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In recent years, it has become clear that the immune system plays a critical role in rejecting
malignant cells. Through the complex interplay between multiple cell types from both the adaptive and
innate immune systems, immune cells are able to identify and destroy tumor cells. Multiple mechanisms
of escape from immune surveillance have been characterized and are being harnessed for therapeutic
benefit. Proposed mechanisms include, but are not limited to, alteration of surface antigens [1,2],
down-regulation of necessary components for antigen presentation [3], secretion of anti-inflammatory
cytokines by tumor cells or cells in the tumor micro-environment [4], and upregulation of expression of
immune inhibitory molecules [5]. Drugs that target these immune-evasion mechanisms and successfully
re-invigorate the immune response include inhibitors of PD-1, its ligand PDL-1, and CTLA-4, all of
which have dramatically revolutionized cancer care [6-8]. Other classes of immune therapies that
have been approved by the food and drug administration include CAR-T and natural killer (NK)
cellular therapies [9], cytokine therapies [10], oncolytic viruses [11] and dendritic cell therapies, such as
sipuleucel-T [12]. Immune checkpoint inhibitors, which are thought to primarily work by activation
of cytotoxic T cells [13], are the most widely used; however, they are only active in a subset of
cancer patients.

To overcome resistance to therapies that manipulate adaptive immunity, pre-clinical and clinical
studies are also focusing on the critical role played by innate immune cells in tumor rejection.
The innate immune system recognizes pathogen-associated molecular patterns present on microbes
and virus-infected cells, but not in otherwise healthy host tissue. The innate immune response
relies on natural physical barriers, the complement system, inflammation, and several key cell types
including mast cells, macrophages, monocytes, neutrophils, basophils, dendritic cells and natural
killer (NK) cells. Macrophages and neutrophils are primarily responsible for phagocytosing pathogens,
releasing pro-inflammatory cytokines and chemokines, which in part, upregulate adhesion molecules
on endothelial cells to induce leukocyte extravasation. Dendritic cells serve as a critical bridge between
the innate and adaptive immune response by generating and presenting peptide antigens to T cells.
NK cells function in a manner very similar to cytotoxic T cells but lack rearranging receptors and depend
on a complex interplay between a plethora of stimulatory and inhibitory receptors for activation.

Innate immune cells play important roles in cancer biology. Tumor-associated macrophages have
functionally diverse phenotypes [14], and polarization of macrophages toward a pro-inflammatory
phenotype is being studied to treat cancer. NK cells have the potential to recognize and kill malignant
cells and can be harnessed for cancer therapy [15]. Dendritic cell activation has been widely studied
as an adjuvant to T cell activating therapies or as a single modality to enhance antigen presentation,
such as with the use of sipuleucel-T [12].

In this Special Issue, we review new and emerging approaches to activate innate immunity in
cancer patients and present some primary research data. These approaches are being studied alone
and in combination with methods to target adaptive immunity. Both pre-clinical and clinical studies
are highlighted. Finally, we discuss cutting edge technologies that can further our understanding of
complex immune interactions at the cellular level.
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