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Abstract: Breast ductal carcinoma in situ (DCIS) has been typically recognized by pathologists
on the basis of aberrant mammary duct morphology. Thus, there are increasing efforts to detect
DCIS biomarkers and druggable targets. In this study we focused on the molecular mechanism
involving Annexin A8 (ANXA8), a Ca2+ and phospholipid binding protein, which is regulated by
all-trans Retinoic Acid (RA), and it is highly expressed in breast DCIS tissue samples relative to
atypical ductal hyperplasia, and normal breast tissue. Using a panel of human mammary epithelial
HME1 cell lines that share a common protein signature, and develop in vitro three dimensional (3D)
“DCIS-like” amorphous structures, we identified by bioinformatics analysis protein-miRNA pairs,
potentially involved in mammary morphogenetic mechanisms, including the ANXA8 mechanism.
HME1 cells with genetic mutations hampering the physiological RA regulation of the RA receptor
alpha (RARA) transcriptional function, but retain the RARA function controlling the PI3KCA-AKT
signaling, develop 3D “DCIS-like” amorphous structures with upregulated ANXA8. Consistently,
ectopic ANXA8 expression, by affecting the RARA transcriptional function, induced HME1 DCIS-like
amorphous acini expressing phosphorylated AKT (P-AKT). Apparently, a RA-RARA-ANXA8
feedback loop fosters a vicious circle of aberrant morphogenesis. Interestingly, a few miRNAs
regulated by RA are predicted to target ANXA8 mRNA. These miRNAs are candidate components of
the RA-RARA-ANXA8 mechanism, and their deregulation might induce DCIS initiation.

Keywords: ductal carcinoma in situ (DCIS); 3D HME1 models; protein-miRNA pairs; DCIS
biomarkers and morphogenetic mechanisms

1. Introduction

Early breast cancer stages, such as ductal carcinoma in situ (DCIS), are characterized by confined
breast lesions with aberrant ductal morphological features. When left untreated, these in situ lesions
can become invasive [1–3]. Detecting and treating breast cancer at its earlier stages can greatly
increase survivability. To identify early stage breast cancer and prevent disease progression, research
efforts have been focused on the identification of DCIS biomarkers and druggable targets. However,
despite these efforts, the heterogeneity of breast DCIS lesions has made it extremely challenging to
identify biomarkers with high diagnostic and prognostic value [4] that can be used also in liquid
biopsies [5]. In an attempt to identify biomarkers with high sensitivity and specificity, we set out to
use an unconventional experimental approach based on three dimensional (3D) mammary epithelial
cell models. When grown in basement membrane culture non tumorigenic mammary epithelial cells,
including HME1 cells, form 3D structures with a lumen-enclosing epithelial monolayer of apicobasal
polarized cells, which is typical of normal mammary ducts [1,6–8]. In contrast, HME1 cells carrying
different genetic mutations- hereafter referred to as HME1 “DCIS-precursor” cell lines- develop
3D DCIS-like structures with a luminal space filled with proliferating cells and loss of apicobasal
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polarity. HME1“DCIS-precursor” cell lines when grown in 3D basement membrane culture evade the
growth inhibitory and pro-apoptotic effects regulated by physiological Retinoic Acid (RA) via the RA
receptor alpha (RARA) transcriptional function, which is indispensable for lumen formation [7,9–12],
but retain the RARA function that enables the physiological RA induction of AKT signaling by the
phosphatidylinositol-3 kinase catalytic (PI3KCA) subunit ([13] and references within).

In this study we used a panel of HME1 “DCIS-precursor” cell lines including the following
lines: HME1-RARA403, expressing a dominant negative RARA mutant lacking the RA binding
domain that affects the RARA transcriptional function [14], but it does not affect the RARA function
controlling the PI3K-AKT signaling pathway [13]; HME1-shERA [15] with downregulated Estrogen
Receptor alpha (ERA), a transcriptional regulator of RARA [16,17]; HME1-shPER2 [15] with down
regulated PERIOD 2, a circadian clock gene with tumor suppressor function in breast cancer [18] [19];
HME1-shMTG16 [20] with downregulation of MTG16, a tumor suppressor of breast cancer [21],
HME1-MYC [22] overexpressing the MYC oncogene that regulates RARA [23].

Previous proteomics analysis of the HME1 “DCIS-precursor” cell lines let us identify a common
protein signature with both upregulated and downregulated proteins [24]. This signature included
Annexin 8 (ANXA8) and Annexin 2 (ANXA2), which are members of the Annexin family of
Ca2+-binding proteins and present Retinoic Acid-Responsive Elements (RARE) in their regulatory
regions [24].

These findings attracted our attention because ANXA8 is upregulated in acute promyelocytic
leukemia (APL) carrying PML-RARA, a dominant negative RARA mutant that inhibits the
physiological RA regulation of wild type RARA transcriptional function [25]. ANXA8 is associated
with a restricted signature of miRNAs that discriminates APL myeloblasts with dominant RARA fusion
proteins from normal promyelocytes with wild type RARA [26]. According to the Cancer Genome Atlas
(TCGA) breast cancer is not characterized by RARA fusion proteins. However, ANXA8 is significantly
upregulated in breast DCIS relative to atypical ductal hyperplasia (ADH) and normal breast tissue,
and it is also associated with clinical features of breast cancer progression (e.g., positive nodes, tumor
stage, and tumor grade) [24]. Based on the common protein signature of HME1”DCIS-precursor” cell
lines with mutations that affect RA-RARA signaling, we identified by a stepwise approach (Figure 1)
a set of protein-miRNA pairs, including ANXA8-miRNA pairs. In the list of miRNAs, predicted to
target ANXA8 mRNA 3’UTR, three miRNAs were encoded by genes with RA-responsive elements
(RAREs) in their promoters [24,26].
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fosters 3D aberrant morphogenesis. 
  

Figure 1. Scheme of the stepwise approach used to identify protein-miRNA pairs involved in human
mammary morphogenetic mechanisms.

Further, we used a 3D HME1-ANXA8GFP model carrying a RARE-Green Fluorescent Protein
(GFP) to assess the effects of ANXA8 upregulation on the spatial and temporal dynamics of the two
RARA functions regulated by physiological RA in the course of 3D morphogenesis. These studies let
us detect a RA-RARA-ANXA8 feedback loop that creates a vicious circle whereby P-AKT signaling
fosters 3D aberrant morphogenesis.
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2. Results

2.1. From a Common Protein Signature Shared by HME1 “DCIS-Precursor” Cell Lines to a Subset of Potential
Morphoregulatory miRNAs

Harnessing a common forty-two protein signature shared by HME1 “DCIS-precursor” cell
lines with different mutations that we described previously [24], we set out to identify an in
silico common miRNA signature. To this end we used the following stepwise approach. First,
we analyzed the mRNA 3′UTR of 42 proteins differentially expressed in the HME1 “DCIS-precursor”
cell lines vs. parental control HME1 cells by using TargetScan, a widely used algorithm that predicts
miRNA-target sites based on their conservation among species [27]. Second, by focusing only on the
most conserved miRNA-target sites (broadly conserved either in vertebrates or conserved only in
mammals), we identified 121 sites in the mRNAs of 20 downregulated proteins, and 118 sites in the
mRNAs of 22 upregulated proteins (Figure 2).
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Figure 2. A protein-to-miRNA approach detects a miRNA signature shared by HME1“DCIS –precursor”
cell lines. See Figures 3 and 4 for details on miRNA-target sites present in the mRNAs of two or more
downregulated or upregulated proteins.

Since each conserved site can be bound by one or more miRNAs, we found over 200 miRNAs
predicted to target the mRNAs of the downregulated and upregulated proteins. Next, we grouped
miRNA-target sites based on their frequency in the mRNAs of the proteins deregulated in the HME1
“DCIS-precursor” cell lines (Figure 2). We reasoned that if two or more upregulated (or downregulated)
proteins have the same miRNA target site, it would be more likely that the miRNA(s) targeting this
site are indeed deregulated.

Based on this analysis, we obtained a list of 81 miRNA-target sites present in the mRNAs of two
or more downregulated proteins (Figure 3) and a list of 84 sites present in the mRNAs of two or more
upregulated proteins (Figure 4).
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Figure 3. List of microRNAs (left column) targeting the sites present in the 3′UTR of mRNAs
ofdownregulated proteins (middle column) in HME1 “DCIS-precursor “cell lines. Only target sites
present in the 3′UTR of mRNAs of two, or more, downregulated proteins are shown (right column).



Cancers 2019, 11, 130 5 of 17

Cancers 2018, 10, x 5 of 17 

 

 
Figure 4. List of microRNAs (left column)-targeting the sites present in the 3′UTR of mRNA of 
upregulated proteins (middle column) in HME1 “DCIS-precursor” cell lines. Only target sites 
present in the 3’UTR of mRNAs of two or more upregulated proteins are shown (right column). 

Figure 4. List of microRNAs (left column)-targeting the sites present in the 3′UTR of mRNA of
upregulated proteins (middle column) in HME1 “DCIS-precursor” cell lines. Only target sites present
in the 3’UTR of mRNAs of two or more upregulated proteins are shown (right column).



Cancers 2019, 11, 130 6 of 17

From the analysis in Figure 2, we identified miRNAs that target 27 sites only present in the
mRNAs of downregulated proteins, and miRNAs that target 30 sites only present in the mRNAs of
upregulated proteins. These miRNAs, listed in Figure 5, represent a cohort of candidate miRNAs likely
deregulated in HME1 “DCIS-precursor” cell lines.
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2.2. miRNAs Potentially Relevant to Mammary Epithelial Cell Morphogenesis

To assess whether the cohort of miRNAs identified by in silico analysis is implicated in
morphogenetic signaling pathways, we performed KEGG pathway enrichment analysis by using



Cancers 2019, 11, 130 7 of 17

DIANA-miRPath, which can simultaneously analyze the effect of multiple miRNAs on signaling
pathways using miRNA targets predicted by the DIANA-micro T-CDS algorithm [28]. This analysis
showed significant enrichment of pathways involved in cellular processes known to play important
roles in epithelial morphogenesis, such as cell growth and proliferation, programmed cell death,
adhesion and motility, differentiation and development, metabolism, and molecular transport
(Figure 6).
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Figure 6. DIANA-miR Path analysis of miRNAs targeting the mRNAs of proteins deregulated in the
HME1 “DCIS-precursor” cell lines shows an enrichment of cellular functions and pathways relevant to
mammary epithelial morphogenesis.

Literature mining confirmed the role of several miRNAs in these cellular processes (Figure 7).
Remarkably, most of these cellular processes were also independently identified by Ingenuity Pathway
Analysis (IPA) of the protein signature of the HME1 “DCIS-precursor” cell lines [24]. Apparently,
the protein signature of the panel of HME1 “DCIS- precursor” cell lines could effectively predict a
miRNA signature of aberrant mammary epithelial cell morphogenesis.
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Figure 7. Selection of miRNAs predicted to target mRNAs of proteins deregulated in HME1
“DCIS-precursor” cell lines (left) involved in morphogenetic functions(middle), and corresponding
citations identified by PMID numbers (right) found at the end of PubMed citations.

2.3. A Subset of Deregulated miRNA in Breast Cancer

MiRNAs that play a role in HME1 “DCIS-precursors” might be deregulated in breast cancer and,
consequently, could be potential breast cancer biomarkers. To assess whether some of these miRNAs
are indeed deregulated in breast cancer we used two different approaches. First, we used OncomiRDB,
miRCancer, and miR2Disease, three manually curated databases that gather published information on
miRNA deregulation in disease. This combined search identified miRNAs with oncogenic properties
that are found upregulated in breast cancer, including miR-221 and miR-222, which play a role in breast
cancer initiation and progression by altering several oncogenic and tumor suppressor functions [29];
miR-96, which promotes breast cancer cell proliferation and invasion [30,31] and miR-27, an oncomiR
whose high expression in breast cancer is associated with poor survival [32] (Figure 8A).

Next, we expanded our analysis by interrogating The Cancer Genome Atlas (TCGA) breast cancer
dataset (974 cases). As shown in Figure 8B, we found that several miRNAs were amplified in breast
cancer, ranging from 2% to over 12% of cases. Among these miRNAs, we found of particular interest
miR-301A and miR-454, which belong to the same miRNA family and show concomitant amplification
in almost 10% of patients, and miR-215 (amplified in over 12% of cases), which was found upregulated
in serum of patients with metastatic breast cancer [33]
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2.4. An ANXA8 Feedback Loop of Aberrant Mammary Morphogenesis

As mentioned in the introduction, ANXA8 was found upregulated in acute promyelocytic
leukemia (APL) carrying the dominant negative PML-RARA mutant, that, by inhibiting the RA-
regulated normal RARA transcriptional function, blocks myeloid differentiation [25], and it is
associated with a restricted signature of few miRNAs (e.g., miR-342-3p), that discriminates APL
myeloblasts from normal promyelocytes [23]. ANXA8 expression was also found significantly higher in
DCIS relative to atypical ductal hyperplasia (ADH), and normal breast tissue, and was also associated
with clinical features of breast cancer progression (e.g., positive nodes, tumor stage, and tumor
grade) [24].

HME1 control cells with a normal RARA/RXR transcriptional function, when grown in basement
membrane culture for 12 days, form morphologically normal 3D acinar structures with a lumen lined
by cells expressing endogenous ANXA8 (confocal microscopy images in Figure 9A, left). In contrast
the panel of HME1 lines with mutations that affect physiological RA-RARA transcriptional function
(described in the Introduction and Material and Methods) developed 3D “DCIS-like” acinar structures
expressing ANXA8 in all cells (confocal microscopy images in Figure 9A, right).

Next, we tested whether ectopic expression of ANXA8 in the HME1 cell context, was per se
sufficient to affect 3D mammary epithelial cell morphogenesis regulated by physiological RA. To this
end we developed, and characterized, HME1-ANXA8 cells stably expressing higher ANXA8 level
relative to HME1-Ctrl cells by Western blot (Figure 9B, top), and immunostaining (Figure 9B, bottom).
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Figure 9. HME1-Ctrl cells with a normal RA-RARA signaling grown in reconstituted basement
membrane (Matrigel) culture develop 3D ductal acinar structures with a lumen lined by ANXA8
expressing cells within 12 days (A, left). HME1 cells with genetic mutations that hinder RA-RARA
signaling form ductal acinar structures with a lumen filled with ANXA8 expressing cells (A, right);scale
bar: 10µm. Western blot and immunostaining show higher expression in HME1-ANXA8 cells stably
expressing ectopic ANXA8 relative to HME1-Ctrl cells (B). Scheme of the three module mechanism
whereby physiological RA (yellow) coordinates via distinct RARA functions the spatiotemporal
regulation of RARA transcription (green) and PI3KCA regulation of P-AKT signaling pathway (red)
(C), HME1-CtrlGFP cells with normal RA-RARA signaling- stably expressing a RARE-GFP construct-
show P-AKT (red) positive cells at all stages of 3D acinar morphogenesis, but express only GFP (green)
in luminal cells at intermediate stage (D, left). HME1-ANXA8GFP cells show that ectopic ANXA8
expression affect the RA-regulation of RARA transcriptional function, but not the PI3K-AKT function
regulated by RA, since cells are marked only by P-AKT at all stages of 3D morphogenesis (D, right);
scale bar: 10 µm. Factors that hinder the physiological RA-RARA transcriptional mechanism by
inducing ANXA8 expression reinforce a vicious circle of aberrant 3D morphogenesis (E).

In normal HME1 mammary morphogenesis physiological RA coordinates in a spatiotemporal
fashion two RARA functions: the canonical RARA transcriptional function, which directly regulates
the chromatin state of RARA target genes, and the RARA function that regulates the activation of
P-AKT via PI3KCA [13] (Scheme in Figure 9C). Both HME1-CtrlGFP cells with baseline endogenous
ANXA8 expression, and HME1-ANXA8GFP stably expressing ectopic ANXA8, were stably transfected
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with a 3x RARE-d2EGFP construct, a destabilized Green Fluorescent Protein (GFP) with a half-life of
2 h.

In the course of 3D HME1-CtrlGFP morphogenesis we detected P-AKT (red) in cells at all stages of
maturation, which indicates an active RARA-PI3KCA signaling. At intermediate stages we detected
GFP expression (green) in cells destined to clear the luminal space (Figure 9D, left). In contrast,
in the course of 3D HME1-ANXA8GFP aberrant morphogenesis we detected P-AKT (red) in cells at
all stages of acinar maturation (Figure 9D, right). These findings imply that stable ectopic ANXA8
upregulation is per se sufficient to inhibit the physiological RA-RARA transcriptional function, but not
the physiological RA-RARA function that regulates the activation of PI3KCA- AKT signaling pathway
Based on these mechanistic studies, it seems that factors (e.g., genetic mutations) that hinder the
physiological RA-RARA transcriptional mechanism increase ANXA8 expression that, in turn, reinforces
a vicious circle of aberrant morphogenesis (Figure 9E).

As discussed hereafter not only genetic mutations affecting RA-RARA-ANXA8 feedback loop,
but also other factors, as RA-regulated ANXA8 regulatory miRNAs (Figures 4 and 10), might be
involved in the regulation of ANXA8 during 3D mammary morphogenesis.

3. Discussion

While most studies focus on identifying biomarkers in specific subset of early stage breast cancer,
we use 3D HME1 DCIS models to identify regulatory molecular mechanisms and potential biomarkers
and druggable targets of breast DCIS.

In previous studies we found a restricted protein signature of 42 proteins including 22 upregulated
proteins shared by five HME1 “DCIS-precursor” lines with different genetic mutations that increased
the expression of ANXA8, a Ca2+ and phospholipid binding protein, which is regulated by all-trans
Retinoic Acid (RA) [24]. ANXA8 upregulation was found upregulated for the first time in acute
promyelocytic leukemia (APL) with repressed wild-type RARA transcriptional function due to
dominant negative RARA fusion proteins as PML-RARA [25,26]. Breast cancer is not characterized by
RARA structural mutations. However, factors that negatively affect the RARA transcriptional function
predispose mammary epithelial cells to survive and proliferate thanks to the physiological RA-RARA
activation of PI3KCA that affects its effectors as AKT [13].

Using a large panel of DCIS we found that breast DCIS tissue samples express higher ANXA8
relative to atypical ductal hyperplasia, and normal breast tissue. Moreover we found that high ANXA8
expression is also associated with clinical features of breast cancer progression (e.g., positive nodes,
tumor stage, and tumor grade) [24]. In HME1 cells with wild type RARA and endogenous ANXA8
level, physiological RA exerts the spatiotemporal control of both the RARA transcriptional function
and the RARA function that regulates PI3K-P-AKT signaling. HME1 cells develop 3D normal ductal
structures thanks to the activation of the RARA transcriptional function in cells that are destined to
clear the lumen. Cells lining the lumen are marked by P-AKT and ANXA8. HME1 “DCIS precursor
cell lines” develop into 3D morphologically aberrant ductal structures lacking a lumen; all cells are
marked by P-AKT and ANXA8. Consistently, ectopic expression of ANXA8 in HME1 cells, stably
expressing RARE-GFP (HME1-ANXA8GFP), is per se capable of hampering the physiological RARA
transcriptional function indispensable for lumen formation, but does not affect the induction of P-AKT
due to RA-RARA induced PI3KCA-AKT activation. The formation of HME1 amorphous structures
where ANXA8 upregulation induces P-AKT is consistent with clinical studies showing that breast
DCIS are marked by high P-AKT level [34] and, as mentioned above, also by high ANXA8 [24].

By bioinformatics analysis of the protein signature of both upregulated and downregulated
proteins in HME1 “DCIS-precursor” lines, we detected a restricted cohort of protein-miRNA pairs
including eleven ANXA8-miRNA pairs. RA responsive elements (RAREs) are present both in the
promoter of ANXA8 and in the promoters of miRNAs that target the 3’UTR of ANXA8 mRNA,
including miR-128 and miR-218 that we previously described [24], and miR-342 [26,35] shown in
Figure 10. MiR-218 was found downregulated in DCIS ([24] and references within), while miR-342
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was found downregulated in triple negative breast cancer [35]). Downregulated miR-342 was also
associated with worse overall survival in breast cancer patients [36].Cancers 2018, 10, x 12 of 17 
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Figure 10. Scheme showing that ANXA8 can be regulated by RA-RARA either directly, at the ANXA8
gene promoter, or indirectly via miRNAs targeting ANXA8 mRNA 3’UTR, as the miR-342, affected in
breast cancer.

ANXA8 upregulation in different DCIS contexts may be due to either genetic mutations
affecting RA-RARA transcriptional function as shown in this study, but also to epigenetic factors
like RA-regulated ANXA8 regulatory miRNAs. Additional 3D HME1 models need to be developed
to assess the effects of these miRNAs on the spatiotemporal regulation of the two RARA functions,
and vice versa.

From the translation standpoint, ANXA8 and its regulatory miRNAs might be developed as
biomarkers of liquid biopsies. So far we found higher ANXA8 in exosomes released in the culture
medium of HME1 cells overexpressing ANXA8 relatively to control HME1 (unpublished observations).
ANXA8 might also be a potential druggable target as it is for Annexin2 (ANXA2). Recently, it was
reported the identification of a new peptide that binds to and inhibits ANXA2 [37]. We previously
found an inverse correlation between ANXA8 (upregulated) and ANXA2 (downregulated) in
HME1-“DCIS precursor” lines. It would be interesting to identify a peptide that binds to and inhibits
ANXA8. Ultimately, we hope that protein-miRNA pairs that we identified in this study might
elucidate mammary additional epithelial cell morphogenetic mechanisms, and might be developed as
biomarkers or druggable targets of early stage breast cancer.

4. Materials and Methods

4.1. Cells and Cell Culture

h-TERT-HME1 human mammary epithelial cells (here referred to as HME1) (Clontech, Mountain
View, CA, USA) were grown in MEGM (Lonza, Walkersville, MD, USA) as per vendor’s instructions.
The HME1-derived stable clonal lines (in this study often referred to as HME1 “DCIS-precursor” cell
lines) include cell lines that we developed for different studies: HME1-RARA403 expressing a dominant
negative RARA-403 mutant [14]; HME1-shERA with Estrogen Receptor alpha downregulation [15];
HME1-shPER2 with down regulation of PER2 [15]; HME1-shMTG16 with downregulation of the tumor
suppressor MTG16 [20]; HME1-MYC overexpressing MYC oncogene [22]; HME1-ANXA8 expressing
Annexin A8 [24]; HME1-ANXA8 carrying a RARE-GFP (this manuscript). Cells in 3D were cultured on
growth-factor reduced Matrigel (BD Biosciences, San Jose, CA, USA) as we previously described [20].
Briefly, 3 × 103 single cells/well were seeded in 8 well chamber slides on a layer of Matrigel covered
with MEGM + 2% Matrigel. 3D acini were let grow for 12 days, refreshing the medium every 2–3 days.
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4.2. miRNA Prediction from Protein Changes

The proteomics data used for miRNA prediction were generated in [24]. For this analysis, Total
ion score CI > 95% and/or protein score CI > 95 % were considered significant. Fold changes for each
protein in each “DCIS-precursor” cell line were reported in a previous study of our laboratory, which
is referred hereafter [24]. Messenger RNAs of the proteins deregulated in the HME1 “DCIS-precursor”
cell lines were analyzed with TargetScan release 6.2 (http://www.targetscan.org/) for the presence
of conserved miRNA-target sites in their 3′UTR [38]. When multiple mRNA splice variants with
different 3′UTRs were identified for a single protein, all 3′UTRs were taken into consideration.
The miRNA-target sites identified by TargetScan were filtered through a series of selections. First,
we selected only sites broadly conserved among vertebrates or sites conserved only mammals.
Second, we selected the conserved sites present in the mRNA of two or more deregulated proteins.
Third, we focused on sites that were only present either in the mRNAs of proteins upregulated in
the HME1 “DCIS-precursor” cell lines or in the mRNAs of proteins downregulated in the HME1
“DCIS-precursor” cell lines. After these selections, we obtained a list of miRNAs predicted to uniquely
target highly conserved sited in two or more downregulated proteins or two or more upregulated
proteins. This miRNA list was used for pathway analysis, database mining and TCGA analysis as
described below.

4.3. miRNA Pathway Enrichment Analysis

We used default settings (p < 0.05, micro-T threshold = 0.8, gene intersection = 4,
FDR= conservative) to obtain a list of pathways potentially deregulated by the miRNA listed in
Figure 5. In DIANA miRPath, the P-value for each pathway is calculated by applying Fisher’s
combined probability method (Fisher’s method) [28]. MicroRNA symbols obtained from TargetScan
analysis were first converted into “hsa-miR-3p/5p” symbols by using miRSystem (http://mirsystem.
cgm.ntu.edu.tw/) [39,40], then analyzed for KEGG pathway enrichment by using DIANA miRPath
(http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mirpath/index) [28] with default
settings. Significant Pathways (p < 0.05) were grouped according to their functions.

4.4. miRNA Database Mining

OncomiRDB (http://bioinfo.au.tsinghua.edu.cn/member/jgu/oncomirdb/) [41], miRCancer
(http://mircancer.ecu.edu/) [42], and miR2Disease (http://www.mir2disease.org/) [43] were used to
find evidence of miRNA deregulation in breast cancer. The three databases were manually searched for
each miRNA individually. MiRNAs present in one or more databases were taken into consideration.

4.5. TCGA Analysis

The Cancer Genome Atlas (TCGA) breast invasive carcinoma dataset (TCGA) [44], was analyzed
through cBioPortal for Cancer Genomics (http://www.cbioportal.org/public-portal/) [45,46].
The analysis was performed with default settings on the following genomic profiles: mutations,
putative copy-number alterations from GISTIC, and a user-defined gene set containing the miRNAs
listed in Figure 5. Only miRNAs altered in ≥ 2% of cases are shown in this study.

4.6. In Silico Identification of RARE in miRNA-342 Promoter and Sites in the ANXA8 3′UTR mRNA

The miRNA-342 promoter region was searched for RARE sequences by using SnapGene as
previously described [24]. Identification of miRNA-342 targeting sites in the ANXA8 3′UTR ([14])
was performed by using both TargetScan 6.2 release (http://www.targetscan.org/) and miRmap
(https://mirmap.ezlab.org) [47].

http://www.targetscan.org/
http://mirsystem.cgm.ntu.edu.tw/
http://mirsystem.cgm.ntu.edu.tw/
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mirpath/index
http://bioinfo.au.tsinghua.edu.cn/member/jgu/oncomirdb/
http://mircancer.ecu.edu/
http://www.mir2disease.org/
http://www.cbioportal.org/public-portal/
http://www.targetscan.org/
https://mirmap.ezlab.org
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4.7. Western Blotting (WB)

Cells were lysed with RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1% SDS, 1% Nonidet
P40, supplemented with Roche Complete protease inhibitor cocktail). Protein concentration was
measured by using Coomassie Plus protein assay reagent (Thermo Scientific, Waltham, Massachusetts,
USA,), and equal amounts of proteins were separated by SDS-PAGE electrophoresis and transferred
onto a nitrocellulose membrane by standard methods. Membranes were incubated with anti-β-tubulin
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) or anti-ANXA8 (LifeSpan Biosciences, Seattle,
WA, USA) washed, and incubated with an appropriate HRP-conjugated antibody (GE Healthcare,
Piscataway, NJ, USA) followed by ECL detection (GE Healthcare). Protein band intensity was
quantified by using Image J (NIH).

4.8. Immunostaining of Normal and Aberrant 3D HME1 Acini and Confocal Analysis

Immunostaining was performed as described [20]. Briefly, after fixation with 4%
paraformaldehyde for 15 min, 3D HME1 acini were incubated with PBS + 0.2% Triton X100 for 10 min,
followed by blocking with PBS + 1% BSA, 1% FBS and 0.05% Tween 20 for 1 h and incubation with
the primary antibody overnight at 4 ◦C. Cells were then rinsed extensively with PBS, and incubated
with appropriate secondary antibodies for 2 h, rinsed extensively with PBS, and stained with DAPI
(Sigma, St Luis, MO, USA). Slides were mounted with Vectashield (Vector Laboratories, Burlingame,
CA, USA). ANXA8 was detected with an anti-ANXA8 antibody (LifeSpan BioSciences, Seattle, WA,
USA) followed by anti-rabbit Alexa Fluor 488. P-AKT was detected with an anti P-AKT (Ser 473)
antibody (Cell Signaling, Danvers, MA, USA) followed by anti-rabbit Alexa Fluor 546. 3D acini were
analyzed with a confocal microscope (SP2 Spectral Confocal Microscope, Leica, Wetzlar, Germany).

5. Conclusions

The identification of protein-miRNA pairs that are deregulated in 3D “DCIS-like” models
might help us to elucidate the underpinnings of unexplored mammary morphogenetic mechanisms.
So far we focused on a molecular mechanism that involves ANXA8, a member of the Annexin
family, which is regulated by physiological RA via RARA. In turn, ANXA8 regulates the RA-RARA
signaling, thus creating a vicious circle that fosters aberrant mammary morphogenesis. Several
regulatory miRNAs might be involved in the RA-RARA-ANXA8 loop controlling 3D developmental
morphogenetic processes; when deregulated these miRNAs might trigger tumorigenesis. Among other
protein-miRNA pairs found in this study we expect to detect new components of mammary
morphogenetic mechanisms that could be developed as DCIS biomarkers and druggable targets.
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3D Three dimensional
3’ UTR 3’ untranslated region
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ANXA8 Annexin 8
AKT protein kinase B
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DCIS Ductal carcinoma in situ
ERA Estrogen receptor alpha
GFP Green Fluorescent Protein
HME1 Human mammary epithelial 1 cell line
HME1-CtrlGFP HME1 control cells carrying a stable RARE-GFP construct
HME1-RARA403 HME1 cells carrying a dominant negative RARA403 mutant
HME1-MYC HME1 cells with MYC ectopic expression
HME1-shERA ERA knock down HME1 cells
HME1-shMTG16 MTG16 knock down HME1 cells
HME1-shPER2 PER2 knock down HME1 cells
HME1-ANXA8 HME1 with ANXA8 ectopic expression
HME1-ANXA8GFP HME1ANXA8 carrying a stable RARE-GFP construct
IPA Ingenuity Pathway Analysis
KEGG Kyoto Encyclopedia of Genes and Genomes
MiRNA microRNA
PI3KCA Phosphatidylinositol-3Kinase catalytic subunit (p110)
P-AKT phosphorylated AKT
PMID PubMed unique research article identifier number
RA All- Trans Retinoic acid
RARE RA responsive element
RARA RA receptor alpha
TCGA The Cancer Genome Atlas
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