## Supplementary Material: HNRNPL Restrains *miR-155* Targeting of BUB1 to Stabilize Aberrant Karyotypes of Transformed Cells in Chronic Lymphocytic Leukemia

Sara Pagotto, Angelo Veronese, Alessandra Soranno, Veronica Balatti, Alice Ramassone, Paolo E. Guanciali-Franchi, Giandomenico Palka, Idanna Innocenti, Francesco Autore, Laura Z. Rassenti, Thomas J. Kipps, Renato Mariani-Costantini, Luca Laurenti, Carlo M. Croce and Rosa Visone

| HDFLT/ATERT |                                     |                               |                                                |  |  |
|-------------|-------------------------------------|-------------------------------|------------------------------------------------|--|--|
| Metaphases  | P16                                 | P20                           | P24                                            |  |  |
| 1           | 46, XX, del (4q), del (Xq)          | 45, X, -X                     | 45, XX, del (Xq), -2, der (17)                 |  |  |
| 2           | 46, XX, del (2q), add (X)           | 47, XX, +7                    | 47, XX, +7, del (5p)                           |  |  |
| 3           | 46, XX, del (7q), t (7;9)           | 45, XX, -2                    | 47, XX, +mar                                   |  |  |
| 4           | 46, XX, add (14)                    | 46, XX                        | 47, XX, +7                                     |  |  |
| 5           | 46, XX,                             | 46, XX                        | 47, XX, +7                                     |  |  |
| 6           | 46, XX, del (14q)                   | 46, XX                        | 46, XX                                         |  |  |
| 7           | 46, XX,                             | 46, XX                        | 45, XX, -13                                    |  |  |
| 8           | 46, XX, del (2p)                    | 46, XX                        | 44, XX, -13, -14                               |  |  |
| 9           | 43, XX, -7, -8, -18, -19, +mar      | 46, XX                        | 46, XX, +7, iso (5q), -10                      |  |  |
| 10          | 46, XX,                             | 47, XX, +7                    | 46, XX, del (7q)                               |  |  |
| 11          | 46, XX, +7, -6                      | 45, X, -X, -11, -22, +15, +16 | 46, XX, –14, der (5), +mar                     |  |  |
| 12          | 45, X, -X                           | 47, XX, +7                    | 46, XX                                         |  |  |
| 13          | 45, XX, -13                         | 46, XX                        | 45, XX, -15                                    |  |  |
| 14          | 45, XX, -8, add (19)                | 91                            | 46, XX                                         |  |  |
| 15          | 45, X, -X, del (7p)                 | 47, XX, +7                    | 46, XX, del (5q)                               |  |  |
| 16          | 44, XX, -2, -12, del (1q), del (Xq) | 46, XX                        | 44, XX, del (Xq), del (9q), del (2p), -13, -14 |  |  |
| 17          | 46, XX                              | 45, XX, -2                    | 47, XX, +7, del (4p), del (5p)                 |  |  |
| 18          | 47, XX, +7, del (5p)                | 46, XX                        | 47, XX, +7, del (20)                           |  |  |
| 19          | 46, XX                              | 92                            | 44, XX, -13, -14                               |  |  |
| 20          | 47, XX, +7, del (5p)                | 45, XX, -15, del (2q)         | 45, XX, -8                                     |  |  |
| 21          | 46, XX                              | 44, X, -X, -22                | 44, X, -X, -4                                  |  |  |
| 22          | 46, XX                              | 46, XX                        | 90                                             |  |  |
| 23          | 45, XX, add (11p), add (18), -8     | 92                            | 46, XX, add (5)                                |  |  |
| 24          | 46, XX                              | 47, XX, +7                    | 45, XX, -12, der (17), t (17;12)               |  |  |
| 25          | 47, XX, +7, del (5p)                | 47, XX, +7                    | 46, XX                                         |  |  |
| 26          | 46, XX                              | 47, XX, +7, del (5p)          | 47, XX, +7                                     |  |  |
| 27          | 47, XX, +7                          | 46, XX                        | 94                                             |  |  |
| 28          | 48, XX, +7, +mar                    | 45, XX, -2                    | 92                                             |  |  |
| 29          | 47, XX, +7                          | 45, X, -X                     | 46, X, -X, +mar, del (6q)                      |  |  |
| 30          | 46, XX                              | 46, XX, -2, +7                | 46, XX                                         |  |  |
| 31          | 46, XX, del (4p), der (20)          | 46, XX                        | 45, XX, -13, del (6q)                          |  |  |
| 32          | 46, XX                              | 45, XX, -2                    | 45, XX, -4, add (22), t (4;22)                 |  |  |
| 33          | 45, XX, -4                          | 45, X, -X, der (3)            | 45, XX, -21                                    |  |  |
| 34          | 46, XX                              | 45, XX, -15, del (5p)         | 45, XX, -4, der (5)                            |  |  |
| 35          | 46, XX                              | 45, XX, -2                    | 45, XX, -22                                    |  |  |
| 36          | 45, XX, -2                          | 45, XX, -13                   | 45, XX, -14                                    |  |  |
| 37          | 47, XX, +7                          | 44, X, -X, -10, t (15;10)     | 45, XX, +mar, -8                               |  |  |

Table S1. Karyotype of HDFLT/hTERT cells at passages 16, 20 and 24.

| 38 | 45, XX, -13                                   | 46, XX                                | 46, XX, del (7q)                             |
|----|-----------------------------------------------|---------------------------------------|----------------------------------------------|
| 39 | 43, XX, -8, -11, -18, add (18q)               | 46, XX, del (17q)                     | 46, XX                                       |
| 40 | 46, XX, del (5q)                              | 47, XX, +7, del (5p), der (13)        | 47, XX, +7                                   |
| 41 | 45, XX, -2                                    | 46, XX                                | 45, XX, -8                                   |
| 42 | 44, XX, -13, -14                              | 46, XX                                | 44, XX, -15, -21, add (7)                    |
| 43 | 46, XX                                        | 46, XX                                | 46, XX, -2, +mar, t (14;22)                  |
| 44 | 46, XX                                        | 45, XX, -13                           | 46, XX, +7, -14, add (5), t (5;14)           |
| 45 | 46, XX, +7, -6, t (5;6)                       | 47, XX, +7                            | 46, XX, +7, -14                              |
| 46 | 45, XX, -17                                   | 90                                    | 45, X, -X                                    |
| 47 | 46, XX, -5, -12, del (6q)                     | 46, XX                                | 46, XX, del (15q)                            |
| 48 | 46, XX, -2, -19, +2mar                        | 46, XX                                | 46, XX                                       |
| 49 | 45, X, -X                                     | 46, XX del (4p), der (22)             | 46, XX, -13, +7                              |
| 50 | 46, XX, -2, +7                                | 44, XX, -13, -16                      | 46, XX                                       |
| 51 | 46, XX                                        | 45, XX, -2                            | 46, XX                                       |
| 52 | 45, XX, -4                                    | 46, XX                                | 46, XX, del (Xq), add (4), der (16)          |
| 53 | 46, XX, del (Xq)                              | 46, XX                                | 45, XX, -7, add (5), der (6)                 |
| 54 | 47, XX, +7, del (5p), del (11q)               | 47, XX, +7                            | 46, XX, del (17p)                            |
| 55 | 45, XX, -4, t (2;14)                          | 46, XX                                | 44, X, -X, -14, der (19)                     |
| 56 | 47, XX, +7, t (2;7)                           | 47, XX, +7                            | 47, XX, +7                                   |
| 57 | 46, XX, del (4q)                              | 46, XX, del (11p)                     | 45, XX, -15                                  |
| 58 | 46, XX                                        | 92                                    | 46, XX                                       |
| 59 | 45, X, -4, -X, +mar                           | 46, XX                                | 45, XX, -13                                  |
| 60 | 45, X, -X                                     | 46, XX                                | 46, XX, +7, del (8p), add (5), t (5;15), -15 |
| 61 | 47, XX, +7, del (5p)                          | 44, XX, -10, -13, -15, +mar           | 46, XX, -2, +mar                             |
| 62 | 47, XX, +2mar                                 | 46, X, -X, -8, +7, +mar, del (5p)     | 91                                           |
| 63 | 46, XX                                        | 45, XX, -13                           | 45, XX, -4                                   |
| 64 | 46, XX                                        | 46, XX, –13, del (7p), del (9q), +mar | 47, XX, +7                                   |
| 65 | 46, XX                                        | 90                                    | 47, XX, +7, +9, del (1q)                     |
| 66 | 45, XX, -4                                    | 47, XX, +7                            | 45, XX, –21                                  |
| 67 | 46, XX, t (5;22)                              | 47, XX, +7                            | 46, XX                                       |
| 68 | 47, XX, del (5p), +7                          | 46, XX                                | 46, XX                                       |
| 69 | 47, XX, +7, del (5p)                          | 46, XX                                | 45, XX, -19                                  |
| 70 | 46, XX                                        | 47, XX, +7                            | 45, XX, -13                                  |
| 71 | 47, XX, +7, del (5p)                          | 47, XX, +7, del (5p)                  | 45, XX, -4                                   |
| 72 | 46, XX, add (10q)                             | 44, XX, -13, -18, del (17q)           | 45, XX, -22                                  |
| 73 | 46, XX                                        | 46, XX                                | 46, XX                                       |
| 74 | 46, XX, del (5q)                              | 46, XX                                | 48, XX, –13, + 3mar, del (Xq)                |
| 75 | 46, XX                                        | 47, XX, +mar                          | 46, XX                                       |
| 76 | 45, X, -X                                     | 45, XX, -8, del (1q), der (15)        | 46, XX                                       |
| 77 | 46, XX                                        | 46, XX                                | 46, XX, +4, -8, add (22)                     |
| 78 | 46, XX, iso (21q)                             | 46, XX                                | 44, XX, -9, -15                              |
| 79 | 46, XX                                        | 47, XX, +2                            | 46, XX, +7, -14, t (4;14)                    |
| 80 | 46, XX, del (5q)                              | 46, XX, del (3p)                      | 47, XX, +7                                   |
| 81 | 47, XX, +7, del 5p                            | 46, XX                                | 45, XX, -13                                  |
| 82 | 46, XX                                        | 46, XX                                | 46, XX, add (4), add (17), del (Xq)          |
| 83 | 46, XX, del (7q)                              | 46, XX, der (4), del (17p)            | 44, XX, -4, -14                              |
| 84 | 46, XX                                        | 46, XX, del (2q)                      | 46, XX                                       |
| 85 | 46, XX                                        | 46, XX, del (1q)                      | 46, XX, del(4p), add (21)                    |
| 86 | 45, XX, -14, -19, +7                          | 45, X, -X, der (13)                   | 46, XX                                       |
| 87 | 43, XX, -11, -16, -22, t (14;22),<br>del(17p) | 46, XX                                | 46, X, -11, +14, -X, +21                     |
| 88 | 44, XX, -8, -11, add (19)                     | 46, X, -X, + 2mar                     | 45, XX, -1                                   |
| 80 | 11 XX -8 -11                                  | 45 XX -19 add (5)                     | 47 XX +7 t (5:6) -5 +8                       |

| 90 | 46, XX    | 46, XX                          | 46, XX                       |
|----|-----------|---------------------------------|------------------------------|
| 91 | 46, XX    | 47, XX, +7                      | 46, XX                       |
| 92 | 45, X, -X | 46, XX, del (2p)                | 45, X, -X, -4, +15, add (19) |
| 93 | 46, XX    | 45, XX, del (6q), +13, -15, -19 | 44, X, -X, -20, der (13)     |
| 94 | 46, XX    | 46, XX, del (2q)                |                              |
| 95 |           | 47, XX, +7                      |                              |

Table S2. Genetic, molecular and clinical features of the B-CLL patients.

| ID     | Sex    | Sampling Data<br>(Day/Month/Year) | MBL/CLL | Stage | IGHV<br>(Mutated/<br>Unmutated) | WBCs<br>(Cells/mL) | CD5/CD19 (%<br>in PBMC) | Therapy<br>Need |
|--------|--------|-----------------------------------|---------|-------|---------------------------------|--------------------|-------------------------|-----------------|
| 11.005 | M.1.   | 18/05/2011                        | CLL     | BII   |                                 | 50000              | 89                      | no              |
| LLC05  | Male   | 22/05/2013                        | CLL     | BII   | mut                             | 88000              | 85.4                    | no              |
| LLC21  | Mala   | 11/10/2011                        | MBL     | A0    |                                 | 15800              | 40.7                    | no              |
|        | Male   | 20/01/2016                        | CLL     | A0    | mut                             | 25400              | 80.9                    | no              |
| LLC21  | Mala   | 29/11/2011                        | CLL     | A0    | mant                            | 18690              | 71.3                    | no              |
| LLCJI  | Male   | 20/05/2015                        | CLL     | A0    | mut                             | 21400              | 74.5                    | no              |
|        |        | 06/12/2011                        | MBL     | A0    |                                 | 8500               | 20.6                    | no              |
| 11.024 | Mala   | 30/10/2012                        | CLL     | BII   | mant                            | 24170              | 89.1                    | no              |
| LLC34  | Male   | 28/05/2013                        | CLL     | BII   | mut                             | 37710              | 90.6                    | no              |
|        |        | 09/04/2014                        | CLL     | CIV   |                                 | 56340              | 83.2                    | si              |
| LLC47  | Famala | 14/02/2012                        | MBL     | A0    | mut                             | 15290              | 35.6                    | no              |
| LLC4/  | Female | 20/01/2016                        | CLL     | BII   | mut                             | 24500              | 64.6                    | no              |
|        |        | 06/03/2012                        | CLL     | AII   |                                 | 29100              | 92.4                    | no              |
| LLC52  | Male   | 24/07/2012                        | CLL     | AII   | mut                             | 22600              | 89.7                    | no              |
|        |        | 19/03/2013                        | CLL     | BII   |                                 | 33000              | 91.9                    | no              |
|        | Male   | 31/07/2012                        | CLL     | A0    | unmut                           | 23950              | 76.2                    | no              |
| LLC62  |        | 11/09/2012                        | CLL     | BI    |                                 | 29710              | 80.5                    | no              |
|        |        | 04/06/2013                        | CLL     | BI    |                                 | 49000              | 87.7                    | no              |
| 11.070 | Female | 09/10/2012                        | CLL     | BII   | unmut                           | 72700              | 91.5                    | no              |
| LLC /0 |        | 06/02/2013                        | CLL     | BII   |                                 | 134000             | 91.1                    | si              |
|        | Male   | 18/12/2012                        | CLL     | BII   | mut                             | 48360              | 69.3                    | no              |
| LLC /0 |        | 19/03/2014                        | CLL     | BII   |                                 | 48400              | 82.2                    | si              |
| 11 (91 | Female | 29/01/2013                        | CLL     | BII   | mut                             | 72000              | 86.2                    | no              |
| LLC01  |        | 12/02/2014                        | CLL     | BII   |                                 | 113600             | 93.5                    | si              |
| 11 C97 | Female | 28/05/2013                        | CLL     | A0    | mut                             | 43400              | 91.2                    | no              |
| LLC0/  |        | 12/11/2014                        | CLL     | A0    |                                 | 37200              | 85.3                    | no              |
| 11 C08 | Male   | 27/02/2014                        | CLL     | BII   | unmut                           | 38660              | 84.15                   | no              |
| LLC98  | wate   | 18/06/2014                        | CLL     | BII   | unnut                           | 85990              | 89.53                   | si              |
| LLC109 | Famala | 15/10/2014                        | CLL     | BII   | mut                             | 52300              | 73.6                    | no              |
| LLCI08 | remaie | 26/03/2015                        | CLL     | BII   | mut                             | 109000             | 89.5                    | si              |

MBL, monoclonal B-cell lymphocytosis; CLL, chronic lymphocytic leukemia; IGHV, immunoglobulin heavy chain variable-region; WBCs, white blood cells; PBMC, peripheral blood mononuclear cells; CD5, CD5 molecule; CD19 molecule.

**Table S3.** Oligonucleotide primers used in the study for microRNA expression (miRE), mutational analysis (MA), reverse transcription (RT) and gel electrophoresis (Gel). The sequences of the UPLs-Locked Nucleic Acids (Universal Probe library, Roche) used for qPCR are indicated. FAM is the 6-carboxyfluorescein dye and Q is the fluorescein quencher.

| Name          | Forward Primer         | Reverse Primer        | Probe/<br>Assay | Method |
|---------------|------------------------|-----------------------|-----------------|--------|
| BUB1-ex-2-3   | GACTATGTCTGAGCGAATGC   | AGTGGCACAGAAGTTCGTTG  |                 | MA     |
| BUB1-ex-4     | CAGACATAGACTAGCAGTTCC  | TACCCACACAGGTACAGGAA  |                 | MA     |
| BUB1-ex-24    | CTAAACTGTCCAAGCCTGTG   | AGGGACCTTATGGGGTTGTA  |                 | MA     |
| BUB1-ex-7-8   | CTACTTGGGATTAAGGTCTC   | TCTGGGCTTCTGATAGGATG  |                 | MA     |
| BUB1-ex-12    | CTGAGTGTGTAGCACCTGAT   | CATTCCCTGCCTTTATGTGAC |                 | MA     |
| BUB1-ex-14-15 | CATGTAGTAGCCAAGCTGTG   | CACAATATCCTCTGACTGGCA |                 | MA     |
| BUB1-ex-20-21 | CGTGCAAGGTACAAGCCAAA   | CAACTGCAGACAGTGGATGC  |                 | MA     |
| BUB1-ex-22-23 | TCTCCTTCAACTGCTCCTTA   | TTTGGCTTGTACCTTGCACG  |                 | MA     |
| BUB1-ex-24    | CAGATGGAACCCAACATTCTAC | CTTGCTGCCTAAGTTAGACAG |                 | MA     |
| BUB1-ex-16    | TTGTGGGCTGTATTAGCCAG   | TCCCATGTGGAATTTCCATG  |                 | MA     |
| BUB1-ex-17    | ACGGAGAGTACCTTCTGACT   | ATGGTGTGTGTGTGTGCACAC |                 | MA     |
| BUB1-ex-6     | TCTGAGACAGTGTGAATGAG   | ATGGAGCTCAGAGCCATGAA  |                 | MA     |
| BUB1-ex-10    | AGACAGATGCCATGCTTTGA   | CTGTTCCTGATAATGCAGGTC |                 | MA     |

| BUB1-ex-5        | ACTTGACACGTGGAGAAGAG                      | AAGTGCTGGGATTACAGGTG |        | MA     |
|------------------|-------------------------------------------|----------------------|--------|--------|
| BUB1-ex-9        | CATGTAGTAGCCAAGCTGTG                      | CAAACTGCCATTCCTGCTGC |        | MA     |
| BUB1 2569 4090   |                                           |                      |        | Gel    |
| DOD1_0009-4090   | CIGCICITAGAAIGIAAGCG                      | GAACIGIGCAIAACCIGGGA |        | elect. |
| U58_F            | ACTTTTTAAACACTGACCTTCC                    |                      |        | Gel    |
| U64_ACTB (97 bp) | CCAACCGCGAGAAGATGA                        | CCAGAGGCGTACAGGGATAG |        | Gel    |
| ACTB (593 bp)    | AGAAAATCTGGCACCACACC AGGAAGGAAGGCTGGAAGAG |                      |        | Gel    |
| DT 155           | GTTGGCTCTGGTGCAGGGTCCGAG                  |                      | рт     |        |
| K1_155           | CCCT                                      |                      |        | KI     |
| miR-155          |                                           | CTCCACCCTCCCACCT     | UPL21/ | miRE   |
|                  | Geologinarioenarie                        | GIGCAGGICCGAGGI      | Fam-Q  |        |
| <b>PT</b> 1144   | GTTGGCTCTGGTGCAGGGTCCGA                   |                      | рт     |        |
| K1_044           | GTCA                                      |                      | KI     |        |
| U44              | GCGGCGGCCTGGATGATGATAG                    | GTGCAGGGTCCGAGGT     | UPL21/ |        |
|                  |                                           |                      | Fam-Q  | IIIKE  |
| D2C1000 ((EAM)   | [6FAM]                                    |                      | EAM    | ET A   |
| D251888 (6FAM)   | TTTGAAGTTTGGTGTCTGTGTAA                   | GICCUIGGAAAIGIIAGGG  | гAM    | гlА    |





**Figure S1.** (**A**) and (**B**) western blot analysis of BUB1 protein expression during the immortalization passages of HDF<sub>LT/hTERT</sub> cells in two independent experiments. *MiR-155* relative expressions are shown. Data are means  $\pm$  SD of three technical replicates.

А

В

P15

0.4

0.4

0.7

P20

0.1

P14

1

1

P19

1

1 2

1

>

>

>





Figure S2. (A,B) and (C) Western blotting analysis of MSH6 and MLH1 proteins during the immortalization passages of HDFLT/hTERT cells in the three independent experiments showed in figure 1D and supplementary figure S1. (\*) western blot pictures and analysis (BUB1 and  $\gamma$ -tubulin) already presented in Figure 1D and in supplementary figure S1 of the manuscript.



**Figure S3.** Fragment length analysis (FLA) of the D2S18888 polymorphic marker in immortalized HDF cells.



**Figure S4.** Screen shot of the UCSC Genome Browser showing the HNRNPL binding sites on the *BUB1* gene (BUB1 exons and UTRs are represented by blu boxes) in CD4 positive cells. Black arrow indicates the HNRNPL binding on the CA repeats of the *BUB1* 3'UTR, based on data provided by Shankarling et al. [1].



**Figure S5.** (**A**) total allele frequency and (**B**) homozygous frequency of the D2S18888 polymorphic marker length in DNA samples from healthy donors (HD) and CLL patients, analyzed by fragment length analysis. (**C**) Electropherograms of the D2S1888 amplicon in DNA from total (PBMC), normal (CD3/CD16 positive cells) and leukemic (B+) cell fractions from two patients (LLC47 and LLC81) at different stages of disease. MBL, monoclonal B-cell lymphocytosis.



**Figure S6.** (**A**) Graphical representation of the correlation analysis between BUB1 and HNRNPL protein expression in the CLL patients listed in figure 3. For each patient, the relative protein expression is related to the first time point value (first time point = 1). Analysis of correlation was performed by non-parametric Spearman's correlation, two tailed. (**B**) Western blots of BUB1 and HNRNPL proteins (120 kDa) and BUB1 mRNA relative expression in HG-3 cells transfected with either siRNA control or siRNA of HNRNPL for 72 h. Densitometric values normalized to  $\beta$ -actin protein expression are reported. Data of BUB1 mRNA are means ± SD of three technical replicates.

## Reference

1 Shankarling, G.; Cole, B.S.; Mallory, M.J.; Lynch, K.W. Transcriptome-wide RNA interaction profiling reveals physical and functional targets of hnRNP L in human T cells. *Mol. Cell. Biol.* 2014, 34 71–83.



© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).