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Abstract: Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer. Emerging
evidenced suggests that both genetics and epigenetic factors play a role in the pathogenesis of TNBC.
However, oncogenic interactions and cooperation between genomic and epigenomic variation have
not been characterized. The objective of this study was to deconvolute the genomic and epigenomic
interaction landscape in TNBC using an integrative genomics approach, which integrates information
on germline, somatic, epigenomic and gene expression variation. We hypothesized that TNBC
originates from a complex interplay between genomic (both germline and somatic variation) and
epigenomic variation. We further hypothesized that these complex arrays of interacting genomic
and epigenomic factors affect entire molecular networks and signaling pathways which, in turn,
drive TNBC. We addressed these hypotheses using germline variation from genome-wide association
studies and somatic, epigenomic and gene expression variation from The Cancer Genome Atlas
(TCGA). The investigation revealed signatures of functionally related genes containing germline,
somatic and epigenetic variations. DNA methylation had an effect on gene expression. Network and
pathway analysis revealed molecule networks and signaling pathways enriched for germline, somatic
and epigenomic variation, among them: Role of BRCA1 in DNA Damage Response, Hereditary Breast
Cancer Signaling, Molecular Mechanisms of Cancer, Estrogen-Dependent Breast Cancer, p53, MYC
Mediated Apoptosis, and PTEN Signaling pathways. The investigation revealed that integrative
genomics is a powerful approach for deconvoluting the genomic-epigenomic interaction landscape in
TNBC. Further studies are needed to understand the biological mechanisms underlying oncogenic
interactions between genomic and epigenomic factors in TNBC.
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1. Introduction

Triple-negative breast cancer (TNBC) is a heterogeneous disease, characterized by aggressive
clinical behavior, poor prognosis, a significantly increased risk of relapse, and shorter survival
rates than patients affected by other molecular subtypes of breast cancer [1–3]. TNBC is clinically
defined as tumors that lack expression of the estrogen receptor (ER), progesterone receptor (PR),
and HER2 amplification [1–3]. It affects primarily younger premenopausal women and tends to have
higher incidences in African American women, although recent studies reported no differences in
clinical outcomes between Caucasian and African American women after adjusting for socioeconomic
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factors [2–4]. Currently, there are no effective targeted therapies. Cytotoxic chemotherapy remains
the only effective therapeutic modality for this aggressive and often lethal type of breast cancer [3].
Therefore, there is an urgent need for the discovery of molecular markers and targets for the development
of novel targeted therapeutics.

Our understanding of the molecular basis of TNBC and development of effective targeted therapies
has been hampered by the complexity and multifactorial etiology of the disease. Genes play a major
role in the pathogenesis of TNBC [4–6]. The majority of TNBC patients carry mutations in the
highly penetrant cancer susceptibility genes BRCA1 and BRCA2 [2–4]. In unselected TNBC cases,
the prevalence of pathogenic germline BRCA1 and BRCA2 mutations is approximately twice as high as in
breast cancer overall [5]. Apart from BRCA1 and BRCA2, the rarely mutated breast cancer predisposition
genes PALB2 and FANCM have been associated with TNBC [5]. Multigene panel testing has also
identified genes with high and moderate penetrance associated with an increased risk of developing
TNBC [6]. However, although genes may play a strong role, molecular epidemiology studies suggest
that TNBC risk is largely determined by interactions between genes and environment. Increased
attention has focused on epigenetic variation such as DNA methylation and TNBC because enduring
epigenetic landmarks define the tumor microenvironment [7,8]. Moreover, because DNA methylation
regulates gene expression, aberrant methylated genes could serve as complementary diagnostic tools,
prognostic markers and predictors of response to treatment [8–10]. Thus, a critical knowledge gap,
and an unmet medical need, is understanding the interplay between genetic (both germline and
somatic) variation and epigenomic variation in TNBC.

Advances in microarray technology have enabled molecular classification of subtypes of
TNBC [11–13]. At least, several clinically validated prognostic assays including the Prosigna
PAM50 [14,15], MammaPrint [16] and Oncotype DX [16], have been developed using transcription
profiling. However, although these primary analyses have been successful in identifying prognostic
markers, they have been unsuccessful in establishing the causal association between gene expression
and the disease. High-throughput genotyping using genome-wide association studies (GWAS) has
enabled discovery of genetic variants associated with an increased risk of developing TNBC [17–19].
The recent surge of next generation sequencing of tumor genomes by large multicenter projects, such as
The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), have
generated comprehensive catalogues of somatic mutations associated with TNBC [20,21]. The clonal
and mutational spectrum of primary TNBCs have also been characterized [22]. We recently reported
oncogenic interactions between genes containing germline and somatic mutations in TNBC [17].

However, to date, information on germline, somatic and gene expression variation has not been
leveraged and integrated with DNA methylation data to map the interplay between genetic and
epigenetic variation in TNBC. This limited progress must be balanced against the recognition that
genomic and epigenomic alterations have long been considered as two separate molecular mechanisms
participating in TNBC pathogenesis. The objective of this investigation is to deconvolute the genomic
and epigenomic interaction landscape, and to discover and characterize the molecular networks and
signaling pathways perturbed by these interactions in TNBC. Our working hypothesis was that TNBC
originates from a complex interplay between genomic (both germline and somatic) variation and
epigenomic variations. We further hypothesized that these complex arrays of interacting genomic
and epigenomic factors affect entire molecular networks and signaling pathways which, in turn, drive
TNBC. We addressed these hypotheses by integrating information on germline variation from GWAS
with information on somatic and epigenomic variation from TCGA using gene expression as the
intermediated phenotype.

2. Materials and Methods

The scientific premise of this investigation is that the development and progression of TNBC is
complex and involves the interplay between genetic and epigenetic factors. This complexity challenges
the traditional use of single-platform study design, and calls for an integrated approach to data
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analysis for the discovery of clinically actionable biomarkers and targets for the development of novel
therapeutics. Here, we present a novel integrative analysis strategy for integrating information on
germline, somatic and epigenetic variation using gene expression data as the intermediate phenotype.
The overall project design and integrated analysis workflow is presented in Figure 1. Information about
the original data sets used in this study is presented in Table 1. Additional information on sources of
data, data processing, quality control, analysis and integration is provided in the sections below.
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Figure 1. Project design and integrated genomic analysis workflow integrating information on germline,
somatic and epigenomic variations using gene expression data as the intermediate phenotype.

Table 1. Characteristics and distribution of the original data sets used in the study.

Data Type
TNBC

Genes or Probes Tumor Samples Control Samples

Gene expression 60,484 Probes 110 113
Methylation 485,578 probes 83 83

Somatic 7659 genes 110 113
GWAS * 825 genes >300,000 >300,000

* Sample estimates based on genome-wide association studies (GWAS) catalogue and GWAS reports, from which
the germline and somatic mutation information was derived, and represent all breast cancers. Note that the original
GWAS Reports are provided in Supplementary Table S1.
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We used publicly available data, which has been well catalogued, annotated and linked with
clinical information. The methods of data generation and technology platforms used, including
experimental protocols, have been well documented by the data originators as documented below.
Here, we describe the sources of data used, methods of data processing, analysis, and integration
strategies used. Our analysis approach assumes that TNBC is an emergent property of genomically
and epigenomically altered functionally related genes interacting in gene regulatory networks and
signaling pathways. Additionally, our analysis approach uses DNA methylation as a surrogate variable
representing environmental perturbations, because enduring epigenetic landmarks define the cancer
microenvironment [7].

2.1. Germline Mutations and Associated Genes

We used germline variation information from a comprehensive catalogue which was compiled
using published reports on GWAS that we have developed and published [17,23]. Details on methods
used in data collection have been reported in our earlier published reports [17,23], which were based
on guidelines proposed by the Human Genome Epidemiology Network for systematic review of
genetic associations [24–28]. The information in our catalogue was supplemented by information
from the GWAS Catalog, which delivers a continuously updated high-quality curated collection of all
published genome-wide association studies [29]. The complete data set included SNP identification
numbers (rs-IDs) linked with gene names, and their chromosome positions and evidence of association
as determined by the GWAS P-value. The combined data set included 825 genes containing genetic
variants associated with an increased risk of developing breast cancer, derived from GWAS reports
covering a cohort population of >300,000 cases and >300,000 controls (Table 1) [17,23,29]. It is worth
noting that GWAS adopted a case-control study design, and the majority (>95%) of GWAS have not
been breast cancer type-specific. Accordingly, in this investigation, we followed the same design
approach by considering all genetic variants and genes associated with an increased risk of developing
breast cancer. A complete list of genetic variants and genes associated with an increased risk of
developing breast cancer, along with original sources or published reports from which they were
derived, is presented in Table S1 provided as supplementary data to this report.

2.2. Gene Expression and DNA Methylation Data and Somatic Mutation Information

We used gene expression and DNA methylation (array-based) data, somatic mutation and clinical
information from the TCGA (https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga) [30]. We downloaded somatic mutation, gene expression and DNA methylation data,
along with clinical information from TCGA, via the Genomics Data Commons (https://gdc.cancer.gov/)
data portal using the data transfer tool [31]. The original data set consisted of 223 samples distributed
as follows: 110 tumor samples from patients diagnosed with TNBC and 113 control samples (Table 1).
Gene expression data was generated using RNA-Sequencing using the Illumina HiSeq250. The original
data matrix included 60,484 probes (Table 1). DNA methylation data was generated using the Illumina
HumanMethylation450 BeadChip, which has been widely used for quantifying DNA methylation and
has been validated [32]. The DNA methylation data matrix included 485,578 probes (Table 1). The data
was processed for analysis using the DNA methylation data processing and analysis protocols [33,34]
implemented in our bioinformatics pipeline for analysis of DNA methylation data. The pipeline is
optimized to take into account the convolution of biological and technical variability, and the presence
of a signal bias between Infinium I and II probe design types to correct for the probe design type.
This was done to eliminate bias because the amplitude of the measured methylation change depends
on the underlying chemistry, consistent with Illumina data analysis protocol [32,33]. The data was
normalized using quantile normalization implemented in the R Package [32–35] and was also corrected
for batch effects consistent with Illumina data analysis protocol [32–35].

DNA methylation data was derived from the same patient population as gene expression data.
We linked methylation samples with gene expression samples using clinical information to identify

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://gdc.cancer.gov/
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samples with both measurements. Linking gene expression data with methylation data resulted in
83 patients diagnosed with TNBC tumors and 83 controls with information on both gene expression
and DNA methylation (Table 1). As the same TCGA barcode structure was used for both clinical
and molecular data, we used the barcodes structure to integrate patient-based clinical data with
sample-based somatic mutation data. Somatic mutation data was processed to identify the number of
genes containing somatic mutations and the number of somatic mutation events per gene. From this
processing step, we created a catalogue of 7659 somatic mutated genes (Table 1) used in the analysis.
A comprehensive list of somatic mutated genes and number of somatic mutation events per gene is
presented in Supplementary Table S2.

2.3. Bioinformatics Analysis of Gene Expression and DNA Methylation Data

The data collection, processing and analysis workflow are presented in Figure 1. Gene expression
and DNA methylation data were processed and normalized using the Bioconductor R-package
LIMMA [36]. The gene expression data matrix was filtered to remove rows with missing data, such that
each row has at least ≥30% data. After data preprocessing, we generated a dataset consisting of
166 samples (83 TNBCs and 83 controls) with 28,084 probe sets which were used in the analysis.
The probe IDs, gene symbols and names were matched for interpretation using the Ensemble database,
a database used for gene annotation of sequencing experiments on sequencing technology platforms
used by the TCGA. The expression data was quantified in Transcripts Per Kilobase Million (TPM) and
was first log2 (TPM+1) transformed. For gene expression data, we performed whole transcriptome
analysis comparing gene expression levels between patients diagnosed with TNBC, and matched
control samples to identify all significant differentially expressed genes between tumors and control
samples. We used the false discovery rate (FDR) procedure [37] to adjust the p-values for multiple
hypothesis testing. Additionally, we computed the log2 Fold Change (Log2 FC) defined as the median
of tumors minus median of normal for each gene. Genes were ranked based on adjusted p-values,
FDR and LogFC. For significantly differentially expressed genes containing somatic mutations, we
computed the number of somatic mutation events per gene to identify the most highly somatic mutated
genes. The genes were classified as highly mutated if they produced ≥3 mutation events per gene.

Proper identification of differentially methylated sites or CpGs was central in this analysis to
identify a signature of aberrantly methylated genes. Thus, for DNA methylation data, we first
performed quality control by processing the data to correct for batch effects. The data matrix with
485,578 probes was filtered to remove rows with missing data, such that each row has at least ≥30%
data. After data preprocessing, we generated DNA methylation data set on 166 samples (83 TNBCs
and 83 controls) with 383,119 probes on the same patients as those used for gene expression data. We
performed quality control and normalized the data using quantile normalization. The normalized
data was then used in the analysis. We performed differential methylation analysis comparing tumor
samples to control samples to discover a signature of DNA methylated genes associated with TNBC.
We use the beta-values (methylation values ranging from 0.0 to 1.0) to compare tumor samples to
normal samples. Discovery of significant differentially methylated genes was done consistent with
Illumina protocol [32–34]. Genes were ranked on adjusted p-values, FDR and LogFC. We used volcano
plots to compare p-values and fold change. Differentially methylated CpG sites were identified using
the LIMMA package implemented in R [36]. These sites were then annotated with gene symbols
using Ensemble Biomart database [38]. Using gene symbols and annotated differentially methylated
sites, we computed the number of methylation sites per gene focusing on differentially methylated
genes to get a quantitative assessment of DNA methylation sites per gene. The methylation sites were
further classified as either hypomethylated (down) or hypermethylated (up) based on gene regulation
using a TCGA visualize Starburst plot [39]. The genes were then ranked based on adjusted p-values
(p < 0.05) derived from differentially methylated sites. For significantly differentially methylated genes,
we computed the number of methylation or CpG sites per gene. The gene was considered highly
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methylated if it produced ≥3 significant methylation sites.2.4. Integration of Germline, Somatic and
Epigenomic Variation

As depicted in Table 1, we used a systems level integrative analysis approach using different types
of omics data each providing unique information. This is because a single omics assessment provides
limited insights to understand how oncogenic interactions, and cooperation between genomic and
epigenomic factors drive TNBC. We performed five (5) levels of integration. At level 1, we integrated
genes transcriptionally associated with TNBC with aberrantly methylated genes associated with TNBC,
to discover a unified signature of aberrantly methylated genes transcriptionally associated with TNBC.
The impact of DNA methylation on gene expression was assessed by using a Starburst plot of gene
expression profiles against DNA methylation profiles. Level 2 integration was performed by evaluating
genes transcriptionally associated with TNBC, and aberrantly methylated genes associated with TNBC,
for the presence of somatic mutations to identify a signature of genes containing somatic and epigenetic
variation, and transcriptionally associated with TNBC. Level 3 involved integration by evaluating
genes transcriptionally associated with TNBC, and aberrantly methylated genes associated with TNBC,
for the presence of germline and somatic variation to identify a signature of genes containing all three
variations and are transcriptionally associated with TNBC.

2.4. Network and Pathway Analysis

Levels 4 and 5 integrations were higher level integrations involving network and pathway
analysis, respectively, to identify molecular networks and signaling pathways enriched for germline,
somatic, epigenetic and gene expression variation. For this analysis, we used the Ingenuity Pathway
Analysis (IPA) software package [40]. For these analyses, we combined three sets of genes (i) genes
transcriptionally associated with TNBC and contained germline, somatic and epigenetic variation,
(ii) highly somatic mutated genes containing germline variation and are transcriptionally associated
with the disease, but are devoid of epigenetic variation, and (iii) highly differentially methylated
genes containing germline variation and transcriptionally associated with TNBC, but do not contain
somatic mutations. The rationale for using this full model was to capture both cis and trans regulatory
mechanisms and to include any important pathways, which could otherwise be missed by limiting the
analysis only to a set of genes containing all three alterations. We computed the probability Z-scores
and the log p-values to assess the likelihood and reliability of correctly assigning the genes to the
correct molecular networks and signaling pathways, respectively. A false discovery rate was used to
correct for multiple hypothesis testing in pathway analysis. The predicted molecular networks and
biological pathways were ranked based on z-scores and log P-values, respectively. Gene ontology
(GO) [41] analysis, as implemented in IPA, was used to classify the genes according to the molecular
functions, biological process, and cellular components in which they are involved.

3. Results

The genomic revolution has led to an intense focus on discovery of germline and somatic mutations
associated with TNBC [17,22]. One consequence of this focus has been a reduced attention on the role of
epigenetics factors in the pathogenesis of TNBC. Equipped with the tools emerging from the genomics
revolution, we are now in a position to map oncogenic interactions and cooperation between genomic
and epigenomic drivers of TNBC, and to identify the molecular networks and signaling pathways
which they control. In order to develop a more comprehensive understanding of the biological
mechanisms driving TNBC, here we used systems level integrative analyses approaches integrating
multiple omics data sets at various levels to deconvolute the genomic-epigenomic interaction landscape
in TNBC. In this section and the subsections that follow herein, we summarize our findings.

3.1. Discovery of a Signature of Aberrantly Methylated Genes Associated with TNBC

To discover and characterize a signature of aberrant DNA methylated genes associated with TNBC,
we compared the methylation profiles between tumors and control samples. We hypothesized that
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epigenomic alterations in tumors and control samples could lead to measurable changes distinguishing
TNBC patients from controls. Using a nominal p-value (p < 0.05), the analysis produced a signature of
21,196 significantly differentially methylated genes distinguishing tumor samples from control samples.
The number of methylation sites per gene varied considerably ranging from 1 to 992. Among the most
highly differentially methylated genes included the 88 genes with ≥100 DNA methylation sites per
gene. A complete list of all significantly differentially methylated genes is presented in supplementary
Table S3.

3.2. Discovery of a Signature of Differentially Expressed Genes Associated with TNBC

To discover and characterize a signature of significantly differentially expressed genes associated
with TNBC, we compared gene expression levels between tumor and control samples. We hypothesized
that genomic alterations in tumor and control samples could lead to measurable changes distinguishing
TNBC samples from controls. After correcting for multiple hypothesis testing, the analysis produced a
signature of 15,404 significantly (p < 0.05) differentially expressed genes distinguishing tumor samples
from control samples, of which 10,259 genes were highly significantly (p < 0.0001) differentially
expressed. A complete list of all significantly differentially expressed genes is presented in
supplementary Table S4.

3.3. Discovery of a Signature of Aberrantly Methylated Genes Transcriptionally Associated with TNBC

An important undertaking in this investigation was the identification and characterization of a
signature of differentially expressed genes which were also differentially methylated, and determining
the impact of DNA methylation on gene expression profiles. We hypothesized that genes
transcriptionally associated with TNBC are aberrantly methylated and that epigenomic alterations
in these genes could potentially impact their expression. To address this hypothesis, we performed
level 1 integrative analysis combining information on the 21,196 significantly (p < 0.05) differentially
methylated genes with 15,404 significantly (p < 0.05) differentially expressed genes, as explained in the
data analysis subsection.

The results showing the distribution of differentially expressed and differentially methylated genes
are presented in a Venn diagram in Figure 2A. The analysis revealed a signature of 12,816 significantly
differentially expressed genes which were also differentially methylated, confirming our hypothesis
(Figure 2A). In addition, the analysis revealed 8380 genes which were significantly differentially
methylated but were not significantly differentially expressed, and 2,588 significantly differentially
expressed genes which were not significantly differentially methylated (Figure 2A).

The results showing the direction of change, and the impact of DNA methylation on gene
expression for the 12,816 significantly differentially expressed genes which were also differentially
methylated, are presented in a starburst plot in Figure 2B. In Figure 2B, the direction of change and the
impact of DNA methylation on gene expression are highlighted by the color code, and the number
of genes in each color code is shown in the key of the Figure. The y-axis shows the distribution as
measured by the log2 FC for differentially expressed genes computed from RNA-seq data. The x-axis
shows the distribution as measured by the log2 FC for differentially methylated genes computed from
DNA methylation data. Out of the 12,816 genes evaluated, 509 genes were upregulated, 40 genes
were hypomethylated and down regulated, 41 genes hyper methylated and up regulated, 324 genes
were hypomethylated, 1324 genes were down regulated, 162 genes (62 genes were hypomethylated
and up regulated and 100 genes hyper methylated and down regulated), and 408 genes were hyper
methylated (Figure 2B). Taken together, the analysis confirmed that DNA methylation had impact on
gene expression profiles.
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Figure 2. Signature of aberrantly methylated and differentially expressed genes transcriptionally
associated with triple-negative breast cancer (TNBC). (A) Venn diagram representing genes significantly
differentially expressed and significantly differentially methylated between tumors and controls.
The intersection shows genes containing both genomic and epigenomic alterations and are associated
with TNBC. (B) Two-way Starburst plot showing differentially expressed genes (y-axis) and differentially
methylated genes (x-axis). The colors represent direction of change and activity as represented in the
Figure legend.

The results showing the top 30 most highly significantly differentially methylated and highly
significantly differentially expressed genes, along with the number of methylation sites per gene,
are shown in Table 2. The number of CpG sites per gene varied considerably, ranging from 1 to
992. A complete list of all the 12,816 significantly differentially methylated genes transcriptionally
associated with TNBC is presented in Supplementary Table S5. Overall, the analysis revealed that genes
transcriptionally associated with TNBC are aberrantly methylated, and that DNA methylation has
impact on gene expression. The discovery of aberrant methylated genes which were transcriptionally
associated with TNBC, coupled with the observed effects of DNA methylation on gene expression,
highlights the value of integrative genomics analysis for deconvolution of the complex interplay
between gene expression and DNA methylation, as well as assessing the impact of aberrant DNA
methylation on gene expression.

3.4. Discovery of a Signature of Genes Containing Both Somatic and Epigenetic Variation

Tumor development and progression is driven by acquired somatic mutations, but enduring
epigenetic landmarks, such as CpG islands investigated here, define the tumor microenvironment [7].
Thus, integration of somatic with epigenetic variation has the promise of discovering tumor driver
genes. To investigate whether aberrantly methylated genes transcriptionally associated with TNBC
harbor somatic mutations, we performed level 2 integration as explained in the methods section. We
hypothesized that aberrant methylated genes transcriptionally associated with TNBC harbor somatic
mutations. First, we evaluated the 7659 somatic mutated genes for their association with TNBC and
aberrant DNA methylation. The results of this investigation are presented in a three-way Venn diagram
representing somatic, epigenetic and gene expression variation, as shown in Figure 3.
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Table 2. A list of the top 30 highly significant differentially methylated genes which were also highly
significantly differentially expressed between TNBC and controls.

Gene_Symbol Chromosome
Methylation RNAseq

Event Adjust p-Value Adjust p-Value

RP1 8q11.23 992 3.96 × 10−24 8.94 × 10−5

PTPRN2 7q36.3 917 7.85 × 10−24 4.24 × 10−16

PRDM16 1p36.32 434 1.78 × 10−22 3.42 × 10−17

TNXB 6p21.33 364 3.11 × 10−22 1.29 × 10−24

MAD1L1 7p22.3 317 3.89 × 10−23 2.29 × 10−7

DIP2C 10p15.3 298 4.71 × 10−23 1.24 × 10−9

PCDHGA2 5q31.3 291 3.57 × 10−24 1.30 × 10−19

SNHG14 15q11.2 283 1.56 × 10−20 2.15 × 10−13

PCDHGA3 5q31.3 277 3.57 × 10−24 2.05 × 10−21

ERICH1 8p23.3 270 3.25 × 10−23 1.47 × 10−2

ADARB2 10p15.3 257 5.96 × 10−24 6.18 × 10−10

PCDHGA4 5q31 253 3.57 × 10−24 3.25 × 10−15

PCDHGB2 5q31 239 3.57 × 10−24 4.51 × 10−8

PCDHGA5 5q31 229 3.57 × 10−24 6.38 × 10−15

EIF2B5 3q27.1 217 2.57 × 10−23 2.26 × 10−4

PCDHGB3 5q31 213 3.57 × 10−24 2.64 × 10−8

TBCD 17q25.3 204 1.30 × 10−23 8.35 × 10−7

HDAC4 2q37.3 202 6.13 × 10−24 3.71 × 10−8

MCF2L 13q34 202 6.15 × 10−24 9.10 × 10−5

PCDHGA6 5q31 202 3.57 × 10−24 3.20 × 10−14

SDK1 7p22.2 202 4.35 × 10−22 1.13 × 10−8

INPP5A 10q26.3 190 3.55 × 10−22 4.39 × 10−13

PCDHGA7 5q31 188 3.57 × 10−24 1.69 × 10−13

ATP11A 13q34 177 6.26 × 10−23 2.83 × 10−2

PCDHGB4 5q31 175 3.57 × 10−24 6.45 × 10−10

KCNQ1 11p15.5 174 2.29 × 10−22 2.51 × 10−3

HOXA3 7p15.2 168 1.26 × 10−23 3.43 × 10−11

PCDHGA8 5q31.3 166 3.57 × 10−24 3.74 × 10−3

C7orf50 7p22.3 163 4.59 × 10−23 1.54 × 10−7

AGAP1 2q37.2 160 5.28 × 10−21 2.25 × 10−3
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The analysis revealed a signature of 4922 genes containing somatic, epigenomic and gene expression
variation associated with TNBC, confirming our hypothesis. In addition, the analysis produced
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7894 aberrantly methylated genes transcriptionally associated with the disease, 2234 aberrantly
methylated genes containing somatic alterations, and 82 aberrantly methylated genes transcriptionally
associated with the disease. Furthermore, the analysis revealed 421 genes containing somatic mutations
only, 6146 genes containing epigenomic alterations only, and 2506 differentially expressed genes altered
in the transcriptome only.

The results showing a signature of the top 30 somatic mutated genes containing epigenomic
alterations and transcriptionally associated with TNBC are presented in Table 3. For the somatic
mutated genes, the number of somatic mutation events per gene varied markedly, ranging from 1 to 27.
Likewise, there was significant variation in the number of methylation sites per gene. Interestingly,
among the genes containing epigenetic and somatic alterations significantly associated with TNBC,
included the genes TTN, MUC4, SYNEI, PIK3CA, ASPM, ARID1B and AHNAK, recently reported to be
potential prognostic markers for TNBC [42–49]. A complete list of all the significantly differentially
expressed and aberrantly methylated somatic mutated genes are presented in Supplementary Table S6.

Table 3. List of the top 30 genes containing both somatic and epigenetic alterations transcriptionally
associated with TNBC. DM represents differentially methylated.

Gene Chromosome
Methylation RNAseq

Somatic Events
DM_Sites Adjust p-Value Adjust p-Value

TTN * 2q31.2 20 1.53 × 10−13 8.34 × 10−10 27
MUC4 * 3q29 28 3.91 × 10−19 7.60 × 10−4 13

FAT3 11q14.3 23 9.50 × 10−15 1.67 × 10−9 12
USH2A 1q41 12 1.53 × 10−11 1.73 × 10−6 12
SYNE1 * 6q25.2 29 1.04 × 10−18 1.66 × 10−20 9
FCGBP 19q13.2 14 1.60 × 10−17 3.48 × 10−2 9
SPTA1 1q23.1 3 2.00 × 10−14 8.63 × 10−5 9

DNAH17 17q25.3 76 3.52 × 10−21 3.74 × 10−4 8
DST 6p12.1 41 1.76 × 10−18 1.14 × 10−21 8

MUC5B 11p15.5 40 9.44 × 10−16 1.71 × 10−8 8
PIK3CA * 3q26.32 7 1.11 × 10−16 3.26 × 10−6 8

PLEC 8q24.3 103 1.36 × 10−21 1.28 × 10−4 7
CSMD2 1p35.1 47 1.81 × 10−19 8.84 × 10−12 7
CREBBP 16p13.3 38 1.40 × 10−21 1.85 × 10−3 7

FLG 1q21.3 33 3.22 × 10−17 4.48 × 10−9 7
KMT2D 12q13.12 17 3.06 × 10−17 6.93 × 10−4 7
AHCTF1 1q44 10 1.20 × 10−7 3.48 × 10−4 7
ASPM * 1q31.3 10 1.17 × 10−12 5.39 × 10−24 7

MYO18B 22q12.1 4 4.93 × 10−16 3.73 × 10−6 7
USP34 2p15 4 2.38 × 10−3 1.36 × 10−2 7
KIF26B 1q44 79 8.82 × 10−15 7.07 × 10−16 6
SPTBN1 2p16.2 54 4.56 × 10−24 8.06 × 10−21 6

LRP1 12q13.3 52 5.94 × 10−23 1.08 × 10−17 6
COL18A1 21q22.3 47 1.17 × 10−21 1.41 × 10−3 6
ARID1B * 6q25.3 43 1.71 × 10−16 5.95 × 10−3 6
ZNF512B 20q13.33 42 3.57 × 10−24 4.92 × 10−5 6
AHNAK * 11q12.3 30 8.81 × 10−23 1.94 × 10−24 6
CACNA1B 9q34.3 24 6.13 × 10−15 1.31 × 10−7 6

STAB1 3p21.1 19 1.17 × 10−17 2.65 × 10−4 6
LAMA3 18q11.2 18 1.13 × 10−22 7.72 × 10−19 6

* Genes reported as potential prognostic markers for TNBC [42–49].

Overall, the analysis under level 2 integration revealed that the majority of the somatic mutated
genes tend to be DNA methylated and transcriptionally associated with TNBC, confirming our
hypothesis (Figure 3). The discovery of differentially expressed aberrantly methylated somatic mutated
genes associated with TNBC demonstrates that integrative analysis is a powerful tool for the discovery
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of potential clinically actionable molecular markers, and that somatic mutations and DNA methylation
are likely to cooperate in driving TNBC.

3.5. Discovery of a Signature of Genes Containing Germline, Somatic and Epigenomic Variation

Our primary hypothesis in this investigation was that TNBC is a complex disease influenced
by both inherited variants in the germline DNA, somatic mutations acquired during tumorigenesis,
and epigenomic alterations. To address this hypothesis, we performed level 3 integration, integrating
information on germline, somatic, epigenomic, and gene expression variation to discover a unified
signature containing all the four variations. As first step in this analysis, we evaluated the 825 genes
containing germline mutations for association with TNBC using transcriptome and methylation data,
and for the presence of somatic mutations. The scientific premise for performing this evaluation
was to infer the causal association between gene expression and DNA methylation with the disease.
This analysis step was necessary because, as noted earlier in this report, GWAS has not been breast
cancer type-specific or subtype-specific.

The results of this integrative analysis are shown in a four-way Venn diagram in Figure 4.
The analysis produced a signature of 228 genes containing somatic, germline and epigenomic alterations
transcriptionally associated with TNBC, confirming our hypothesis. In addition, the analysis produced
259 genes containing germline and epigenomic variation significantly associated with the disease,
67 genes containing germline and epigenetic variation, and 19 genes containing germline mutations
only associated with TNBC. Furthermore, the analysis produced a signature of 152 genes containing
germline mutations only, 414 genes containing somatic mutation and epigenomic alterations only,
6056 genes with epigenetic alterations only, and 2487 genes perturbed in the transcriptome but without
somatic, germline or epigenomic alterations.
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The results showing the top 30 genes containing somatic, germline and epigenomic variation
transcriptionally associated with TNBC are presented in Table 4. Also presented in Table 4 are the
number of somatic mutations and methylation sites per gene, along with association, expression
and methylation p-values. A complete list of genes containing somatic, germline and epigenomic
variation transcriptionally associated with TNBC is presented in Supplementary Table S7, provided as
supplementary data to this report.

As can be seen from Table 4 and accompanying supplementary Table S7, the distribution of
germline, somatic and epigenetic variation varied markedly per gene. Among the genes containing
germline, somatic and epigenomic variation transcriptionally associated with TNBC, included the
genes BCRA1, BRCA2, PTEN and TP53 with high penetrance, and the genes CHEK2, BRIP1, RAD51,
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CDKN2A, BARD1, MSH2, ATM and PALB2, with moderate penetrance [6,50]. A subset of these genes
including BRCA1, BRCA2, TP53, MSH3, ATM, and MSH6 are involved in DNA repair [6,50]. This is a
significant finding given that epigenomic alterations in DNA repair genes leads to a compromise in the
genome integrity and ultimately to carcinogenesis [45,51].

Table 4. Top list of genes in the discovered signature of genes containing somatic, germline and
epigenetic vaariation. DM represents differentially methylated.

Gene
Symbol Chromosome

Methylation RNAseq
Somatic
Events

GWAS

DM
Sites

Adjust
p-Value

Adjust
p-Value SNP p-Value Event

BRCA1 17q21.31 12 2.01 × 10−5 2.78 × 10−3 5 rs1799950 2.00 × 10−4 2
FHOD3 18q12.2 11 8.83 × 10−14 9.05 × 10−11 5 rs9956546 2.90 × 10−6 2
MYO10 5p15.1 45 1.86 × 10−19 2.29 × 10−11 4 rs2562343 9.20 × 10−3 2

CNTNAP2 7q35 30 8.36 × 10−17 1.83 × 10−3 4 rs10487920 3.90 × 10−4 2
RELN 7q22.1 12 1.92 × 10−13 2.94 × 10−18 4 rs17157903 1.00 × 10−2 2
MSH3 5q14.1 10 2.46 × 10−10 7.38 × 10−15 4 rs6151904 1.24 × 10−2 2
ATM 11q22.3 20 9.88 × 10−7 1.47 × 10−5 3 rs1801516 2.00 × 10−4 2

MTHFR 1p36.22 9 7.33 × 10−12 1.33 × 10−6 3 rs180113 4.10 × 10−2 2
PALB2 16p12.2 3 1.54 × 10−2 1.87 × 10−3 3 deletion 4.00 × 10−4 2
FBXL7 5p15.1 35 2.85 × 10−19 9.65 × 10−12 2 rs12652447 5.60 × 10−4 2

NUMA1 11q13.4 28 7.97 × 10−20 1.17 × 10−7 2 rs3750913 1.00 × 10−2 2
RB1 13q14.2 24 2.24 × 10−21 9.05 × 10−11 2 rs2854344 7.00 × 10−3 2

AACS 12q24.31 19 1.04 × 10−15 1.12 × 10−3 2 rs7307700 2.00 × 10−2 2
WRN 8p12 15 3.30 × 10−16 3.19 × 10−4 2 rs1346044 2.00 × 10−2 2

GRIN3A 9q31.1 12 7.03 × 10−11 8.98 × 10−5 2 rs10512287 2.30 × 10−4 2
BID 22q11.21 11 3.11 × 10−22 3.39 × 10−10 2 rs8190315 1.00 × 10−2 2

DMBT1 10q26.13 11 3.79 × 10−18 1.85 × 10−7 2 rs11523871 2.00 × 10−3 2
FOXM1 12p13.33 8 1.67 × 10−6 2.57 × 10−24 2 rs2074985 3.40 × 10−2 2
MSH6 2p16.3 8 1.11 × 10−11 5.51 × 10−10 2 rs3136337 3.39 × 10−2 2
MTR 1q43 4 7.78 × 10−10 7.42 × 10−3 2 rs1805087 2.00 × 10−2 2
DSEL 18q22.1 2 2.37 × 10−14 4.19 × 10−19 2 rs17827708 9.00 × 10−3 2

FANCG 9p13.3 2 1.85 × 10−16 8.14 × 10−14 2 rs4986940 2.79 × 10−2 2
EHMT2 6p21.33 99 6.80 × 10−20 4.19 × 10−12 1 rs535586 1.00 × 10−2 2

MCC 5q22.2 45 3.79 × 10−18 1.41 × 10−17 1 rs6890833 3.40 × 10−2 2
PRDM2 1p36.21 31 4.55 × 10−18 1.41 × 10−8 1 rs2235515 2.00 × 10−2 2

POR 7q11.23 20 5.42 × 10−21 2.25 × 10−13 1 rs10262966 3.00 × 10−2 2
KCNJ6 21q22.13 17 8.09 × 10−18 8.25 × 10−15 1 rs4817896 2.40 × 10−2 2

SORBS1 10q24.1 17 8.00 × 10−9 5.09 × 10−23 1 rs10450393 1.00 × 10−2 2
SHBG 17p13.1 14 3.97 × 10−12 5.12 × 10−5 1 rs858524 3.00 × 10−2 2
VDR 12q13.11 14 1.39 × 10−18 6.75 × 10−3 1 rs731236 3.00 × 10−2 2

As noted earlier in this report, one of the challenges of using genetic susceptibility variants and
associated genes is that breast cancer consists of two different types (TNBC and non-TNBC) and many
molecular subtypes. Compounding this problem is that early GWAS on breast cancer were not breast
cancer type-specific or subtype-specific. To address this knowledge gap, and to determine whether
any of the genes containing germline, somatic and epigenetic variation transcriptionally associated
with TNBC discovered in this investigation have been directly associated withTNBC susceptibility
specifically, we performed in silico validation by evaluating the genes containing all three variations
against the literature in our catalogue, and provided herein as supplementary Table S1.

The evaluation revealed that the genes BRCA1, BRCA2, TP53, ATM, CHEK, PALB2, FANCM,
RAD50, BARD1, PTEN, XRCC2, STK11, BRIP1, LGR6, TERT, ESR1, TOX3, PEX14, ADAM29, EBF1,
TCF7L2, PTHLH, NTN4, RAD51L1, RAD51D, RAD51C, MLK1, MDM4, FTO, MAP3K1, LSP1, TGFB1,
CASP8, TGF10, CDKN2B, CDKN2A, ANKRD16, FBXO18, ZNF365, ZMIZ1, FGFR2, LSP1, MYEOV,
COX11 and ANKLE1 have been directly associated with TNBC susceptibility [17,52–55], validating
our findings.

3.6. Molecular Networks and Signaling Pathways Enriched for Germline, Somatic and Epigenomic Variation

To comprehensively investigate the potential oncogenic interactions and cooperation between the
genetic (both germline and somatic) variation and epigenomic variation, we performed higher level
integration using information on germline, somatic, epigenomic and gene expression variation. Level 4



Cancers 2019, 11, 1692 13 of 21

integration involved network analysis and level 5 integration involved pathway analysis, as explained
in the methods subsection. We hypothesized that TNBC originates from a complex interplay between
genomic (both germline and somatic mutations) variation and epigenomic variation, and that these
complex arrays of interacting genomic and epigenomic factors affect entire molecular networks and
biological pathways which, in turn, drive TNBC. The rationale was that the biological mechanisms of
action driving TNBC happen both in cis and in trans. Thus, we sought to discover functionally related
genes interacting in gene regulatory networks and signaling pathways.

The results of network analysis are presented in Figure 5. In this Figure, the genes containing
germline, somatic and epigenomic alterations are in red fonts, highly somatic mutated genes containing
epigenomic changes are shown in blue fonts, and highly epigenetically altered genes containing
germline mutations are shown in green fonts. Network analysis produced 25 gene regulatory
networks with Z-scores ranging from 13 to 54. The discovered networks contained functionally related
genes with overlapping functions. Network analysis revealed genes predicted to be involved in
cancer, organismal injury and abnormalities, cellular assembly and organization, cell-to-cell signaling
and interaction, cellular assembly and organization, cell cycle, cellular development, inflammatory
disease, inflammatory response, DNA replication, recombination and repair, cell death and survival,
immunological disease, cellular function and maintenance, cellular development, cellular growth and
proliferation, cellular movement, post-translational modification, and protein synthesis.
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epigenomic alterations. Genes containing germline, somatic and epigenomic alterations are in red
fonts. Highly somatic mutated genes containing epinomic changes are shown in blue fonts. Highly
epigenetically altered genes containing germline mutations are shown in green fonts.

Among the genes revealed by network analysis included the genes BRCA1, BRCA2, PALB2,
FANCG, FANCA, CREB5, ELL, SATB1, DOT1L, FOXM1, ATXN1, PTPN7, INCENP, EGFR, NUMA1,



Cancers 2019, 11, 1692 14 of 21

PTPN22, FAF1, EHMT2, GREB1, ZBTB38, XRCC6, RNF146, TCF7L2, MYO10, CEP55, PTPN23, NF2
and POM1 containing germline, somatic and epigenetic variation, confirming our hypothesis that
interactions among these genes affect entire molecular networks (Figure 5). Interestingly, network
analysis produced the genes CHEK1, CHEK2, XRCC2, XRCC3, FANCE, POLB, BARD1, CDKN2A,
CDKN1A, XPC, RBX1, ESR1, BCAS3, XRCC4, IST1, XRCC1, PGR, LMO4, FYN, IGF1R, CCND1, TNF,
ERCC2, NELFA, CDK6, EWSR1, POLR2J, AMFR and UBE2T containing germline and epigenetic
variation, interacting with genes containing somatic and epigenomic variation (Figure 5). The analysis
also produced the genes BAG6, CTBP1, PFKP, IGF2, JARID2, IGHG3, RCN1, HOOK2 and SPTBN1
containing somatic mutations and epigenomic alterations (Figure 5). This demonstrates that oncogenic
interactions and cooperation between genetic and epigenomic alterations are likely to occur partially
through gene regulatory networks.

Interestingly, network analysis revealed the genes BRCA1, BRCA2, PTEN and TP53 which have
high penetrance, and the genes CHEK2, BRIP1, RAD51, CDKN2A, BARD1, MSH2, ATM and PALB2
with moderate penetrance [6,49], are functionally related and interact with other genes of unknown
level of penetrance (Figure 5). This suggests that genes with high and moderate penetrance may be
regulating their downstream target genes with low penetrance and genes with unknown penetrance.
Crucially, the results of network analysis revealed that both the genes containing germline mutations
strongly, and weakly associated with breast cancer, interact with somatic mutated and aberrantly
methylated genes (Figure 5). The results of network analysis confirmed interactions and cooperation
among the genes containing germline, somatic and epigenomic variation.

To further gain insights and understand the broader biological context in which germline, somatic,
epigenomic and gene expression variation operate, and to establish putative functional bridges between
genomic and epigenomic interactions and the pathways they regulate, we performed pathway analysis.
Our working hypothesis here was that oncogenic interactions and cooperation among genes containing
germline, somatic and epigenetic variation affect signaling pathways. We sought to discover signaling
pathways enriched for germline, somatic and epigenetic variation.

The results of pathway analysis are presented in Figure 6. The analysis produced multiple
signaling pathways enriched for germline, somatic and epigenetic variation (Figure 6). Among the
discovered signaling pathways included those implicated in TNBC including, Role of BRCA1 in
DNA Damage Response, Hereditary Breast Cancer Signaling, DNA Double-Strand Break Repair by
Non-Homologous End Joining, ATM Signaling, Molecular Mechanisms of Cancer, Estrogen-Dependent
Breast Cancer Signaling, DNA Double-Strand Break Repair by Homologous Recombination, Cell
Cycle: G1/S Checkpoint Regulation, p53 Signaling, FGF Signaling, Role of CHK Proteins in Cell
Cycle Checkpoint Control, Estrogen-mediated S-phase Entry, IL-7 Signaling Pathway, MYC Mediated
Apoptosis Signaling, HER-2 Signaling in Breast Cancer, ILK Signaling, NF-kB Signaling, PTEN
Signaling, and Mismatch Repair in Eukaryotes (Figure 6).

The results of pathway analysis confirmed our working hypothesis that TNBC originates from a
complex interplay between genetic and epigenetic variation, and that these complex array of interacting
genomic and epigenomic factors are likely to affect entire signaling pathways likely to drive the
disease. The discovery of multiple signaling pathways enriched for germline, somatic and epigenomic
variation, suggests that pathway crosstalk may be involved in the development and progression of
TNBC. Taken together, the results of network and pathway analysis demonstrate that in the context of
TNBC, the disease state can be considered an emergent property of molecular networks and signaling
pathways regulated by genetic, somatic and epigenomic variation. In summary, the results show that
integrating large-scale, high-dimensional genomic and epigenomic data using transcriptome data
as the intermediate phenotype holds the promise of defining the molecular networks and signaling
pathways that directly respond to genomic and environmental perturbations associated with TNBC,
and are likely to drive the disease.
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4. Discussion

We performed a systems level integration of information on germline, somatic, epigenomic and
gene expression variation to deconvolute the genomic and epigenomic interaction landscape in TNBC.
We discovered signatures of functionally related genes enriched for germline, somatic and epigenetic
variation transcriptionally associated with TNBC. More importantly, we discovered molecular networks
and signaling pathways enriched for germline, somatic and epigenetic variation, suggesting that
oncogenic interactions and cooperation between genomic and epigenomic variation is likely to affect
entire network states and signaling pathways likely to drive TNBC. Several studies have performed
integrative analysis of omics data in overall breast cancer using TCGA data [56–59]. Zhang et al.
reported identification of novel prognostic indicators for TNBC patients through integrative analysis of
cancer genomics and protein interactome data [56]. Berger et al. reported a comprehensive pan-cancer
molecular study of gynecological and breast cancers [57], and Shilpi et al. reported identification of
genetic and epigenetic variants associated with breast cancer prognosis by integrative analysis [58].
Aberrant methylation in breast cancer has also been reported [59,60].

The main differences between these earlier studies and our study include: (1) our study focuses
on TNBC, the most aggressive and lethal form of breast cancer, whereas reported studies [56–60]
focused on breast cancer in general. (2) Our study integrates germline, somatic, epigenetic and gene
expression variation, and assesses the potential impact of DNA methylation on expression of genes
altered in the germline and in the tumor genomes, a phenomenon not previously reported. (3) Most
notably, the integration of germline mutation information from GWAS, and somatic and epigenomic
variation from TCGA to infer the causal association between gene expression and TNBC, has not been
reported. To our knowledge, this is the first investigation to undertake this comprehensive approach to
map the germline, somatic, epigenomic and gene expression variation interaction landscape in TNBC.
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Here, we discuss the significance of these findings in the context of translational and potential clinical
applications to guide patient care and therapeutic decision making.

4.1. Integrating Transcription with DNA Methylation Profiling

The discovery of a signature of aberrantly methylated genes transcriptionally associated with
TNBC suggests that DNA methylation markers could be used to complement gene expression based
prognostic markers. For example, hypermethylated genes discovered in this investigation could be
used as biomarkers because hypermethylation of the CpG islands in the promoter regions of tumor
suppressor genes is a major event in the origin of many cancers including TNBC [8]. Hypermethylation
of the CpG islands promoter can affect genes involved in cell cycle, DNA repair, cell-to-cell signaling
and apoptosis, many of which were discovered in this study [8]. Most notably, although we did not
test the prognostic value and the ability of aberrantly methylated genes discovered in this investigation
to function as drug targets, several studies have identified aberrant methylated genes as potential drug
targets [8–10]. For example, the ability of DNA methylation to predict response of TNBC to all-trans
retinoic acid has been reported [9]. DNA methyltransferase expression as predictor of sensitivity to
decitabine [10], and epigenetic silencing of TNBC hallmarks by Withaferin A have been reported [61].
Thus, such markers, if confirmed, could be used to complement molecular markers derived from
transcription profiling.

4.2. Integrating Somatic Variation with Epigenomic Variation

Tumor development and progression is driven by acquired somatic driver mutations. However,
enduring epigenetic landmarks define the cancer microenvironment [7]. Crucially, epigenetic
perturbations are involved in gene silencing and allow cancer cells to adapt to changes in their
microenvironment [8]. Thus, aberrantly methylated oncogenes such as hypermethylated genes
discovered in this study, if confirmed, could represent important molecular biomarkers to guide
therapeutic decision making. Although we did not evaluate the prognostic values of the discovered
genes in this investigation, several studies have reported the prognostic value of the genes such as
BRCA1, BRCA2, and PTEN discovered in this study, using transcription profiling [14–16], and DNA
methylation profiling [8–10]. The novel aspect of our investigation is that it proposes combining
transcription with DNA methylation profiling for the discovery of potential clinically actionable
molecular markers.

4.3. Oncogenic Interactions between Genes Containing Germline and Epigenetic Variation

We discovered genetically altered and aberrantly methylated TNBC predisposition genes including
BRCA1, BRCA2, ATM, PALB2, CDH1, TP53, FANCM, CHEK2, MLH1, MSH2, MSH6 and PMS2. This is
consistent with the previous report on DNA methylation [62]. The novel aspect of our approach is
that, by integrating information on epigenetic variation with genetic variation, it has the promise to
explain the missing variation not explained by genetic variants derived from GWAS reported thus far.
Such information may also be amenable for inclusion in risk prediction models, such as polygenic risk
scores, to identify patients at high risk of developing TNBC [63–65]. Indeed, one caveat is important
here. We did not investigate allele-specific DNA methylation or allele-specific expression to determine
whether they would serve as methylation quantitative trait loci (mQTLs) or expression quantitative trait
loci (eQTLs) [58]. This was partially because germline mutation information from GWAS is derived
from diverse populations for which there was neither gene expression nor DNA methylation. Despite
this limitation, our investigation revealed that aberrant DNA methylation affects gene expression.
Moreover, allele-specific methylation has been shown to be prevalent and to be contributed by
CpG-SNPs interactions in the human genome [66], and differential allele-specific expression has been
shown to uncover breast cancer genes dysregulated by cis noncoding mutations [67].
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4.4. Disease Networks and Pathways as Potential Therapeutic Targets

The discovery of multiple signaling pathways enriched for germline, somatic and epigenetic
variation is of particular interest. These signaling pathways such as Role of BRCA1 in DNA Damage
Response, Hereditary Breast Cancer, ATM, Molecular Mechanisms of Cancer, Estrogen-Dependent
Breast Cancer, Cell Cycle Regulation, p53 Signaling, FGF Signaling, Role of CHK Proteins in Cell Cycle
Checkpoint Control, MYC Mediated Apoptosis, NF-kB, and PTEN Signaling pathways could serve as
targets for the development of novel therapeutics. Given the lack of effective targeted therapies for
TNBC currently, development of novel therapeutics could significantly improve care, and potentially
reduce the mortality rate attributable to TNBC. For example, a novel pathogenic BRCA1 germline
mutation promoting TNBC cell progression, and enhancing sensitivity to DNA damage agents was
recently discovered [68]. Patients carrying this mutation may benefit from DNA damaging treatment
regimens [68]. CHK proteins may also be used for selective targeting the vulnerability of RB tumor
suppressor loss in TNBC [69]. Recently, it was shown that the mutant p53 has the promise as a
therapeutic target for the treatment of TNBC in preclinical investigation with the anti-p53 drug,
PK11007 [70]. Thus, taken together and if confirmed, these pathways have the promise to serve as
potential therapeutic targets.

4.5. Limitations and Future Research Directions

We are aware and mindful of the limitations of using germline mutation information from GWAS
reports, somatic mutations, epigenomic and gene expression variation from TCGA. Both GWAS
and TCGA projects are heavily biased towards women of European ancestry. Studies including
other ethnic populations, such as African American women who are disproportionately impacted by
TNBC, may yield additional useful information and are highly recommended, not only for providing
scientific knowledge but also for the realization of precision medicine, and precision prevention
without exacerbating health disparities in TNBC. This is particularly important in light of a recent
study reporting differences in the mutation landscape of TNBC in African American women and
Caucasian women [71]. Our investigation was driven by the use of available data resources from
GWAS and TCGA as a cost effective way of addressing and gaining insights on a longstanding problem
of oncogenic interactions, and cooperation between genomic and epigenomic variation and their
potential joint role in TNBC. Another limitation is that integration of GWAS information with TCGA
here focused on establishing the causal association between gene expression and TNBC, but makes it
challenging to link the information to clinical outcomes and to validate the findings in an independent
data set. This limitation is inherent in integration of disparate data sets, which is beyond the scope
of the investigation. Despite these limitations, which we readily acknowledge, the study provided
insights about possible oncogenic interactions between genomic and epigenomics alterations and the
broader biological context in which they operate.

5. Conclusions

We discovered a signature of aberrantly methylated genes transcriptionally associated with TNBC
and showed that aberrant DNA methylation affects the expression of genes involved in TNBC. We
discovered molecular networks and signaling pathways enriched for germline, somatic, epigenomic
and gene expression variation. We conclude that integrative analysis is a powerful approach to
deconvoluting the oncogenic interactions between genomic and epigenomic variation, and for the
discovery of potential driver genes in TNBC. Further research is recommended to understand the
biological mechanisms underlying oncogenic interactions and cooperation between genomic and
epigenomic factors, and to link genomic-epigenomic interactions to clinical outcomes.
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Table S1: A complete list of genetic variants and genes associated with an increased risk of developing breast
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