Supplementary Materials

On the Impact of Chemo-Mechanically Induced Phenotypic Transitions in Gliomas

Pietro Mascheroni, Juan Carlos Lopez Alfonso, Maria Kalli, Triantafyllos Stylianopoulos, Michael Meyer-Hermann and Haralampos Hatzikirou

Figure S1. Changes in nutrient concentration (**a**) and vasculature density (**b**) after a stress-alleviation treatment (α is reduced from 5 × 10³ Pa to 5 × 10² Pa). The simulations refer to the case of $D = 2.73 \times 10^{-1} \text{ mm}^2 \text{d}^{-1}$ and $r = 2.73 \times 10^{-2} \text{ d}^{-1}$.

Figure S2. Simulation maps displaying the impact of chemo-mechanically induced transitions on tumor IW. In both cases (**A**,**B**), the top row shows the IW difference when tissue stiffness varies from $\alpha = 10^3$ Pa to $\alpha = 5 \times 10^2$ Pa, whereas the bottom row displays the IW variations for $\alpha = 5 \times 10^3$ Pa to $\alpha = 5 \times 10^2$ Pa. Simulations were obtained for low, i.e., $\alpha \sigma^{-1} = [10^{-2}, 10^{-1}]$ (**A**), and high, i.e., $\alpha \sigma^{-1} = [10^1, 10^2]$ (**B**) mechanosensitivity.

Figure S3. Simulation maps displaying the effects of chemo-mechanically induced transitions on tumor IW. The top row shows three IW maps for different values of α , whereas the bottom row displays the IW variation occurring at the different stiffness points. For these simulations, we used $t_n/t_s = 0.5$ and $\alpha \sigma^{-1} = [10^1, 10^2]$.

stress-alleviation treatment

Figure S4. Simulation maps displaying the effects of chemo-mechanically induced transitions on tumor IW. The top row shows three IW maps for different values of α , whereas the bottom row displays the IW variation occurring at the different stiffness points. For these simulations, we used $t_n/t_s = 10$ and $\alpha \sigma^{-1} = [10^1, 10^2]$.

Figure S5. Simulation maps displaying the impact of chemo-mechanically induced transitions on TM. In both cases (**A**,**B**), the top row shows the TM difference for a reduction in tissue stiffness from $\alpha = 10^3$ Pa to $\alpha = 5 \times 10^2$ Pa, whereas the bottom row displays the TM variations for $\alpha = 5 \times 10^3$ Pa to $\alpha = 5 \times 10^2$ Pa. Simulations were obtained for low, i.e., $\alpha \sigma^{-1} = [10^{-2}, 10^{-1}]$ (**A**), and high, i.e., $\alpha \sigma^{-1} = [10^1, 10^2]$ (**B**) mechanosensitivity.

Figure S6. Simulation maps displaying the effects of chemo-mechanically induced transitions on TM. The top row shows three TM maps for different values of α at the ratio $t_n/t_s = 0.5$, whereas the bottom row displays TM values over the (*D*, *r*) space for the different stiffnesses at the $t_n/t_s = 10$ ratio. The simulations refer to the low mechanosensitivity case, i.e., $\alpha \sigma^{-1} = [10^{-2}, 10^{-1}]$.

stress-alleviation treatment

Figure S7. Simulation maps displaying the effects of chemo-mechanically induced transitions on TM. The top row shows three TM maps for different values of α at the ratio $t_n/t_s = 0.5$, whereas the bottom row displays TM values over the (D, r) space for the different stiffnesses at the $t_n/t_s = 10$ ratio. The simulations refer to the high mechanosensitivity case, i.e., $\alpha \sigma^{-1} = [10^1, 10^2]$.

Figure S8. Calibration curves for the H4 (A) and A172 (B) cell lines for the Alamar Blue assay.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).