR (at relapse) 0.097 1.538 0.925–2.558

HR: Hazard ratio; CI: confidence interval; significance levels: * p < 0.05; ** p < 0.01; *** p < 0.001. SVZ+ (1st diagnosis)
[vs. SVZ−]; age (median splitted; 64 years); KPS pre-operative (numeric variable); EOR: STR (subtotal resection)
[vs. GTR]; intensified treatment at 1st diagnosis (Stupp protocol including > 3 cycles TMZ); multifocal disease CE;
multifocal disease FLAIR; SVZ+ (at relapse) [vs. SVZ−]; cortex+ (at relapse) [vs. cortex−]; treatment intensity at
relapse (continuous variable); and multifocal disease FLAIR (at relapse).

Table 3. Multivariate Analysis of Overall Survival (n = 140), Progression-free Survival (n = 140) and
Survival after Relapse (n = 59) for Group II versus Group III IDH1-Wildtype GBM.

Clinical and Radiographic Factors p-Value HR 95% CI

Overall Survival

Location group II (1st diagnosis) 0.007 * 1.725 1.164–2.557

Age (above median) <0.0001 *** 2.531 1.690–3.788

KPS pre-operative 0.139 1.009 0.997–1.021

EOR: STR (1st diagnosis) <0.001 *** 2.15 1.452–3.184

Intensified Treatment (1st diagnosis) <0.0001 *** 0.271 0.179–0.412

Progression-Free Survival

Location group II (1st diagnosis) 0.432 0.848 0.563–1.278

EOR: STR (1st diagnosis) 0.003 ** 1.829 1.233–2.712

Intensified Treatment (1st diagnosis) <0.0001 *** 0.406 0.270–0.611

Multifocal disease FLAIR (1stdiagnosis) 0.104 1.519 0.918–2.514

Survival after Relapse

Location group II (at relapse) 0.148 0.623 0.328–1.183

Treatment Intensity (at relapse) 0.002 ** 0.702 0.560–0.879

Multifocal disease FLAIR (at relapse) 0.005 ** 2.966 1.399–6.291

HR: Hazard ratio; CI: confidence interval; significance levels: * p < 0.05; ** p < 0.01; *** p < 0.001. Location group
II (1st diagnosis) [vs. group III]; age (median splitted; 64 years); KPS pre-operative (numeric variable); EOR: STR
(subtotal resection) [vs. GTR]; intensified treatment at 1st diagnosis (Stupp protocol including > 3 cycles TMZ);
multifocal disease FLAIR; Location group II (at relapse) [vs. group III]; treatment intensity at relapse (continuous
variable); and multifocal disease FLAIR (at relapse).



Cancers 2019, 11, 122 10 of 17

In conclusion, SVZ involvement both at 1st diagnosis and recurrence needs to be considered as an
important prognostic factor for OS and survival after relapse in IDH1-wt GBM.

3. Discussion

GBM is characterized by high molecular heterogeneity affecting clinical and radiographic
presentation, treatment response, and survival. The underlying mechanisms are still poorly understood.
Therefore, we interrogated if tumor location, particularly proximity to the SVZ, contributes to
heterogeneous growth, recurrence patterns and patient outcome [16,20]. It has consistently been
shown that IDH1 mutations entail a molecularly and prognostically distinct GBM subtype [17,18].
Interestingly, in this study, IDH1-mut tumors were significantly enriched in SVZ− GBMs. This is in line
with an immunohistochemical study that detected IDH1 mutations more frequently among group III
GBMs, admitted that newly diagnosed and secondary GBMs were analyzed together [24]. Our finding
contributes to the hypothesis of location-specific molecular signatures, but also stresses the need to
stratify any location-dependent survival analysis for IDH1 mutation status. To eliminate this molecular
bias, we only analyzed IDH1-wt GBM patients (n = 285) and found remarkable location-specific
differences. First, growth and recurrence patterns were dependent on cortical involvement. Multifocal
growth, both at first diagnosis (FLAIR lesions) and recurrence (CEL), was significantly enhanced in
cortex+ and group III GBMs. Additionally, distant recurrences were observed more often in these
tumors. While SVZ involvement was increased from newly diagnosed to recurrent tumors, it did
not affect growth and recurrence patterns. In contrast, SVZ involvement at the first diagnosis and
recurrence was found to be an independent prognostic factor for inferior OS (SVZ+ GBMs, group II
GBMs) and survival after relapse (SVZ+ GBMs), while cortical involvement did not impact on survival.

Our finding that cortical involvement predicts tumor growth and recurrence resolves the
ambiguity of previous studies. Lim et al. reported that group I tumors were most often multifocal at
first diagnosis [20], whereas Kappadakunnel et al. found the highest rate of multifocal disease, both at
first diagnosis and recurrence, in group III tumors [12]. This might account to small sample sizes but
also to the fact that Kappadakunnel et al. [12] only analyzed CELs, while Lim et al. [20] considered,
but did not discriminate for, CE and FLAIR lesions. In our study, multifocal growth was comparably
high in group I and III GBMs (CE: 15% and 17%; FLAIR: 13% and 18%) in contrast to only 6% of
group II and IV GBMs and supports the data by Kappadakunnel et al. [12]. Indeed, although Lim et al.
concluded that multifocality is characteristic of SVZ involvement, they encountered multifocal growth
more often in tumors with (group I: 56%, group III: 29%) than without (group II: 11%, group IV: 0%)
cortical involvement. In this context, it is impossible to compare the finding by Adeberg et al. that
multifocal progression was more common in SVZ+ GBMs since this study discriminated only by SVZ
involvement, but not by location-specific groups [21]. Noteworthy, group I tumors extend from the
SVZ to the cortex and therefore can be assigned both to SVZ+ and cortex+ GBMs although their true
spatial origin remains unknown. In fact, a computerized simulation model of GBM growth suggested
that a tumor invading both cortex and SVZ more likely originates from the subcortical white matter
than from the SVZ and that SVZ involvement is rather a matter of increasing tumor size [23]. This
is in line with our own findings that group I GBMs represented the majority of tumors at relapse as
opposed to group III GBMs at first diagnosis and that SVZ involvement increased from first diagnosis
to recurrence. To overcome this potential bias for our radiographic and survival analysis, “pure”
cortical (group III) and “pure” SVZ (group II) tumors were compared separately, still analyzing a
significant number of patients (n = 158). Consistent with the complete cohort, we found a significant
increase of multifocal lesions in “pure” cortical GBMs. The incidence of multifocal lesions in GBM is
reported to range between 10–15% [25], but can be as high as 35% [26,27], and is considered exceedingly
aggressive with significantly worse outcome compared to unifocal lesions [25]. This is supported
by our multivariate survival analysis in which multifocal disease at first diagnosis independently
predicted shorter PFS and OS (complete cohort), while multifocal disease at tumor relapse predicted
shorter survival after relapse (group II vs. III). There is still uncertainty whether multifocal lesions
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arise from the same precursor cell. Two recent publications applying extensive genomic analyses
obtained conflicting results, either describing that multiple lesions are derived from different clones
with heterogeneous drug response [28] or reporting that multiple lesions are of monoclonal origin and
share an unexpected high frequency of genetic alterations in core regulatory pathways (RTK/PI3K,
p53, RB), which may account for their highly invasive phenotype [29]. In this regard, our finding that
multifocal growth is location-dependent may indicate that these tumors are derived from different
location-specific cells of origin with varying migratory potential.

GBM is characterized by its inevitable recurrence. In more than 80 %, tumors recur adjacent to
the initial resection site [30,31], as confirmed by our radiographic analysis. In 20% of all cases,
tumors recurred both locally and remote from the initial resection site while exclusive distant
tumor recurrence was infrequent (6%). However, our analysis adds a remarkable location-specific
picture since distant tumor recurrence was more frequently encountered in GBMs with cortical
involvement (cortex+ GBMs, group III GBMs). In this respect, previous location studies reported
ambiguous findings: Two small-sized studies did not observe any location-dependent recurrence
pattern [12,22], while others reported that distant recurrence was more common in GBMs
with SVZ involvement, but did not discriminate between all four location-specific groups [21].
Thus far, O6-methylguanin-DNA-methyltransferase (MGMT) promoter methylation [32], extensive
resections [33], and large tumor volumes [34] were identified as risk factors for distant tumor recurrence.
Our study identified cortical involvement (i.e., groups I (the largest tumors) and III (the highest
frequency of GTR)) as another risk factor. From a molecular point of view, distant recurrence may
reflect a highly invasive phenotype attributed to a distinct (possibly location-dependent) cell of origin,
but experimental evidence is sparse. A recent longitudinal analysis found distant GBM recurrences to
have a low rate of retention of the primary tumor’s driver mutations, indicating a divergent, rather
than a clonal, evolution [35]. This finding is critical for guiding targeted therapies at relapse and
advocates repeat surgery, particularly in distant recurrences. For prevention of tumor relapse, it is
worth elucidating molecular drivers of distant recurrences for which cortical GBMs, based on our
findings, seem to be the ideal workhorse.

Despite its impact on tumor growth and recurrence, cortical involvement was not associated
with survival. In contrast, SVZ involvement at first diagnosis and recurrence was predictive of
inferior OS and survival after relapse. The negative prognostic impact of SVZ involvement has
been described before [16], but our study provides robust survival data from a large cohort that
strictly excluded confounding IDH1 mutations [17,18]. Moreover, we applied multivariate survival
analysis in which SVZ involvement at first diagnosis was identified as an independent negative
prognosticator of OS, and for the first time, SVZ involvement at tumor relapse as an independent
negative prognosticator of survival after relapse. Moreover, to exclude a potential bias by group I GBMs
that may arise from the cortex, the subcortical white matter or the SVZ, we separately analyzed “pure”
SVZ (i.e., group II) and “pure” cortical (i.e., group III) tumors, a comparison that has been disregarded
by previous outcome studies. Importantly, SVZ involvement at the first diagnosis remained an
independent negative prognosticator of OS. Moreover, SVZ involvement at tumor recurrence conferred
significantly shorter survival after relapse (SVZ+ rec: 8 months; SVZ− rec: 13 months; p = 0.045),
but did not translate into an independent prognostic factor in multivariate analysis. The prognostic
significance of SVZ involvement can be best illustrated by comparing our survival data to the most
recent “historic control”: In the control arm of a multicenter trial on tumor-treating fields in newly
diagnosed GBM [36], patients receiving standard radio-chemotherapy experienced a median PFS and
OS of 4 and 16 months, respectively. In our study, analyzing patients with radio-chemotherapy only
(n = 79), SVZ involvement conferred comparable outcomes (PFS = 6 months; OS = 18 months), while
median PFS and OS were meaningfully prolonged to nine and 24 months in SVZ− GBM patients
(Figure 4A,B). It has been hypothesized that the poor prognosis associated with SVZ involvement
results from an impaired clinical condition and distinct therapeutic challenges encountered with this
specific tumor location. Indeed, well-known prognostic factors differed significantly between SVZ+
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and SVZ− GBMs since pre-operative KPS, the rate of GTR at the first diagnosis and non-surgical
treatment intensity at recurrence were significantly lower in SVZ+ GBMs. Noteworthy, PFS and
OS were comparable in patients undergoing GTR regardless of SVZ involvement (SVZ+ GBM:
PFS = 6.5 months; OS = 15.5 months; SVZ− GBM: PFS = 6 months; OS = 16.5 months; and Figure 4C,D),
underlining the need to strive for maximum safe tumor resection even in tumors involving the lateral
ventricles. Nevertheless, all these confounders were included into the multivariate model in which
SVZ involvement was confirmed as a robust negative prognostic factor. Admittedly, MGMT promoter
methylation status was not considered for multivariate analysis because of missing data in 41% of
patients (Table 1) but OS was comparable for patients with (15 months) and without (14 months)
methylated MGMT promoter (p = 0.255). Therefore, it is reasonable that SVZ involvement does not
merely influence survival by the accumulation of negative clinical prognostic factors, but also by its
inherent tumor biology. As preliminary evidence, we were recently able to identify molecular markers
that were differentially expressed in SVZ+ GBM and conferred a prognostic impact [37].
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Figure 4. When analyzing IDH1-wt GBM patients with intensified adjuvant treatment (i.e., completion
of concomitant radio-chemotherapy and ≥ 3 cycles of TMZ-based chemotherapy) only (n = 79), absence
of radiographic SVZ involvement conferred a non-significant, but meaningful prolongation of OS
(24 vs. 18 months; A) and PFS (9 vs. 6 months; B) that also compared favorable to the outcomes of
the most recent “historic control” derived from a multicenter trial on tumor-treating fields in newly
diagnosed GBM [36] (OS = 16 months; PFS = 4 months; data not shown). (C,D) Kaplan-Meier plots
depicting the prognostic significance of SVZ involvement in 285 IDH1-wt GBM patients on OS (C) and
PFS (D) when stratified for EOR. Noteworthy, the negative prognostic impact of SVZ involvement can
be, in part, resolved by GTR since OS and PFS were comparable in patients undergoing GTR regardless
of SVZ involvement (OS: SVZ+GBM 15.5 months vs. SVZ−GBM = 16.5 months; PFS: SVZ+GBM
6.5 months vs. SVZ−GBM 6 months). A tabular overview of numbers at risk is given below each
Kaplan-Meier plot.
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4. Materials and Methods

4.1. Patient Cohort

Our institutional database was searched retrospectively for all patients treated for newly
diagnosed GBM at the Department of Neurosurgery (University Hospital Heidelberg, Germany)
from 2004 to 2011 for whom demographic, treatment-related and outcome data were available
and preoperative MRI was accessible on the Picture Archiving and Communication System (PACS).
In accordance with the Declaration of Helsinki and the research proposals approved by the Institutional
Review Board at Heidelberg Medical Faculty, informed consent was obtained in all cases. (Ethical
code: S-005/2003, permission date: 31 March 2003). Histological diagnosis was confirmed by
neuropathological review. IDH1 mutation and MGMT promoter methylation status was evaluated
as described [2,38,39]. 302 consecutive patients were identified, 285 of those (94.4%) lacking IDH1
mutations. Except for patients with biopsies, EOR was determined for each patient on MRI scans
taken within 72 hours post surgery and was valued “complete” (gross total resection = GTR) if
no residual contrast enhancement was detected; otherwise, EOR was classified as “subtotal” or
“unknown” if no postoperative MRI was available. Adjuvant treatments comprised radiotherapy,
concomitant and/or stand-alone TMZ-based chemotherapy as well as treatment within clinical trials.
Intensified adjuvant treatment (“Stupp regimen”) was defined as completion of ≥ 3 cycles of TMZ
after concomitant radio-chemotherapy. Definition of tumor progression/recurrence was based on
the Response Assessment in Neuro-Oncology (RANO) criteria [40] with salvage therapies based on
interdisciplinary decision. Salvage treatments comprised re-resection, re-irradiation, cytotoxic (TMZ,
nitrosoureas, carboplatin), antiangiogenic (bevacizumab), or targeted therapies. Primary outcome
measures were OS, PFS, and survival after relapse. OS was defined as the time from the first histologic
diagnosis until death or last follow-up and PFS as the time from first histologic diagnosis to radiographic
signs of progression/recurrence or death. Survival after relapse was defined as the time from radiographic
signs of progression/recurrence until death. Patients still alive in June 2016 were censored. LTS were
defined by an OS of > 36 months [2], while STS lived between six and 10 months after diagnosis.

4.2. Radiographic Analysis

For every patient, preoperative and follow-up MRI with standard sequences comprising T1-w,
FLAIR and post contrast three-dimensional MPRAGE T1-w images in at least the axial plane with
coronal and sagittal reformations were acquired on 1.5 or 3.0 Tesla scanners. As proposed [20],
radiographic classification of GBMs according to their vicinity to the SVZ was performed on
immediately preoperative CE T1-w MRI by two independent reviewers (CJ, BH). SVZ involvement
was valued if the CEL contacted the lining of the ventricle. Group I consisted of tumors contacting
the SVZ and infiltrating the cortex, group II of tumors contacting the SVZ only, group III of tumors
contacting the cortex only and group IV of tumors residing in the subcortical white matter, neither
contacting SVZ nor cortex (Figure 1A). Multifocal disease noncontiguous with the primary CEL was
evaluated both on CE T1-w and FLAIR images at 1st diagnosis and at recurrence. At recurrence,
distant tumor growth was defined as a new CEL remote from the initial resection cavity. Patients with
infratentorial tumor location were precluded from analysis. For comparison of location-dependent
outcome, growth and recurrence patterns, patients were further categorized into SVZ+ (groups I, II)
versus SVZ− (groups III, IV) GBMs and cortex+ (groups I, III) versus cortex− (groups II, IV) GBMs
(Figure 1A). Moreover, group II (involving the SVZ only) and group III (involving the cortex only)
tumors were compared separately since this discriminates best between GBMs with and without
SVZ involvement.

4.3. Statistical Analysis

GraphPad Prism version 6.0c was used for statistical analysis of clinico-pathological patient data
as well as growth and recurrence patterns. Survival was analyzed in a Cox proportional hazards model
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in the R package “survival”. Covariate inclusion was defined by stepwise forward selection conducted
by the stepAIC algorithm in the R package “MASS” (covariates listed in Table S1). Only cases with
all covariates available were considered for multivariate analysis. Significance threshold was set at
p < 0.05.

5. Conclusions

In this large-scale analysis of IDH1-wt glioblastomas, tumor location was associated with a distinct
growth and recurrence pattern and patient outcome, significantly contributing to the heterogeneous
nature of this disease. While the underlying molecular factors still need to be identified, these findings may
help to tailor location-dependent treatment strategies and allow for individualized prognostication based
on factors easily assessable on pre-operative MRI. SVZ involvement, both at the first diagnosis and tumor
relapse, proved to be a robust prognostic factor that should be incorporated in future outcome studies.
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WHO World Health Organization
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LTS long-term survivor
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NPC neural progenitor cell
SVZ subventricular zone
PFS progression-free survival
OS overall survival
IDH1 isocitrate dehydrogenase 1
CEL contrast-enhancing lesion
KPS Karnofsky performance score
GTR gross total resection
EOR extent of resection
STS short-term survivor
MGMT O6-methylguanin-DNA-methyltransferase
CE contrast-enhancing
T1-w T1-weighted
FLAIR fluid-attenuated inversion recovery
RT radiotherapy
HR hazard ratio
CI confidence intervall
PACS Picture Archiving and Communication System
RANO Response Assessment in Neuro-Oncology
MPRAGE magnetization-prepared rapid gradient-echo
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