## Supplementary Material

## Computerized Analysis of Cytologic Features

Digital cytological images in matrices of color pixels were collected for computerized analysis. The computerized analysis was performed using AmCAD-CA (AmCad BioMed Corp., Taipei, Taiwan). The detailed algorithm used by the software can be seen in the patent [1] filed by the software company. Briefly, the pixel values in the Red-Green-Blue (RGB) color space were first converted into the color space of hue $(\mathrm{H})$, saturation (S), and value (V), with $H_{i j}, S_{i j}$, and $V_{i j}, i=1, \ldots, I$ and $j=1, \ldots, J$, respectively, representing the $\mathrm{H}, \mathrm{S}$, and V values of the pixel at position $(i, j)$ of the $I \times J$ matrix image. Based on color values, pixels were grouped using Otsu's method into 3 sets, i.e., nucleus, cytoplasm, and background sets $[2,3] . N, C$, and $B$ denote the sets of nucleus, cytoplasm, and background, respectively, and $n_{N}, n_{c}$, and $n_{B}$ denote the numbers of pixels grouped in $\boldsymbol{N}, \boldsymbol{C}$, and $\boldsymbol{B}$, respectively. The cytological features, including nuclear-cytoplasmic ratio (NCR), nuclear-cytoplasmic hue ratio (NCHR), nuclear-cytoplasmic saturation ratio (NCSR), and nuclear-cytoplasmic value ratio (NCVR), were then calculated using the following formulae

$$
\mathrm{NCR}=\frac{n_{N}}{n_{C}} ; \mathrm{NCHR}=\frac{\sum_{(i, j) \in N} H_{i j} / n_{N}}{\sum_{(i, j) \in C} H_{i j} / n_{C}} ; \mathrm{NCSR}=\frac{\sum_{(i, j) \in N} S_{i j} / n_{N}}{\sum_{(i, j) \in C} S_{i j} / n_{C}} ; \text { and } \mathrm{NCVR}=\frac{\sum_{(i, j) \in N} V_{i j} / n_{N}}{\sum_{(i, j) \in C} V_{i j} / n_{C}} .
$$

With the color pixels of cytoplasm and nuclei differentiated, the discrete nuclei were further segmented using the Canny edge detection method $[4,5]$. The segmented margin of the nuclei could then be used for statistical values, such as the sample mean (M), the sample standard deviation (SD), and the coefficient of variation ( $\mathrm{CV}=\mathrm{SD} / \mathrm{M}$ ) of the morphological features including nuclear size, circularity, ellipticity, elongation, nuclear polarity, inclusion, and overlapping. With the total number of pixels within the margin of the $k$ th discrete nucleus represented by $n_{k}$, where $k=1, \ldots, K$, and $K$ were the total numbers of segmented discrete nuclei, the mean nuclear size (MNS) and standard deviation of nuclear size (SDNS) were then calculated using:

$$
\mathrm{MNS}=\frac{\sum_{k=1}^{K} n_{k}}{K} ; \text { and SDNS }=\frac{\sum_{k=1}^{K}\left(n_{k}-M N S\right)^{2}}{K-1} .
$$

With the perimeter of the $k$ th discrete nucleus consisting of $p_{k}$ pixels, the circularity of the $k$ th nucleus was quantified as:

$$
C_{k}=\frac{4 \pi n_{k}}{p_{k}^{2}}
$$

The mean nuclear circularity (MNC) and standard deviation of nuclear circularity (SDNC) were calculated using:


With $a$ and $b$ as the long and short axis of the nucleus, the ellipticity of the $k$ th nucleus was quantified as: Ellip $_{k}=\frac{4 \pi n_{k}[3(a+b)-2 \sqrt{a b}]}{a b p_{k}}$.

The mean nuclear ellipticity (MNEllip) and standard deviation of nuclear ellipticity (SDNEllip) were calculated using:

$$
\text { MNEllip }=\frac{\sum_{k=1}^{K} \text { Ellip }_{k}}{K} \text { and SDNEllip }=\frac{\sum_{k=1}^{K}\left(\text { Ellip }_{k}-\text { MNEllip }^{2}\right)^{2}}{K-1} .
$$

The elongation of the kth nucleus was quantified as:

$$
\text { Elon }_{k}=\sqrt{1-\left(\frac{b}{a}\right)^{2}}
$$

The mean of nuclear elongation (MNElon) and standard deviation of nuclear elongation (SDNElon) were calculated using:


For quantification, the area of the overlapped nuclei (nov) was first calculated by subtracting the total number of pixels in the nuclear area by the total number of pixels in the area of discrete nuclei:

$$
n_{O N}=n_{N}-\sum_{k=1}^{K} n_{k}
$$

The overlapping index was then defined as the ratio of overlapped nuclei to the total nuclear area:
Overlapping Index $(\mathrm{OI})=\frac{n_{O N}}{n_{N}}$.
Similarly, to quantify cytoplasmic inclusion bodies, the number of pixels in the area of cytoplasm within nuclei ( $n \subset N$ ) was first calculated and the index was then defined as the ratio:

$$
\text { Inclusion Index }(\mathrm{II})=\frac{n_{C N}}{n_{N}}
$$

For quantification of nuclear polarity, the angle of the long axis of the $k$ th nucleus ( $\theta_{k}$ ) was first calculated. The index of nuclear polarity (NP) was then defined as the variability of nuclear long-axis angles and calculated using the sample standard deviation of $\theta_{k}$.

## Reference

1. Chen A, Hsiao YH, Chang TC, Jan IS, Shih SR \& Wang HM. Cytological image processing device, and method for quantifying characteristics of cytological image. United States: Google Patents; 2018.
2. Fu KS \& Mui JK. A survey on image segmentation. Pattern Recognition. 1981 13 3-16.
3. Jain AK. Data clustering: 50 years beyond K-means. Pattern recognition letters. 201031 651-666.
4. Bergmeir C, Garcia Silvente M \& Benitez JM. Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework. Comput Methods Programs Biomed. 2012107 497-512.
5. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 19868 679-698.
