Supplementary Materials: Transport-Mediated Oxaliplatin Resistance Associated with Endogenous Overexpression of MRP2 in Caco-2 and PANC-1 Cells

Riya Biswas, Piyush Bugde, Ji He, Fabrice Merien, Jun Lu, Dong-Xu Liu, Khine Myint, Johnson Liu, Mark Mckeage and Yan Li
(A)

Marker \%Gated X-Med X-AMean X-GMean

\square All	100.00	0.68	0.82	0.67
\square All	100.00	1.98	2.12	1.93

(C)

Marker \%Gated X-Med X-AMean X-GMean

All	100.00	0.87	0.88	0.81
All	100.00	1.44	1.52	1.43

(B)

Marker $\%$ Gated	X-Med	X-AMean	X-GMean	
\square All	100.00	0.79	0.81	0.76
\square All	100.00	1.45	1.51	1.43

(D)

Figure S1. MRP2 surface staining flow cytometry histogram data in Caco-2 cells. Data represent flow cytometry histogram of cell surface staining using the ant-MRP2 primary antibody and isotype control IgG2a on Caco-2 and siRNA transfected Caco-2 cells. Graphs show the fluorescence intensity in (A) Caco-2 cells stained with MRP2 antibody and IgG2a stained cells; and (B, C, D) ABCC2-siRNAs transfected Caco-2 cell compared with control-siRNA cells. Both the primary antibody and isotype control were labelled with Alexa Fluor 488 secondary antibody. The x-axis is the fluorescence signal intensity in the FL1 blue laser channel displayed in a liner \log scale. The y-axis represents the cell counts.
(A)

\[

\]

(C)
(B)

(D)

	Marker X-Med X-AMean X-GMean		Marker $\%$ Gated X-Med X-AMean X-GMean					
\square All	0.80	0.84	0.71	\square All	100.00	0.94	0.97	0.84
All	1.12	1.20	1.11	\square All	100.00	1.14	1.26	1.15

Figure S2. MRP2 surface staining flow cytometry histogram data in PANC-1 cells. Data represent flow cytometry histogram of cell surface staining using the ant-MRP2 primary antibody and isotype control IgG2a on PANC-1 and siRNA transfected PANC-1 cells. Graphs show the fluorescence intensity in (A) PANC-1 cells stained with MRP2 antibody and IgG2a stained cells; and (B, C, D) ABCC2-siRNAs transfected PANC-1 cell compared with control-siRNA cells. Both the primary antibody and isotype control were labelled with Alexa Fluor 488 secondary antibody. The x-axis is the fluorescence signal intensity in the FL1 blue laser channel displayed in a liner \log scale. The y-axis represents the cell counts.

Figure S3. Oxaliplatin-induced apoptosis rate in MRP2 silenced Caco-2 cells. Caco-2 cells transfected with control and ABCC2-siRNAs were treated with oxaliplatin at different concentrations (0,25 and $100 \mu \mathrm{M}$) for 2 hrs . Cells were then incubated in blank complete medium for 48 hrs and subsequently stained with Annexin-V-FITC and PI. The fluorescence intensity was measured by flow cytometry. Viable cells (V) are both Annexin-V and PI negative. At an early stage of apoptosis (Ap), the cells bind with only Annexin-V. At the late stage of apoptosis (N), the cells bind with both Annexin-V FITC and PI.

Figure S4. Oxaliplatin-induced apoptosis rate in MRP2 silenced PANC-1 cells. PANC-1 cells transfected with control and ABCC2-siRNAs were treated with oxaliplatin at different concentrations (25 and $100 \mu \mathrm{M}$) for 2 hrs . Cells were then incubated in blank complete medium for 48 hrs and subsequently stained with Annexin-V-FITC and PI and their fluorescence was measured by flow cytometry.

Figure S5. Effects of control and ABCC2-siRNA transfection on the Cp values of the reference gene GAPDH in Caco-2 (A) and PANC-1 (B) cells. All data were expressed as mean \pm SEM from three independent experiments. No significant differences were detected from Dunnett's post hoc test that followed one-way ANOVA for comparisons of all ABCC2-siRNA samples to the negative control.
© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).

