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Abstract: Intratumor genetic heterogeneity (ITH) is the main obstacle to effective cancer treatment and
a major mechanism of drug resistance. It results from the continuous evolution of different clones of
a tumor over time. However, the molecular features underlying the emergence of genetically-distinct
subclonal cell populations remain elusive. Here, we conducted an exhaustive characterization of
ITH across 2807 tumor samples from 16 cancer types. Integration of ITH scores and somatic variants
detected in each tumor sample revealed that mutations in epigenetic modifier genes are associated
with higher ITH levels. In particular, genes that regulate genome-wide histone and DNA methylation
emerged as being determinant of high ITH. Indeed, the knockout of histone methyltransferase SETD2
or DNA methyltransferase DNMT3A using the CRISPR/Cas9 system on cancer cells led to significant
expansion of genetically-distinct clones and culminated in highly heterogeneous cell populations.
The ITH scores observed in knockout cells recapitulated the heterogeneity levels observed in patient
tumor samples and correlated with a better mitochondrial bioenergetic performance under stress
conditions. Our work provides new insights into tumor development, and discloses new drivers
of ITH, which may be useful as either predictive biomarkers or therapeutic targets to improve
cancer treatment.

Keywords: cancer; intratumor heterogeneity; genomic instability; epigenetics; mitochondrial
metabolism

1. Introduction

The expansion of genetically-distinct cell populations within a tumor creates a subclonal
architecture that varies dynamically throughout cancer progression [1]. This acquired cancer trait,
termed intratumor heterogeneity (ITH), is the substrate for Darwinian evolution to act upon, selecting
subclones carrying phenotypes that favor tumor progression [2]. The outgrowth of such subclones
impacts cancer development, drug resistance and tumor relapse [3–6]. Despite the key role ITH plays in
cancer, important questions regarding its magnitude, origin and genetic drivers across different cancer
types remain largely unanswered. By facilitating the emergence of nucleotide sequence mutations,
copy-number alterations, chromosomal translocations or aneuploidies, genomic instability has been
regarded as the major source of ITH [4,7–9]. However, discrepancies in the rates of genomic instability
and ITH observed in previous comprehensive studies [3] suggest that additional events congregate to
increase genetic heterogeneity in tumors.
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Besides mutations, cancer cells invariably present with some degree of epigenetic alterations
that contribute to the acquisition of the cancer hallmarks [10,11]. Indeed, there is evidence that
epigenomic reprogramming plays a seminal role in tumorigenesis by creating a progenitor-like
cell state that facilitates expression of driver mutations and tumor initiation [12]. High-resolution
genome-sequencing efforts have identified driver mutations in genes that regulate the epigenome,
namely, genome-wide chromatin and DNA methylation [13,14]. For instance, acute monocytic
leukemias frequently (20.5%) carry mutations in the de novo DNA methyltransferase gene DNMT3A,
displaying aberrant genome-wide DNA methylation profiles [15]. Ten percent of kidney renal clear
cell carcinomas (KIRC) have mutations in SETD2, the methyltransferase responsible for trimethylation
of Lys36 in histone H3 (H3K36me3), which is necessary for accurate gene expression and DNA
repair [16–19]. H3K36me3 is also involved in targeting DNMT3A to chromatin [20], highlighting the
finely tuned epigenetic interplay between histone and DNA methylation that is needed for normal cell
function and is frequently disrupted in cancer cells.

While epigenetic deregulation in cancer arises primarily as a consequence of DNA mutations,
the view that altered epigenomes may also change DNA mutation rates highlights reciprocal
interactions that contribute to cancer development [14,21]. Accordingly, epigenomic disruption
should favor the development of genetically-diverse tumor cell populations, fueling ITH [21]. In fact,
a possible relationship between genomic and epigenomic alterations during clonal evolution of
tumors has recently been suggested in esophageal squamous cell carcinoma and glioma, where high
concordance was observed between the evolution of genetic and epigenetic diversification [22,23].
In this study, we reasoned that analysis of whole-exome datasets of The Cancer Genome Atlas (TCGA)
would disclose patterns of covariation between specific epigenetic modifier genes and ITH levels.
Our integrative pan-cancer characterization of somatic variants and ITH identified mutations in
epigenetic modifier genes that display an association with increased clonal evolution across several
cancer types. Experimental ablation of specific loci provided direct evidence that loss of SETD2 or
DNMT3A drives the emergence of genetically-distinct subclonal cell populations. Knockout cells
showed increased mitochondrial bioenergetic performance under stress conditions, a phenotypic
trait that fosters the Darwinian selection of clones. Our results provide an unprecedented pan-cancer
portrait of the major determinants of ITH and an experimental validation of the role of specific
epigenetic modifier genes, laying a foundation for more effective cancer prognoses and treatment.

2. Results

2.1. Genomic Instability Does Not Predict ITH in Many Cancer Types

To estimate correlations between genomic instability and ITH in different cancers, we examined
2807 tumor whole-exome sequences from 16 cancer types of TCGA. We assigned an overall genomic
instability score to each tumor, defined as the number of somatic point mutations and small insertions
and deletions (INDELs) ranging from 1 to 100 bp in length. The ITH score was obtained using
the mutant-allele tumor heterogeneity (MATH) method (Figure 1A and Table S1) [24]. MATH
evaluates the variability of the mutant-allele fractions among all tumor-specific mutated loci. Therefore,
homogeneous tumors with high mutation incidence have a narrower distribution of mutant-allele
fractions than heterogeneous tumors. In agreement with previous reports [3], we found that the
degree of genomic instability is highly variable across tumors types (Figure 1A). Notably, high levels of
genomic instability were not positively correlated with ITH in several tumors (Figure 1B). Individual
analysis of each cancer type revealed that only thyroid carcinoma (THCA), pancreatic adenocarcinoma
(PAAD) and kidney renal clear cell carcinoma (KIRC) exhibited a statistically significant positive
correlation between genomic instability and ITH (Figure 1B). Moreover, we found a significant
negative correlation between these two features in kidney renal papillary cell carcinoma (KIRP) and
adrenocortical carcinoma (ACC) (Figure 1B). This finding suggests that factors other than increased
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mutability determine the development and expansion of genetically-distinct subclonal cell populations
within a tumor.Cancers 2019, 11, x 3 of 17 

 

 
Figure 1. Pan-cancer correlations reveal that genomic instability does not predict ITH. (A) Distribution 
of genomic instability (log10 transformed) and ITH across 16 TCGA cancer types: THCA (thyroid 
carcinoma), KICH (kidney Chromophobe), BRCA (breast invasive carcinoma), PRAD (prostate 
adenocarcinoma), UCEC (uterine Corpus Endometrial Carcinoma), PAAD (pancreatic 
adenocarcinoma), KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell 
carcinoma), CESC (cervical squamous cell carcinoma and endocervical adenocarcinoma), LIHC (liver 
hepatocellular carcinoma), ACC (adrenocortical carcinoma), HNSC (head and neck squamous cell 
carcinoma), STAD (stomach adenocarcinoma), BLCA (bladder urothelial carcinoma), LUAD (lung 
adenocarcinoma), LUSC (lung squamous cell carcinoma). Cancers are ordered according to genomic 
instability levels. (B) Pearson correlation between genomic instability (log10 transformed) and ITH 
for each cancer type. Each point represents one patient and the line shows the fitted linear model. 

2.2. Mutations in Epigenetic Modifier Genes Are Strong Determinants of ITH 

To investigate whether epigenomic deregulation drives the development of tumors with high 
levels of ITH, we focused our analysis on KIRC, the cancer type with the highest frequency of 
mutations in epigenetic modifiers (Figure 2A). The important role of epigenomic deregulation in the 
development and progression of KIRC is illustrated by the finding that patients with mutations in 
epigenetic modifiers have worse overall survival compared to those without mutations in these genes 
(p < 0.05, log-rank test; Figure 2B). To investigate how epigenomic deregulation compares with other 
specific cellular processes in influencing ITH in KIRC, we analyzed significantly mutated genes 
grouped in broad functional categories as previously described [25]. The linear model revealed that 
mutations in epigenetic modifiers are the most strongly associated with high ITH in KIRC, amongst 
all categories of genes analyzed (Figure 2C). Moreover, the presence of mutations in epigenetic 
modifier genes correlates positively with increased ITH across different cancer types (Figure 2D and 
Table S2). Next, we aimed at identifying the individual genes that, when mutated, more accurately 
predict ITH. To this end, we used generalized linear models previously applied to infer the 
association of genetic alterations with other phenotypic variables [26]. The strongest predictor of high 
ITH in both KIRC alone or across several cancer types was the presence of mutations in SETD2, 
DNMT1 and DNTM3A (Figure 2E). Importantly, we could model 32% of variability in KIRC ITH 
using only mutations in SETD2, DNMT1 and DNTM3A (Figure 2F). The optimal model showed a 
significant correlation between the observed and predicted ITH levels based on the tumor mutation 
profiles (Figure 2F,G). These data suggest that epigenomic deregulation is an important determinant 
of ITH and identify mutations in SETD2, DNMT1 and DNTM3A as candidate drivers of ITH. 
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Figure 1. Pan-cancer correlations reveal that genomic instability does not predict ITH. (A) Distribution
of genomic instability (log10 transformed) and ITH across 16 TCGA cancer types: THCA (thyroid
carcinoma), KICH (kidney Chromophobe), BRCA (breast invasive carcinoma), PRAD (prostate
adenocarcinoma), UCEC (uterine Corpus Endometrial Carcinoma), PAAD (pancreatic adenocarcinoma),
KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma), CESC (cervical
squamous cell carcinoma and endocervical adenocarcinoma), LIHC (liver hepatocellular carcinoma),
ACC (adrenocortical carcinoma), HNSC (head and neck squamous cell carcinoma), STAD (stomach
adenocarcinoma), BLCA (bladder urothelial carcinoma), LUAD (lung adenocarcinoma), LUSC (lung
squamous cell carcinoma). Cancers are ordered according to genomic instability levels. (B) Pearson
correlation between genomic instability (log10 transformed) and ITH for each cancer type. Each point
represents one patient and the line shows the fitted linear model.

2.2. Mutations in Epigenetic Modifier Genes Are Strong Determinants of ITH

To investigate whether epigenomic deregulation drives the development of tumors with high
levels of ITH, we focused our analysis on KIRC, the cancer type with the highest frequency of mutations
in epigenetic modifiers (Figure 2A). The important role of epigenomic deregulation in the development
and progression of KIRC is illustrated by the finding that patients with mutations in epigenetic
modifiers have worse overall survival compared to those without mutations in these genes (p < 0.05,
log-rank test; Figure 2B). To investigate how epigenomic deregulation compares with other specific
cellular processes in influencing ITH in KIRC, we analyzed significantly mutated genes grouped in
broad functional categories as previously described [25]. The linear model revealed that mutations in
epigenetic modifiers are the most strongly associated with high ITH in KIRC, amongst all categories
of genes analyzed (Figure 2C). Moreover, the presence of mutations in epigenetic modifier genes
correlates positively with increased ITH across different cancer types (Figure 2D and Table S2). Next,
we aimed at identifying the individual genes that, when mutated, more accurately predict ITH. To this
end, we used generalized linear models previously applied to infer the association of genetic alterations
with other phenotypic variables [26]. The strongest predictor of high ITH in both KIRC alone or across
several cancer types was the presence of mutations in SETD2, DNMT1 and DNTM3A (Figure 2E).
Importantly, we could model 32% of variability in KIRC ITH using only mutations in SETD2, DNMT1
and DNTM3A (Figure 2F). The optimal model showed a significant correlation between the observed
and predicted ITH levels based on the tumor mutation profiles (Figure 2F,G). These data suggest
that epigenomic deregulation is an important determinant of ITH and identify mutations in SETD2,
DNMT1 and DNTM3A as candidate drivers of ITH.
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Kaplan-Meier plot comparing the survival of KIRC patients segregated according to the presence 
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analysis. (C) Statistical significance (−log 10 Benjamini-Hochberg Adj. p-value) of the linear model 
coefficients estimated for each gene group in KIRC. The vertical dashed line corresponds to the 
significance level (BH adj. p-value of 0.05). (D) Heatmap of the linear model coefficients estimated for 
each cancer type and gene group. Only statistically significant coefficients are represented (BH adj. p-
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Figure 2. Driver mutations of pan-cancer ITH. (A) Pan-cancer analysis of the percentage of somatic
mutations in epigenetic modifier genes across 16 TCGA cancer types. The vertical axis shows
the percentage of mutations in epigenetic modifier genes whereas the different cancer types are
ordered on the horizontal axis from the lowest to the highest percentage of mutations in these genes.
(B) Kaplan-Meier plot comparing the survival of KIRC patients segregated according to the presence
(red) or absence (black) of mutations in epigenetic modifiers. The log-rank test was used for statistical
analysis. (C) Statistical significance (−log 10 Benjamini-Hochberg Adj. p-value) of the linear model
coefficients estimated for each gene group in KIRC. The vertical dashed line corresponds to the
significance level (BH adj. p-value of 0.05). (D) Heatmap of the linear model coefficients estimated
for each cancer type and gene group. Only statistically significant coefficients are represented (BH
adj. p-value < 0.05). (E) Heatmap of driver mutations of ITH across several cancer types depicted by
a LASSO penalized model. LASSO-selected coefficients are colored according to the effect of each
standardized covariate in the optimal model. The numbers on each tile denote the order in which
variables are included indicating their relative importance. The top bar plot indicates the frequency
at which each driver-gene mutation occurs in the ITH fitted model. The right bar plot shows the
explained variance. An asterisk (*) denotes models where the explained variance (R2) is greater than
zero by a margin of more than one standard deviation. (F) Variance explained by selected driver genes
(black line ± 1 standard deviation) ordered by their occurrence in a LASSO penalized model for ITH in
KIRC using only the mutated genes DNMT1, DNMT3A and SETD2. The optimal model maximizes the
explained variance R2. The right axis indicates the effect of each standardized covariate in the optimal
model (red dots). (G) Scatter plot of predicted and observed ITH for KIRC (Estimate and statistical
significance of the Pearson correlation are presented).
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2.3. Knockout of SETD2 or DNMT3A Expands the Clonal Diversity of Cancer Cell Populations

We next sought to experimentally validate the role of SETD2, DNMT1 and DNMT3A mutations in
driving the emergence of genetically-distinct subclonal cell populations. The mutations found in these
genes were predicted as deleterious causing loss of function (Table S3). To recapitulate this phenotype,
we employed CRISPR/Cas9 system to specifically knockout each of these genes in KIRC Caki-2 cell
lines. Insertion of small INDELs at the target sites was confirmed by DNA sequencing and efficiency of
gene knockout evaluated by measuring protein levels (Figure 3A). Decreased H3K36me3 levels were
used as a surrogate for SETD2 depletion (Figure 3A). Importantly, knockout of DNMT1 rendered KIRC
cells senescent (Figure 3B), in contrast to DNMT3A and SETD2 depletion, which were well tolerated
and did not significantly affect cell proliferation (Figure 3C). This finding suggests that additional
compensatory mutations are required to allow the proliferation of DNMT1 mutant cells within tumors.
Alternatively, DNMT1 mutant clones could be selected during tumor evolution due their ability to
promote carcinogenesis through the senescence-associated secretory phenotype [27–29].
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Figure 3. CRISPR/Cas9 knockout of candidate ITH-driver genes in cancer cells. (A) The levels
of DNMT3A and H3K36me3 were estimated by western blot 1, 3 and 6 months after knockout.
(B) The percentage of senescent cells in control and mutant conditions (SETD2, DNMT1 and DNMT3A
knockouts) was assessed by β-galactosidase staining (error bars indicate SEM; n = 3 counting regions
of 150 cells/condition in triplicate; Student t-test). (C) The proliferation rate of the indicated cells was
measured by AlamarBlue dye reduction at the indicated time points. All data are presented as mean
(four technical replicates in the same experiment) ± SEM.

To investigate whether loss of DNMT3A or SETD2 drives the acquisition of
genetically-heterogeneous cell populations over time, we performed whole-exome sequencing of
control and knockout cells cultured during 1, 3 and 6 months (Figure 4A). ITH levels of three different
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cell populations per experimental condition (control, SETD2 and DNMT3A knockout) were measured
at each time point using MATH. Compared to control cells, loss of either SETD2 or DNMT3A
resulted in significantly increased and comparable levels of ITH after just one month (Figure 4B and
Table S4). However, while ITH rose for up to three months after SETD2 depletion, it remained constant
through time in DNMT3A knockout cells (Figure 4B). Bayesian cluster analysis of mutations using
PyClone [30] identified 25 mutation clusters that are distributed in each cell population at a frequency
that permits segregation according to the knockout gene (Figure 4C). ITH scores observed in SETD2
and DNMT3A knockout cell lines were not significantly different from those determined in TCGA
samples carrying SETD2 and DNMT3A mutations, respectively (Figure 4D). This finding reveals that
the clonal dynamics of cancer cells grown in vitro recapitulates the in vivo scenario. Altogether, these
data suggest that loss of SETD2 or DNMT3A drives specific patterns of clonal evolution that culminate
in tumors with increased levels of ITH.

2.4. Epigenomic Deregulation Drives Favorable Metabolic Phenotypic Variation

The increased ITH observed knockout of SETD2 or DNMT3A knockout suggests that new clones
carrying phenotypic traits that confer selective advantage within the cell populations have expanded
and were selected. In cancer cells, mitochondria play important roles in energy production, redox
and calcium homeostasis, transcriptional regulation and cell death [31]. Changes in mitochondrial
metabolism constitute an important source of variability for natural selection to act upon [32,33]. To test
whether epigenomic deregulation drives altered mitochondrial metabolic functions, we evaluated
the ability of cells to adapt to shifts in energy demands by measuring mitochondrial respiration rates
using an oxygen electrode on the Seahorse platform. In this assay, the oxygen consumption rate was
measured before and after the addition of inhibitors to derive parameters of mitochondrial respiration
in baseline and stress conditions (Figure 5A). Basal mitochondrial respiration in knockout and parental
cells was equally efficient (Figure 5B), indicating that no major intrinsic metabolic alterations were
caused upon loss of either SETD2 or DNMT3A. We then measured the maximal respiratory capacity
and spare capacity rate (SCR) of cells challenged with the mitochondrial uncoupler FCCP and the
Complex I and Complex III specific inhibitors rotenone and antimycin A, respectively. Both parameters
were significantly increased in SETD2 and DNMT3A knockout cells when compared to parental cells
under similar conditions (Figure 5C,D). Analysis of SETD2 and DNMT3A knockout cells revealed
mutations in genes involved in mitochondria biogenesis and function (Table S5); however, inspection
of mitochondria network in knockout cells using fluorescence confocal microscopy did not reveal
any major alterations (Figure 5E). These data rule out altered morphology as a causing factor for the
observed increase in the spare capacity rate. Instead, our data suggest that gain-of-function mutations
in genes involved in mitochondrial function drive higher spare capacity rates in knockout cells. Such an
association between epigenetics, altered nuclear DNA expression and mitochondrial function has
already been demonstrated in previous studies [34]. Altogether, these data provide direct experimental
evidence for the emergence of favorable characteristics in SETD2 and DNMT3A depleted cells that
may foster the increased number of genetically-distinct clones within the cell population.
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Figure 4. SETD2 and DNMT3A knockout drive ITH. (A) Schematic representation of the experimental
setup. Control and knockout cells were cultured during the indicated time periods before DNA
extraction and whole-exome sequencing (WES). ITH was inspected after three independent clonal
expansions (C1–C3) for each knockout at each time point. (B) ITH levels of SETD2 and DNMT3A
knockout cells after 1, 3 and 6 months. WES data of the indicated conditions were used to calculate ITH,
as described in the Methods. Data from three independent clonal expansions analyzed per group are
presented as mean ± SEM. Statistical analysis was a two-tailed Student’s t-test (* p < 0.05, ** p < 0.01,
*** p < 0.001). (C) Hierarchical cluster analysis of the mean variant allele frequency estimated with
PyClone in control, SETD2 and DNMT3A knockout cells. (D) Distribution and comparison of the ITH
levels across KIRC patients from TCGA and Caki-2 cell lines for the indicated conditions (control,
SETD2 and DNMT3A knockouts). The bar graph displays mean ITH values and s.e.m. (standard error
of the mean). Statistical analysis was performed with Wilcox-test but no statistical significance was
observed between TCGA patients and each cell line.
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Figure 5. SETD2 and DNMT3A knockout increase bioenergetic performance. Oxygen Consumption
Rates (OCR) trace and respiration parameters were measured in control, SETD2 and DNMT3A knockout
cells. Seahorse extracellular flux measurements of OCR was normalized to basal respiration (A). Basal
respiration (B), maximal respiration (C) and spare capacity rate (SCR) (D) of Caki-2 cell lines were
obtain by OCR values representative of 3 independent experiments in which each data point represents
replicates of three to five wells each cell line. Statistical analysis was performed using the unpaired
Student’s t-test, where * p < 0.05; ** p <0.01; *** p < 0.001; **** p < 0.0001, data were represented as
the mean ± SD. Olig: Oligomycin; FCCP; carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone;
Rot+AntA; Rotenone+Antimycin A. (E) Mitochondria morphology of Caki-2 control, DNMT3A KO
and SETD2 KO cell lines. Cells were fixed and stained with the mitochondrial marker Hsp60 (red) and
with the nucleus marker DAPI (blue). Cells were imaged on an inverted Zeiss LSM 880 microscope. Fiji
software was used to calculate scale bar (10 µm or 5 µm for zoom-in). Selected image is representative
of three independent experiments.
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3. Discussion

Tumors evolve through multiple rounds of clonal expansion, diversification and selection
that enable the acquisition of metabolic and bioenergetic phenotypes better adapted to the local
microenvironment. Such evolutionary adaptation also accounts for therapeutic failure as drug-resistant
tumor clones may be selected during therapy. High ITH is the substrate for this Darwinian model of
cancer evolution and therapeutic resistance, and hence, highlights the need for further understanding
of drivers and mechanisms of clonal evolution. Despite the major discrepancies observed in their
covariance rates [3], genomic instability is still considered a major source of ITH [4,7–9]. In this
study we show that genomic instability is not positively correlated with ITH in most cancer types.
In fact, there is a significant negative correlation in some cancers, suggesting that additional processes
must congregate to drive genetic heterogeneity. Our results are in agreement with previous studies,
where ITH was associated with different forms of instability [35]. Recently, high concordance was
observed between the evolution of genetic and epigenetic diversification in esophageal squamous
cell carcinoma and in glioma, disclosing possible relationships between genomic and epigenomic
alterations during the clonal evolution of tumors [22,23]. An interesting hypothesis linking DNA
mutations and epigenetics in cancer is that altered DNA methylation or chromatin modifications
may accelerate mutation rates. Examples of such relationship were already described. For example,
abnormal DNA hypomethylation near guanine quadruplexes (G4s)-rich regions is a common signature
for many DNA breakpoints associated with somatic copy-number alterations [36]. This finding
suggests that DNA hypomethylation in genomic regions enriched for G4s acts as a mutagenic factor in
cancer. Additionally, the genome organization into heterochromatin and euchromatin-like domains is
a dominant determinant of mutation rates, as illustrated by the finding that H3K9me3 levels alone can
predict over 40% of somatic mutation loci in human cancer samples [37]. Conversely, we and others
have shown that H3K36me3 protects active coding sequences of the genome from error-prone DNA
double-strand break repair mechanisms by promoting homologous recombination [17,38,39]. Together,
these data establish a strong association between epigenomic deregulation—namely, DNA and histone
methylation and genomic mutations, which we show play important roles during clonal evolution
and genetic diversification of tumors. In fact, we found that mutations in epigenetic modifier genes
are the strongest determinants of ITH amongst a panel of 17 distinct cellular pathways. Particularly,
we identified and validated mutations in the methyltransferase genes SETD2 and DNMT3A as potent
drivers of ITH. Other epigenetic modifiers were also associated with high levels of ITH in KIRC (e.g.,
PBRM1 or KDM5C), but correlated with lower heterogeneity in a pan-cancer analysis or in other
cancer types. Our findings add direct experimental evidence to previous studies implicating SETD2
loss-of-function in mechanisms that generate ITH [40,41].

As tumor cells adapt to the environment, they acquire distinctive bioenergetic features to take
advantage of available fuels. For instance, tumor cells growing in an environment rich in adipocytes
could use fatty acids as a major energy source [33]. This remarkable versatility arises from clonal
evolution, during which genetic heterogeneity would eventually impact the function of metabolic
enzymes [32,33]. We thus reasoned that the increased ITH observed upon SETD2 or DNMT3A
knockout likely underpins phenotypic variations in mitochondrial metabolism upon which natural
selection could act. In agreement with this, we observed that both SETD2 and DNMT3A depleted cell
populations have increased bioenergetic performance under stress conditions, a phenotype that was
accompanied by mutations in genes involved in mitochondria function.

4. Materials and Methods

4.1. Cell Culture

Caki-2 cells (Cell Line Services, Eppelheim, Germany) that do not have SETD2 mutations were
selected as a cellular model of KIRC. Caki-2 and human embryonic kidney (HEK) 293T (ATCC,
Manassas, VA, USA) cells were grown as monolayers in Dulbecco’s modified Eagle medium (DMEM,
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Invitrogen, Carlsbad, CA, USA), supplemented with 10% (v/v) FBS, 1% (v/v) nonessential amino acids,
1% (v/v) L-glutamine and 100U/mL penicillin-streptomycin and maintained at 37 ◦C in a humidified
atmosphere with 5% CO2.

4.2. Gene Knockout by CRISPR/Cas9

To establish knockout cell lines, we used the genome editing one vector system (lentiCRISPR-v2)
(Addgene #52961). sgRNAs were designed by GenScript and the potential off-target effects
was confirmed using the CRISPR tool (http://crispr.mit.edu). The following sgRNA sequences
were selected: DNMT1 CRISPR guide RNA 1: CTAGACGTCCATTCAC TTCC; DNMT3A
CRISPR guide RNA 2: TGGCGCTCCTCCTTGCCACG and SETD2 CRISPR guide RNA 1:
AGTTCTTCTCGGTGTCCAAA. As a control we used a pCas-Scramble CRISPR Vector (SantaCruz,
sc-418922). Recombinant lentiviruses were produced by co-transfecting HEK293T cells with each
lentiCRISPR-v2 expression plasmid together with packaging plasmid pCMV-dR8.91 (Addgene) and
the envelope plasmid pCMV-VSV-G (Addgene #8454) using Lipofectamine™ 3000 (Thermo Fisher
Scientific, Waltham, MA, USA) as a transfection reagent and Opti-MEM (Invitrogen), according
to the manufacturer’s instructions. Infectious lentiviruses were collected 48 h after transfection.
The supernatant was filtered through 0.45 µm filters (GE Healthcare, Chicago, IL, USA) and
concentrated by ultra-centrifugation at 25,000 rpm, 4 ◦C for 90 min. Cells were infected with lentivirus
at approximately 60% confluence. After 24 h, cells were incubated with 5 µg/mL of puromycin
(InvivoGen, San Diego, CA, USA) for 2 days. To identify KO clones, infected cells were single-cell
cloned in 96-well plates. Several clones from 96-well plates were selected and the presence of DNMT1,
DNMT3A and SETD2 was verified by western blot and Sanger sequencing. Genomic DNA was
extracted from each clone and a segment surrounding the DNMT1, DNMT3A and SETD2 edited region
was amplified with specific primers (Table S6). Target sites and specificity were validated using the
UCSC Genome Browser (https://genome.ucsc.edu/).

4.3. Western Blot

Whole cell protein extracts were prepared by cell lysis with SDS-PAGE buffer (80 mM Tris-HCL
pH 6.8, 16% glycerol, 4.5% SDS, 450 mM DTT, 0.01% bromophenol blue) with 200 U/mL benzonase
(Sigma-Aldrich, St. Louis, MO, USA), 50 µM MgCl2 and were boiled for 5 min. Equal amounts of
protein extracts were resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to a nitrocellulose membrane. After 1 h blocking with 5% non-fat dry milk in 1× PBS, 0.1% Tween20 at
room temperature, membranes were incubated with antibodies as follows: anti-DNMT1 (2 µg/mL,
Active Motif, Carlsbad, CA, USA), anti-DNMT3A (1:1000, Cell Signaling), anti-H3K36me3 (1:500,
Abcam, Cambridge, UK), α-tubulin (1:15,000, Sigma-Aldrich) and anti-histone H3 (1:1000, Abcam).
Detection was performed with the appropriate secondary antibodies (Bio-Rad, Hercules, CA, USA)
and enhanced luminescence substrate (Pierce ECL, Thermo Fisher Scientific, Waltham, MA, USA).
Details of antibodies used are mentioned in Table S6.

4.4. Cell Senescence and Proliferation Assays

Senescent cells were identified by β-galactosidase staining in low-density culture. Caki-2 cells
(controls and KOs) were seeded in 6-well plates at 10 × 104 cells/cm2. In the next day, cells were washed
with PBS 1×, fixed for 5 min (RT) in 2% formaldehyde/0.2% glutaraldehyde, washed, and incubated at
37 ◦C (with no CO2) with senescence cells histochemical staining kit (Sigma-Aldrich, CS0030) according
to manufacturer’s recommendations for 12 h. Blue-stained cells and total number of cells was counted
under the phase contrast microscope (Leica DM2500, Leica Biosystems, Wetzlar, Germany).

Cellular proliferation for human cancer cell lines (controls and KOs) was measured every
24 h for four days, using AlamarBlue™ (Thermo Fisher Scientific). Briefly, 10 × 104 cells/well
were seeded on 96-well plates in a final volume of 100 µL per well. This is a reliable method
for measuring cell viability, using the metabolic activity of cells to reduce resazurin (oxidized

http://crispr.mit.edu
https://genome.ucsc.edu/
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form: 7-hydroxy-3H-phenoxazin-3-1-10-oxide) to resorufin. The fluorescence of these two forms
is measured at 560 nm as excitation wavelength and at 590 nm emission wavelength was measured
every 24 h for 72 h, using a microplate reader (Microplate Reader TECAN Infinite M200, Tecan,
Mannedorf, Switserland).

4.5. Mitochondria Oxygen Consumption Rate

Mitochondria oxygen consumption rate (OCR) was measured with the XF24 Extracellular Flux
Analyzer (Seahorse Bioscience, Agilent, Santa Clara, CA, USA), according to the standard protocol.
Briefly, at least 3 months after each knockout, cells were seeded one day prior to the assay in a 24-well
XF plates at a density of 2 × 105 cell/well and incubated overnight at 37 ◦C, 5% CO2. Twenty-four
hours later, cells were incubated with Seahorse XF Base medium supplemented with 10 mM glucose,
2 mM L-glutamine and 1mM sodium pyruvate at pH 7.4 and calibrated for 1 h at 37 ◦C in the absence
of CO2. Hydration of the sensor cartridge was performed one day prior to the assay at 37 ◦C in
the absence of CO2. OCR was evaluated in a time course set-up where the following compounds
were sequentially injected in the following order: oligomycin (1 µM final concentration), carbonyl
cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (0.5 µM final concentration), and rotenone plus
antimycin A (0.5 µM final concentration). Rates were normalized to protein concentration measured
according to the Bradford method (Bio-Rad, Hercules, CA, USA). Three to five wells from each cell
line were measure in a total of n = 3 experimental assays. Values for each parameter were calculated as
the difference of OCR measures after and before injection:

a. Non-mitochondrial respiration was calculated as the average of OCR measurements after
rotenone and antimycin A injection;

b. Basal respiration is calculated as the difference between non-mitochondrial respiration and the
third point of baseline cellular oxygen consumption;

c. Maximal respiration corresponds to the difference between the average OCR value after FCCP
injection and the non-mitochondria respiration;

d. Spare capacity rate (SCR) is the difference between maximal and basal respiration values.

4.6. Determination of Mitochondrial Morphology

Caki-2 control, Caki-2 DNMT3A and Caki-2 SETD2 cells were seeded on 13 mm coverslips.
Twenty-four hours post seeding, cells were washed three times in PBS, fixed in 4% paraformaldehyde
for 20 min, washed three times in PBS, permeabilized in 0.1% Triton X-100 in PBS for 10 min, followed
by three washes in PBS. Cells were blocked in blocking buffer (0.2% gelatin, 2% fetal bovine serum,
2% BSA, 0.3% bovine serum albumin, 0.3% Triton X-100 in PBS) with 5% goat serum (DAKO) for 1 h.
Cells were stained using the primary antibody mouse anti-hsp60 at 1/250 dilution (BD Bioscience) for
2 h. After 3 washes in PBS, cells were incubated with the secondary antibody Alexa Fluor 568 goat
anti-mouse at 1/500 dilution (Life Technologies, Carlsbad, CA, USA) for 1 h and with DAPI at
1/10,000 dilution for 10 min. Images were visualized with a confocal laser point-scanning microscope
Zeiss LSM 880 with airyscan through an objective of 63× 1.40 oil dipping lens (Zeiss, Oberkochen,
Germany). Images were acquired using the ZEN software package (Zeiss) and analyzed in open source
Fiji software (https://fiji.sc/).

4.7. Pan-Cancer Data Sets

WES data published in the context of TCGA was downloaded from Broad Institute
MAF dashboard https://confluence.broadinstitute.org/display/GDAC/MAF+Dashboard, released
(14 April 2017). A total of 2807 patients corresponding to 16 different carcinomas were analyzed:
71 adrenocortical carcinoma (ACC), 270 bladder urothelial carcinoma (BLCA), 228 breast invasive
carcinoma (BRCA), 101 cervical squamous cell carcinoma (CESC), 196 head and neck squamous cell
carcinoma (HNSC), 167 liver hepatocellular carcinoma (LIHC), 324 lung adenocarcinoma (LUAD),

https://fiji.sc/
https://confluence.broadinstitute.org/display/GDAC/MAF+Dashboard
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118 lung squamous cell carcinoma (LUSC), 58 kidney chromophobe (KICH), 274 kidney renal clear cell
carcinoma (KIRC), 149 kidney renal papillary cell carcinoma (KIRP), 46 pancreatic adenocarcinoma
(PAAD), 349 prostate adenocarcinoma (PRAD), 181 stomach adenocarcinoma (STAD), 163 thyroid
carcinoma (THCA), 112 uterine corpus endometrial carcinoma (UCEC). None of the patients were
subjected to neoadjuvant therapies (neither chemotherapy or radiotherapy or immunotherapy) before
tumor resection. A complete list of samples is given in Table S1. The effect mutations were predicted
using cBioportal (Table S3) [42].

4.8. Pan-Cancer Characterization of Genomic Instability and Intratumor Heterogeneity

Genomic instability and ITH were determined using all the somatic point mutations and INDELs
downloaded from the Broad Institute MAF dashboard. Genomic instability was calculated as the
absolute number of mutations and INDEL observed in each tumor sample. The ITH defined as
the genetic heterogeneity was measured considering the same somatic mutations and using the
mutant-allele tumor heterogeneity (MATH) approach [24] (see Supplementary Methods for details).
Briefly, for each individual tumor we: (1) obtained the mutant-allele fraction (MAF) values of the
somatic mutations (the fraction of DNA that shows the mutated allele at a locus), (2) calculated the
center (median) and the width of the distribution (median absolute deviation, MAD); (3) multiplied the
median by a factor of 1.4826, so that the expected MAD of a normally distributed variable is equal to its
standard deviation; (4) calculated the MATH value as the percentage ratio of the MAD to the median
distribution of MAFs among the tumor’s genomic loci (MATH = 100 × MAD/median). Correlation
between genomic instability and ITH was determined using Pearson method as implemented in
cor.test function of R package [43].

4.9. Pan-Cancer Discovery of Driver-Gene Mutations of ITH

To identify driver-gene mutations, a binary matrix was produced representing the
presence/absence of mutations for each gene on each tumor sample, eliminating the bias introduced
by hypermutated genes. First, mutated genes were classified according to cancer specific
pathways previously defined: epigenetic modifiers, transcription factors/regulators, genome integrity,
RTK signaling, cell cycle, MAPK signaling, PI(3)K signaling, TGF-β signaling, Wnt/β-catenin signaling,
proteolysis, splicing, HIPPO signaling, metabolism, NFE2L, protein phosphatase, ribosome, TOR [25].
By doing this, we reduced noise from passenger mutations and discover which group of genes is the
major contributor of ITH in a wide range of carcinomas. Then, we applied a linear model per cancer
type, extracting: explained variance, estimated coefficients, Benjamin-Hochberg adjusted p-values
for the fitted model and for each estimated coefficient (Table S2). Second, to identify specific gene
driver-events we used generalized linear models previously applied to infer association of genetic
alterations with other variables [26] (see Supplementary Methods for details). Briefly, ITH for each
individual cancer type and all cancers was modelled by Lasso regression as implemented in glmnet
R package [44]. Significance of the explained variance by each model was determined for values
greater than zero by a margin of more than one standard deviation. Finally, the fitted models were
evaluated by comparing the observed and predicted ITH levels based on the tumor mutation profiles
and assessing the Pearson correlation.

4.10. Whole-Exome Sequencing from Human Cancer Cell Lines

The genomic DNA from cells was prepared using the QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions and the quality and quantity of purified DNA
was assessed by NanoDrop™ 2000 (Thermo Fisher Scientific) and gel electrophoresis. Genomic
DNA was extracted from control, DNMT3A and SETD2 KOs carcinoma cell lines following 1, 3 and
6 months in culture and then used for WES. Whole-exome capture libraries were constructed using
100 ng of DNA from Caki-2 cells (controls and KOs) sequenced as paired-end 151-bp sequence tags
with coverage of 30×. Samples were barcoded and prepared for sequencing by GATC Biotech AG
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(www.gatc-biotech.com) using Illumina protocols. Integrity and quantity of the starting material was
determined by appropriate methods (e.g., volume measurement, gel electrophoresis and fluorimeter
measurements). Library preparation incorporated adaptor sequences and indexing compatible for
Illumina sequencing technology, using proprietary methods of GATC Biotech. Enrichment was
performed using Agilents SureSelectXT Human All Exon V6 technology. The quality of the final library
was assessed by determination of size distribution and by quantification, following GATC Biotech
protocols. Sequencing was carried out on the Illumina HiSeq platform. Delivered raw data is the
result of a primary analysis using Illumina CASAVA software (http://cancan.cshl.edu/labmembers/
gordon/fastq_illumina_filter/).

4.11. Variant Calling from Whole-Exome Sequencing

Whole-exome sequence data processing and analysis were performed by RubioSeq software
(http://rubioseq.bioinfo.cnio.es/) using default parameters for somatic variation analysis [45]. Briefly,
sequencing data were first checked by FastQC for quality control checks on raw sequence data and then
aligned to the human reference genome (GRCh37/hg19) using Burrows-Wheeler alignment (BWA) [46].
Reads unmapped by BWA were realigned using BFAST [47]. Sequenced samples presented 71% of
bases in the targeted exome above 30× coverage (see Supplementary Methods for details and Table S7).
For variant calling we used GATK Unified Genotyper v2 [48] applying the “Discovery” genotyping
mode and default parameters for filtering. The GATK QUAL field was employed for ranking selected
somatic variants. Mutations were filtered to ensure that each variant had at least 5 reads supporting
the mutant allele and coverage of ≥30. Single-nucleotide variants reported in dbSNP150 were filtered
out from VCF output files, unless they were also present in COSMICv85 [49]. Only single nucleotide
variants were used for downstream analyses. The filtered variants were annotated with SnpEff
(VEP) [50]. Finally, to remove the germinal variants (i.e., present in the original cell population)
we filtered out variants present in the earliest replicate (1 month) from each experiment (individual
knockouts or control) and with MAF equal to 1.

4.12. Assessing ITH and Subclones Number from Whole-Exome Sequencing

The ITH from control and knockout cell lines was determined using the mutant-allele tumor
heterogeneity (MATH) approach [24]. A Bayesian clustering approach was also used to infer clonal
population structures present in control and knockout cell lines as implemented in Pyclone [30] (see
Supplementary Methods for details). Pyclone analysis was performed jointly on all samples using
variants supported at least by 50 reads and with copy number information estimated by RubioSeq and
processed using CopyWriteR Bioconductor package [51].

4.13. Statistical Analysis and Graphical Representation

Figures were produced using ggplot R package [52] and default packages from R environment [43]
and also Graph Pad Prism5 Software (https://www.graphpad.com/scientific-software/prism/).
The statistical significance of differences between groups was evaluated using unpaired Student’s
t-test and Mann-Whitney-Wilcoxon test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). Results
are depicted either as mean ± standard deviation (SD) or median ± SD, of minimum 3 independent
replicates. Survival was analyzed by Kaplan-Meier curve comparison using a log-rank test and with
a multivariate Cox proportional hazards analysis as implemented in the survival R package [53].
Statistical significance was determined using p-value < 0.05 as cut-off.

5. Conclusions

Our pan-cancer analyses revealed that mutations in epigenetic modifiers, namely SETD2 and
DNMT3A, are major determinants of ITH. These genes are recurrently mutated in several cancer types.
For instance, SETD2 mutations are found in 10% of KIRC [16], 9% of non-small cell lung carcinomas [54],
15% of pediatric high-grade gliomas and 8% of adult high-grade gliomas [55], whereas mutations in

www.gatc-biotech.com
http://cancan.cshl.edu/labmembers/gordon/fastq_illumina_filter/
http://cancan.cshl.edu/labmembers/gordon/fastq_illumina_filter/
http://rubioseq.bioinfo.cnio.es/
https://www.graphpad.com/scientific-software/prism/
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DNMT3A are observed in over 20% acute monocytic leukemias [15]. These numbers illustrate the
broad significance of our findings, which provide an unprecedented pan-cancer portrait of the major
determinants of ITH. Our experimental validation of the role of specific epigenetic modifier genes in
driving ITH reveals novel biomarkers and/or therapeutic targets that may contribute to more effective
cancer prognoses and treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/3/391/
s1, Method S1: Pan-Cancer Data Sets, Method S2: Intratumor heterogeneity score using mutant-allele tumor
heterogeneity (MATH) score, Method S3: Identification of deregulated cancer pathways associated with ITH,
Method S4: Pan-cancer discovery of driver-gene mutations of ITH, Method S5: Whole-exome sequencing and
variant calling for human cancer cell lines, Method S6: Clonality analyses. This file contains the description of the
computational methods used in this study, Table S1: Clinical data and genomic features (genomic instability and
MATH values) for samples from 16 different TCGA cancer types, Table S2: Linear models associating mutations
in functional groups and ITH for each cancer type, Table S3: Predicted effect of DNMT1, DNMT3A and SETD2
mutations in KIRC samples from cBioportal, Table S4: ITH values (MATH) estimated for control, DNTM3A and
SETD2 KO cell lines, Table S5: Mutations generated after SETD2 and DNMT3A knockouts (not present in controls),
including the mutations with GO terms associated with mitochondria, Table S6: Material and Methods Table (e.g.,
plasmids, gRNAs, antibodies, primers and other products), Table S7: Read length, total reads and mapped reads
for each condition.
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