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Simple Summary: An accurate survival analysis is crucial for disease management in glioblastoma
(GBM) patients. Due to the ability of the diffusion MRI techniques of providing a quantitative
assessment of GBM tumours, an ever-growing number of studies aimed at investigating the role
of diffusion MRI metrics in survival prediction of GBM patients. Since the role of diffusion MRI in
prediction and evaluation of survival outcomes has not been fully addressed and results are often
controversial or unsatisfactory, we performed this systematic review in order to collect, summarize
and evaluate all studies evaluating the role of diffusion MRI metrics in predicting survival in GBM
patients. We found that quantitative diffusion MRI metrics provide useful information for predicting
survival outcomes in GBM patients, mainly in combination with other clinical and multimodality
imaging parameters.

Abstract: Despite advances in surgical and medical treatment of glioblastoma (GBM), the medium
survival is about 15 months and varies significantly, with occasional longer survivors and individuals
whose tumours show a significant response to therapy with respect to others. Diffusion MRI can
provide a quantitative assessment of the intratumoral heterogeneity of GBM infiltration, which is of
clinical significance for targeted surgery and therapy, and aimed at improving GBM patient survival.
So, the aim of this systematic review is to assess the role of diffusion MRI metrics in predicting
survival of patients with GBM. According to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement, a systematic literature search was performed to identify
original articles since 2010 that evaluated the association of diffusion MRI metrics with overall survival
(OS) and progression-free survival (PFS). The quality of the included studies was evaluated using the
QUIPS tool. A total of 52 articles were selected. The most examined metrics were associated with the
standard Diffusion Weighted Imaging (DWI) (34 studies) and Diffusion Tensor Imaging (DTI) models
(17 studies). Our findings showed that quantitative diffusion MRI metrics provide useful information
for predicting survival outcomes in GBM patients, mainly in combination with other clinical and
multimodality imaging parameters.

Keywords: glioblastoma; diffusion MRI; overall survival; progression free survival; DWI; DTI

1. Introduction

Glioblastoma (GBM) is classified by World Health Organization as a grade IV astrocytoma and is the
most common and fatal primary brain tumour of the central nervous system (CNS) in adults [1]. GBMs can
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be classified based on their clinical history as primary (pGBM) or secondary (sGMB). pGBMs are the
most common (about 90%) and are characterised by the absence of a clinical or pathologic evidence of a
less malignant precursor, while sGBMs result from lower grade gliomas that evolved into GBM. pGBM
patients tend to be older and have a poorer prognosis than patients with sGBMs [2].

The clinical presentation and symptoms of a patient with a newly diagnosed GBM are highly
variable and dependent on the size, location and degree of infiltration of the tumour [3].

The current clinical treatment for newly diagnosed GBM requires a multidisciplinary approach and
consists of maximal tumour resection, followed by concurrent chemoradiotherapy with temozolomide
(CCRT) and adjuvant temozolomide (TMZ) [4]. However, despite maximal safe surgical resection
and multimodality therapy, about 70% of these tumours invariably recurs, with standards of care
at recurrence far less well defined than in the newly diagnosed setting [3,5,6]. Despite advances in
surgical and medical neuro-oncology, the medium survival is only 15 months after first diagnosis
and with standard surgery and chemoradiation treatment [3,7–10]. However, the overall survival
of patients with GBM varies significantly and there are occasional longer survivors and individuals
whose tumours show a significant response to therapy with respect to others [11,12]. For this reason,
an accurate survival analysis is crucial to support surgical and therapeutic decisions and so for
disease management in GBM patients. This has led to the search for various markers which could be
predictive of patient outcome or treatment response [11]. Several clinical (e.g., patient age at diagnosis
and Karnofsky Performance Status (KPS)) and therapeutic (extent of surgery, radiation therapy and
chemotherapy) factors, as well as specific tumour characteristics (e.g., volume and location) and
histopathological and genetic markers (Ki67, isocitrate dehydrogenase 1—IDH1—mutation status and
O6-methylguanin-DNA-methyltransferase—MGMT—promoter methylation status) have been studied
as potential prognostic markers of survival with variable degrees of sensitivity and specificity [12].

However, their assessment currently requires tissue removing through biopsy or surgical
procedures. Thus, a non-invasive assessment of GBM prognosis would be particularly important for
treatment planning and GBM patient management in the context of personalized medicine. In this
scenario, imaging represents an attractive option compared to more invasive approaches based on
tissue-derived biomarkers. There is an urgent need to discover imaging biomarkers that can aid in the
selection of patients who will likely derive the most benefit from surgical and/or chemotherapy and/or
radiotherapy treatment in terms of overall survival (OS) and progression-free survival (PFS), which are
the most commonly evaluated clinical endpoints [13]. Conventional magnetic resonance imaging
(MRI) employed for GBM investigation include T1-weighted imaging (T1WI), T2WI, fluid attenuation
inversion recovery (FLAIR), T2*WI gradient echo and contrast-enhanced T1WI. These sequences can
yield information on the gross anatomic structure of GBM, but they provide little functional information.
In fact, the poor prognosis of GBM patients is largely attributed to tumour growth and infiltration that
are sometimes difficult to detect by conventional MRI, making novel imaging biomarkers important
for aiding in both tumour spatial localization and patient survival prediction [14–16].

Given the lack of standardization for their use in GBM clinical practice, advanced imaging
techniques such as Positron Emission Tomography (PET), in which different radiotracers are injected
to target metabolic and molecular profiles, Perfusion Weighted Imaging (PWI), which provides
information on tissue perfusion and microvascular permeability, and diffusion MRI techniques were
investigated for GBM management [17–20].

Diffusion MRI-derived parameters can provide a quantitative assessment of the intratumoral
heterogeneity of GBM infiltration, adding new microstructural insights on apparent normal peritumoral
white matter that are not detectable by conventional MRI. So, there is increasing interest in these
techniques as a biomarker of prognosis in GBM patients.

Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI) are the most commonly
used diffusion techniques for GBM applications. In particular, they hold great promise for the
improvement of GBM diagnosis and identification of histological classification, prediction of treatment
response and monitoring GBM recurrence [20–22]. DWI is sensitive to water proton motion at the
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cellular level and can provide information concerning the microscopic structural environment of
neoplasm [21,23]. DTI, other than measuring the magnitude of water molecule movement, such as
DWI, is also able to quantify the orientation of the diffusion and has been shown to be sensitive in
detecting tumour infiltration [21,23,24].

However, more advanced diffusion imaging techniques, such as non-Gaussian diffusion techniques
(e.g., Diffusion Kurtosis Imaging (DKI), Intravoxel Incoherent Motion (IVIM), Stretched Exponential
(SE) and Restriction Spectrum Imaging (RSI) were also investigated for GBM applications [25–28].

Given the urgent need for finding the optimal and targeted treatment option for GBM
patients [29,30], and given the proven power of diffusion MRI techniques for applications such
as preoperative grading, postoperative assessment of glial tumours and differentiation of GBM from
other tumours types (such as brain metastasis or PCNSL [31–33]), several studied investigated the
association of diffusion MRI metrics with survival outcomes in patients with GBM. Some of these were
performed on newly diagnosed GBM patients, while others on recurrent GBM patients. A wide range
of diffusion metrics arising from different diffusion MRI models (DWI, DTI, non-Gaussian DWI models
and RSI) were explored.

However, their role in prediction and evaluation of survival outcomes has not been fully addressed
and results are often controversial or unsatisfactory.

In the context of precision medicine, the analysis of OS and PFS in patients receiving a certain
surgical treatment and/or therapy for newly diagnosed or recurrent GBM may help clinicians to better
understand the evolution of this disease in each single patient, thus improving patient care and clinical
decision-making. Therefore, the aim of this systematic review is to collect, summarize and discuss all
studies evaluating the role of diffusion MRI metrics in predicting survival in GBM patients and raise
awareness for future research in this field.

2. Materials and Methods

2.1. Search Strategy and Selection Criteria

A systematic search for all the published studies examining the association of diffusion metrics
arising from any diffusion model with OS and/or PFS was conducted. The most relevant scientific
electronic databases (PubMed, Cochrane Library, MEDLINE, ScienceDirect and Google Scholar) were
comprehensively explored and used to build the search. Only studies published since 2010 were
selected. The search strategy included the key terms listed in Supplementary Materials Table S1.
The literature search was restricted to English language publications and studies of human subject.

Two reviewers, after having independently screened identified titles and abstracts, assessed the
full text of the articles that evaluated at least one diffusion MRI metric in terms of OS or PFS, and were
not review articles.

For articles meeting these criteria with full text available, the following further selection criteria
had to be fulfilled: adult patients; patients with histopathologically confirmed GBM (newly diagnosed
or recurrent); and at least one diffusion MRI metric examined in terms of OS or PFS. Studies were
excluded if the patient population included also patients with any type of brain tumours other
than GBM.

2.2. Planning and Conducting the Review

After the selection procedure, the selected articles were analysed by two reviewers, and data
useful for conducting the systematic review were collected in a predesigned sheet. The extracted data
will include the following: study characteristics (first author name, publication year and study design,
in particular, prospective/retrospective and cross-sectional/longitudinal and number of patients);
patient characteristics (age, diagnosis and treatment); MR examination timepoints, namely, the MR
images from which the investigated diffusion metrics derive; clinical outcome (OS and/or PFS); diffusion
MRI model/s evaluated; diffusion acquisition details; diffusion MRI metric/s evaluated; information on
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placement of regions of interest (ROIs), namely, the segmentation method and MRI sequence on which
the ROIs were placed on; performing the statistical analysis; and the main findings.

The articles were classified and analysed according to the diffusion model involved and the
diagnosis (newly diagnosed GBM or recurrent). If more than one diffusion model was investigated in
the same study, each model was treated as belonging to a separated study.

This systematic review was conducted in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement (see Supplementary Materials Table S2
for the PRISMA checklist).

2.3. Quality Assessment

The quality of the individual studies was assessed using the QUality In Prognosis Studies
(QUIPS) tool [34,35]. According to QUIPS, six domains are critical for assessing biases in prognostic
studies: selection of study participants, study attrition, prognostic factor measurement, outcome
measurement and study confounding and statistical analysis and reporting. For each of these six
domains, the responses “yes”, “partial”, “no” or “unsure” for three up to seven items within each
domain are combined to assess the risk of bias. An overall rating for each domain is assigned as “high”,
“moderate” or “low” risk of bias. The QUIPS assessment for each study was independently completed
by two reviewers and discrepancies were resolved by discussion.

3. Results

3.1. Study Selection

A total of 341 articles was retrieved by the scientific electronic databases search. Five additional
articles were found through article references, bringing the total number of records suitable for further
evaluation to 346. After removal of the duplicates, there were 169 articles left for investigation.
By scanning the title and abstract of these records, 82 records were excluded because they clearly did
not match the inclusion criteria (15 review articles, 42 off-topic and 25 including patients with other
brain tumours other than GBM). A total of 87 articles were evaluated on their full text. Of these articles,
35 records were excluded based on the inclusion criteria (1 was excluded because it involved non-adult
patients [36]; 1 was excluded because it did not specify patient age [37]; 1 was excluded because it
performed prognostic analysis based on qualitative visual examinations [38]; 5 were excluded since
they were review articles; 18 were excluded since they involved also other types of brain tumour other
than GBM; and 9 were not in the field of interest). Finally, 52 records were included for qualitative
synthesis. The PRISMA flow diagram of the included studies according to the inclusion and exclusion
criteria is reported in Figure 1.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.

3.2. Characteristics of the Included Studies

The study characteristics of the 52 articles selected for this review are described in Table 1.
All the selected studies were targeted to adults and the median number (±absolute deviation) of

individuals was 53 ± 44.27. Most study designs were retrospective (43/52).
Most of the selected papers (39 studies) involved patients with newly diagnosed GBM (ND-GBM),

while 13 studies were specific for recurrent GBM (R-GBM). However, it should be highlighted that
in studies involving ND-GBM patients, it is frequently so that several patients present recurrence
during clinical history (until death in case of OS analysis). Concerning patient treatment, in studies
on ND-GBM patients, most patients received the standard treatment, including chemotherapy and
radiotherapy after surgical resection. Among studies on R-GBM patients, only two study involved
patients who underwent a second surgery [39,40], while the remaining 11 involved patients receiving
chemotherapy and/or radiotherapy treatments. However, many studies did not refer to a uniform
treatment for all patients though TMZ and bevacizumab (BV) were the most used chemotherapeutic
drugs. See Table 1 for more details on treatments of patients.

Management timepoints at the MR examination vary across studies. Concerning ND-GBM patients,
most studies used the preoperative study setting (26/39), while the remaining study investigated metrics
arising from postoperative MRI examinations, often considering multiple timepoints. All studies
on R-GBM patients investigated the parameters arising from pretreatment and/or posttreatment
after recurrence.

Most of the selected papers examined metrics associated with the standard DWI model (34 studies).
The second most examined metrics were associated with the DTI model (17 studies). Among the
studies investigating the DWI model, one investigated DWI and RSI [28], while one DWI together with
DKI and SE [26]. The remaining study investigated the IVIM model [25]. Refer to Figure 2 for a graphic
visualization of the obtained results according to the diffusion models and metrics investigated in the
selected studies.
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Table 1. Characteristics of the included studies. Abbreviations: P/R = Prospective/Retrospective; DWI = Diffusion Weighted Imaging; DTI = Diffusion Tensor Imaging;
DKI = Diffusion Kurtosis Imaging; IVIM = Intravoxel Incoherent Motion; SE = Stretched Exponential; RSI = Restriction Spectrum Imaging; SO = Survival Outcome;
ROI = Region of Interest; OS = Overall Survival; PFS = Progression-Free Survival; NAWM = Normal Appearing White Matter; CEL = Contrast Enhancing Lesion;
NEL = Non-Enhancing Lesion; EOR = Extent of Resection; KPS = Karnofsky Performance Score; 2-GMM = 2 Gaussian Mixture Model; 4-GMM = 4 Gaussian Mixture
Model; ND/R = Newly Diagnosed/Recurrent; RT = Radio Therapy; TMZ = Temozolomide; BV = Bevacizumab; FS = Field Strength; EPI = Echo Planar Imaging;
FOV = Field of View; TR = Relaxation Time; TE = Echi Time; Seq = Sequence; ST = Slice Thickness.

Author Year Np Study Design
(P/R)

Diagnosis
(ND/R) Treatment MRI

Timepoints
Diffusion
Model/s

Diffusion Acquisition
Details

Diffusion Metrics
Investigated SO ROI Info Survival Analysis Main Findings

Saksena et al. [11] 2010 34 R ND
Surgery/biopsy;

RT;
Chemotherapy

Preoperative DTI

FS = 3 T, Seq.= EPI,
FOV = 128 × 128 mm,

TR = 17 ms,
TE = 84.3 ms, ST = 5

mm, no gape, NEX = 1,
gradients applied in 25
non collinear directions,

b = 0, 1000 s/mm2

FA, ADC, CL, CP,
and CS

(mean and min)
PFS

ROIs on FLAIR
signal abnormality
in CEL and NEL;

manual
segmentation.

Kaplan–Meier
survival curves;
univariate and

multivariate Cox
proportional

hazards models
adjusted for age,

KPS, EOR.

Univariate analysis
showed that min
values of FA, MD,

CP, CS were
associated with PFS

rate. The
multivariate

analysis
demonstrated that
only min CP was a

PFS predictor.

Li et al. [41] 2011 64 P ND

Surgery/biopsy;
RT;

Chemotherapy:
23 TMZ, 29 TMZ

with tarceva,
10 poly ICLC,

2 R115777

Postoperative:
pre-treatment,
post-treatment

DWI

FS = 3 T or 1.5T,
Directions: 3–6,

Seq. = EPI, TR/TE =
5000–10,000/63–110 ms,

matrix 128 × 128 or
256 × 256, ST 3–5 mm,

21–40 slices,
b 0–1000 s/mm2.

nADC median
and percentiles

(pre-RT, changes
between preRT
and post-RT)

OS,
PFS

ROIs on NAWM,
CEL, T2

hyperintensity
lesions, and the NE

lesion; automatic
segmentation

Kaplan–Meier
survival curves;
Univariate and

multivariate Cox
proportional

hazards models
adjusted for age and

field strength.

No diffusion
parameters

associated with OS
or PFS in univariate

analysis; lower
nADC in CEL and
higher nADC in T2

hyperintensity
lesion and NEL
associated with

worse OS in
multivariate

analysis.

Pope et al. [42] 2011 121 R ND

Surgery/biopsy;
RT;

Chemotherapy
post resection:

59 TMZ and BV,
62 TMZ.

Chemotherapy
on recurrence:

34 add BV.

Preoperative DWI

FS = 1.5 T, Seq. = EPI,
section thickness of

3–5 mm, FOV of 24 cm,
matrix size: 256 × 256

for most patients. b = 0,
1000 s/mm2.

ADC_L (2-GMM
histogram)

OS,
PFS

ROIs on T1CEL;
semiautomatic
segmentation.

Kaplan–Meier with
log-rank and

Wilcoxon test; uni-
and multivariate
Cox regression

models with RPA
class and MGMT

methylation status

ADC values did not
stratify OS and PFS
in the control group;
pretreatment ADC
histogram analysis
can stratify PFS in
BV-treated patients

with newly
diagnosed GBM.
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Table 1. Cont.

Author Year Np Study Design
(P/R)

Diagnosis
(ND/R) Treatment MRI

Timepoints
Diffusion
Model/s

Diffusion Acquisition
Details

Diffusion Metrics
Investigated SO ROI Info Survival Analysis Main Findings

Ellingson et al. [43] 2012 143 R ND

Surgery/biopsy;
RT;

Chemotherapy:
TMZ

Postoperative:
pretreatment,
posttreatment

DWI

FS = 1.5 T, Seq. = EPI,
TE/TR = 102.2/8000 ms,
NEX = 1, ST = 5 mm,

gap = 1 mm,
matrix size = 128 × 128,

FOV = 24 cm using a
twice-refocused epi,

b = 0 s/mm2 and
b = 1000 s/mm2

fDM metrics OS,
PFS

ROIs on regions of
FLAIR signal

abnormality and T1
CEL; segmentation

method not
specified

Log-rank analysis of
Kaplan–Meier

curves;
Cox-regression

analysis adjusted for
age and KPS

Patients exhibiting a
large volume of

tissue with
decreased ADC are
statistically more
likely to have a

short PFS and OS.

Romano et al. [44] 2012 47 R ND

Surgery; RT;
Chemotherapy:
TMZ following
by adjuvant tmz

therapy.

Preoperative DWI

FS = 1.5 T, Seq. = EPI,
b-values 0, 500, and

1000 s/mm2, ST = 5 mm;
TR= 3000 ms;
TE = 84 ms;

gap, = 0.3mm;
matrix = 256 × 256 mm,

acquisition
time = 1.40 min.

ADC min OS,
PFS

ROIs on T1CEL;
semiautomatic
segmentation.

Kaplan–Meier,
log rank, uni- and
multivariate Cox

regression models
with MGMT

methylation status

patients with high
ADCmin values

have higher OS and
PFS than patients

with low ADCmin
values.

Pope et al. [45] 2012 97 R R

Treatments
pre-recurrence:
RT and TMZ;

Chemotherapy
on recurrence:
BV or BV and

CPT-11
(Irinotecan)

Pretreatment DWI NR
ADC_L and LCP

(2-GMM
histogram)

6-PFS,
overall
PFS,
OS

ROIs on T1CEL;
semiautomatic
segmentation.

The Kaplan–Meier
method with

log-rank test, uni-
and multivariate

Cox models
adjusted for age and
enhancing tumour

volume at
recurrence

ADC-L was
predictive for 6-PFS,

OS and PFS. LCP
alone was only

predictive of 6-PFS.

Paldino et al. [46] 2012 15 P R

Treatments
pre-recurrence:
RT and TMZ;

Chemotherapy
on recurrence:

BV and
Irinotecan

Pretreatment,
posttreatment DTI

FS = 1.5 T, Seq. = EPI,
TR/TE = 6000/100 ms;
flip angle, 90 degrees;

4 NEX;
matrix = 128 × 128;

voxel size
1.72 × 1.72 × 5 mm

Changes in MD
and FA mean

OS,
PFS

ROIs on T1 CEL and
abnormalities on
FLAIR images;
semiautomatic
segmentation

Cox proportional
hazard model.

Patients with a
change in MD

within FLAIR signal
abnormality region

had significantly
shorter OS and PFS
than those with no

change.

Zikou et al. [47] 2012 17 P ND
Surgery; RT;

Chemotherapy:
TMZ.

Preoperative DTI

FS = 1.5 T, Seq. = EPI,
TR:9807 ms, TE:131 ms,

FOV:230 mm,
acquisition matrix:

128 × 128, slice
thickness: 3 mm, max
b-value: 700 s/mm2,

16 non-collinear
diffusion directions

normalized MD
and FA OS

ROIs on T1CEL;
manual

segmentation

Log-rank analysis of
Kaplan–Meier

curves; Multivariate
Cox regression

analysis not
performed due to

statistical
non-significance.

No significant
correlation was

found between MD,
FA and OS.
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Table 1. Cont.

Author Year Np Study Design
(P/R)

Diagnosis
(ND/R) Treatment MRI

Timepoints
Diffusion
Model/s

Diffusion Acquisition
Details

Diffusion Metrics
Investigated SO ROI Info Survival Analysis Main Findings

Sunwoo et al. [48] 2013 26 R ND

Surgery/biopsy;
RT;

Chemotherapy:
TMZ.

Preoperative DWI

FS = 1.5 T,
TR/TE = 6000/63 (at b 0

and 1000 s/mm2,
25 sections, bandwidth

of 1953Hz/voxel,
ST 5 mm, gap

1, FOV = 240 × 240 mm,
a matrix = 160 × 160,

voxel resolution
1.5 × 1.5 × 5.0 mm,

directions 3.

ADC mean, ADC
5th percentile
(histogram)

PFS
ROIs on T1CEL;

manual
segmentation

Kaplan–Meier

A positive
significant

relationship was
demonstrated

between PFS and
the mean ADC. 5th
percentile was not

significantly
associated with PFS.

Ellingson et al. [49] 2013 143 R ND

Surgery/biopsy;
RT;

Chemotherapy:
TMZ

Postoperative:
pretreatment,
posttreatment

DWI

FS = 1.5 T, TE/TR =
102.2 ms/8000 ms,

NEX = 1, ST = 5 mm,
gap = 1, matrix size =

128 × 128, FOV = 24 cm
using a twice-refocused
EPI, b 1000 s/mm2 and

b 0 s/mm2.

prob-fDM metrics OS,
PFS

ROIs on regions of
FLAIR signal
abnormality;

semiautomatic
segmentation

Log-rank analysis of
Kaplan–Meier

curves

Patients with a large
volume fraction of
tumour showing a
decrease in ADC

through prob-fDM
had a significantly

shorter PFS and OS.

Nakamura et al. [50] 2013 138 R ND
Surgery/biopsy;

RT;
Chemotherapy

Preoperative DWI

FS = 1.5 T, Seq. = EPI,
TE/TR = 3600/81 ms,
ST = 5, gap = 1 mm,

128 × 128 matrix,
230 mm FOV, one

acquisition, b = 1000
s/mm2

ADC min OS,
PFS

ROIs on T1CEL;
manual

segmentation

Log-rank analysis of
Kaplan–Meier

curves; multivariate
Cox regression

analysis with age,
KPS and

surgery/biopsy

Tumours with low
ADC min are

associated with low
PFS and OS.

Mohsen et al. [51] 2013 25 R ND
Surgery; RT;

Chemotherapy:
TMZ.

Preoperative
or

immediately
postoperative

DTI

FS = 1.5 T, Seq. = EPI,
TR/TE: 12 k/95 ms,

ST/inter-slice gap: 4/4
mm, resolution 256 ×

256, 25 directions, two b
= 0, 1000 s/mm2 FOV:

24 × 24 cm.

p and q maps
pattern (diffuse,

localised or
minimally
invasive

PFS

ROIs on the visible
abnormality on p

and q maps; manual
segmentation

Log-rank analysis of
Kaplan–Meier

curves; univariate
Cox regression

analysis

Invasiveness of DTI
pattern was

associated with PFS.
A minimal invasive
pattern predicts a

higher PFS.

Ellingson et al. [52] 2013 132 R R

Chemotherapy:
89 patients BV;
43 variety of

chemotherapies
but never

exposed to BV

Pretreatment DWI

FS = 1.5 or 3 T, Seq. =
EPI, TE/TR = 80–110
ms/4–10 s, 1 average,
section thickness = 5

mm with gap = 1 mm,
matrix size = 128 × 128,
and FOV = 22–25 cm, b
= 1000 and b 0 s/mm2.

ADC_L (2-GMM
histogram)

OS,
PFS

ROIs on T1CEL;
semiautomatic
segmentation

Log-rank analysis of
Kaplan–Meier

curves; univariate
and multivariate
Cox regression

analysis adjusted for
age, treatment

cohort

Patients with lower
ADC_L had a

significantly longer
PFS and OS

compared with
those having higher

ADC_L.

Omuro et al. [53] 2014 40 P ND

Surgery/biopsy;
RT;

Chemotherapy:
TMZ and BV

Postoperative
(pretreatment) DWI NR nADC mean PFS,

1y-OS

ROIs on T1 CEL;
manual

segmentation

Log-rank analysis of
Kaplan–Meier

curves

Lower baseline
ADC was associated
with prolonged OS,

but not PFS.
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Table 1. Cont.

Author Year Np Study Design
(P/R)

Diagnosis
(ND/R) Treatment MRI

Timepoints
Diffusion
Model/s

Diffusion Acquisition
Details

Diffusion Metrics
Investigated SO ROI Info Survival Analysis Main Findings

Rahman et al. [54] 2014 91 R R

Treatments
pre-recurrence:

standard
radiation and
TMZ therapy;

Chemotherapy
on recurrence:

BV

Pretreatment DWI

FS = 1.5, Seq. =
monopolar EPI, TE/TR
= 80–110 ms/4–10 ms,

ST = 5 mm, gap = 1 mm,
matrix size = 128 × 128
mm, FOV = 22–25 cm, b
value 1000 and 0 s/mm2

%ADC_L,
%ADC_H, and

ADC_L/ADC_M
(4-GMM

histogram)

OS,
PFS

ROIs on T1 CEL NE
T2/FLAIR

abnormality;
automatic

segmentation

Kaplan–Meier
curves; uni- and

multivariable
analysis with Cox

proportional
hazards model

adjusted for clinical
variables

Baseline
ADC_L/ADC_M

within NE T2/FLAIR
volume and ADC_H
within T1 CEL can

stratify OS and PFS.

Wen at al. [55] 2015 36 R ND

Surgery/biopsy;
RT;

Chemotherapy:
TMZ, erlotinib

and BV.

Postoperative:
pretreatment

and
posttreatment
at 1 month, 2
months and

every 2
months (up to
a maximum of

14 months)

DWI

FS = 3 T, b = 1000 (dir =
6, NEX = 4) and ADC
maps were calculated

using in-house
developed software.

ADC percentiles
(histogram);

2-GMM histogram
metrics; fDM

metrics

OS,
PFS

ROIs on T1 CEL and
T2/FLAIR

hyperintensity;
semiautomatic
segmentation

Kaplan–Meier
curves; Univariate
and multivariate
Cox regression

analysis adjusted for
age, KPS, EOR

ADC10% within the
T2L at 2 months was
strongly associated
with OS and PFS.

fDM metrics
showed an

association with OS
and PFS within the

CEL when
considered by

univariate analysis,
but not in the T2L.

Coban et al. [12] 2015 58 R ND Surgery; RT;
Chemotherapy Preoperative DWI

FS = 3 T, Seq. = EPI,
acceleration factor of 2,
FOV = 22 × 22 cm2; b 0,

1000 s/mm2, section
thickness = 3 mm;

number of sections = 40;
acquisition time = 8

min.

ADC min
15

months
OS

ROIs on T1 CEL and
visually low ADC;

manual
segmentation

ROC analysis,
Kaplan–Meier

curves

ADC min was not
useful for

differentiating
patients having

short or long
survival.

Elson et al. [56] 2015 52 R ND Surgery; RT;
Chemotherapy Postoperative DWI NR

ADCmean,
ADCmin,

nADCmean,
nADCmin

OS,
PFS

ROIs on
hyperintense

T2/FLAIR; manual
segmentation

Log-rank analysis
on Kaplan–Meier
data; multivariate

Cox regression
analysis adjusted for

age, EOR, KPS

Regression analysis
indicated that

normalized ADC
values provide the

strongest association
with PFS and OS.

Lee et al. [57] 2015 24 R ND
Surgery; RT;

Chemotherapy:
TMZ

Postoperative DWI

FS = 3 T, Seq. = EPI,
b-values of 0 and 1000

s/mm2, three orthogonal
directions.

nADC (histogram
metrics) PFS

ROIs on T1 CEL;
manual

segmentation

Log-rank analysis
on Kaplan–Meier

data

nADC not
associated with PFS
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Zhang et al. [58] 2015 52 R R

Treatments
pre-recurrence:

surgical
resection + RT +

TMZ;
Chemotherapy
on recurrence:

BV

Pretreatment;
2

posttreatment
scans

DWI

FS = 1.5 or 3 T, Seq. =
EPI, b = 0 and 3

diffusion-weighted
acquisitions with b 1000

s/mm2

low-ADC volume
and percent

change,
normalized 5th
percentile low

ADC values and
percent changes

OS

ROIs on T1 CEL and
FLAIR hyperintense

abnormality
corresponding to
low ADC signal;

manual
segmentation

Kaplan–Meier
curves; uni- and
multivariate Cox

regression analysis
with clinical and
imaging metrics

At the second
post-BV scan, the

volume of the
low-ADC lesion was
inversely associated

with OS.
Normalized 5th

percentile low-ADC
value and its percent

change were not
associated with OS.

Jamjoom et al. [59] 2015 46 R ND
No surgery; 4

treatment
groups

Preoperative DTI

FS = 3 T, Seq. = EPI,
Acceleration factor of 2,
b = 0 and b = 1000, six

directions, TR =
2435–4813 ms, TE =

48–62 ms, voxel size 1.6
× 1.6 × 5 mm, FOV =

230 × 180 × 159 mm. 15
directions, TR =

3175–8000 ms, TE =
57–90 ms, voxel size 2 ×
2 × 3.3 mm, FOV 224 ×

224 × 105 mm

MDmin (from MD
map); histogram

metrics (from MD
gradient maps)

OS

ROIs on T1 CEL that
visually appeared
dark on the MD

maps;
semiautomatic
segmentation

Univariate and
multivariate Cox

regression analysis
adjusted for

treatment protocol
and gender

Lower minMD and
higher MD gradient
values for the 10th
and 75th percentile

of the tumour
boundary predict

short OS.

Wen at al. [60] 2015 75 R ND

Surgery/biopsy;
44 RT;

Chemotherapy:
TMZ and

enzastaur, 31
TMZ + erlotinib

and BV

Postoperative:
pretreatment,
posttreatment
(after 1, 2 and

4 months)

DTI

FS = 3 T, six-directional,
Seq. = DWI, b = 1000

s/mm2, number of
excitations = 4.

MD, FA and
longitudinal and

radial eigenvalues
(histogram

metrics)

OS,
PFS

ROIs on T1 CEL and
T2 hyperintense
lesions; manual
segmentation

Log-rank analysis
on Kaplan–Meier
data; multivariate

Cox regression
analysis adjusted for

age, EOR, KPS

For the TMZ + enza
cohort: volumes of
regions with low

MD values at
1-month scan

associated with OS
and at 2-month scan
associated with PFS.
For the TMZ + erl +

bev cohort,
volumetric diffusion
parameters and MD

and EVrad were
associated with OS
and PFS at different

timepoints.
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Chang et al. [61] 2015 120 R ND

Surgery/biopsy;
RT;

Chemotherapy:
TMZ following
by adjuvant tmz

therapy.

Postoperative DWI

FS = 1.5 T, TE/TR =
80–120 ms/5000 ms,

matrix size = 128 128,
ST = 3 mm with no
interslice gap, and

b-values of 0 and 1000
s/mm2 in three

orthogonal directions.

ADC_L, ADC_H
(2-GMM

histogram)

OS,
PFS

ROIs on CEL on T1
subtraction images;

segmentation
method not

specified

Log-rank analysis
on Kaplan–Meier

data and
multivariate Cox

regression analysis
adjusted for age

Patients with lower
ADC_L have shorter

OS and PFS.
ADC_H was not

predictive.

Burth et al. [62] 2016 125 R ND

Surgery/biopsy;
Radiotherapy

and
Chemotherapy:

5 different
treatment
regimens

Preoperative DWI

FS = 3 T, TR = 5300 ms,
TE = 90 ms, b 0 and b
1200, pixel size 1.769
mm/1.769 mm, image
matrix 130 × 130, ST 5

mm, flip angle 908, FoV
= 229 × 229 mm.

ADC histogram
metrics

OS,
PFS

ROIs on T1 CEL and
T2/FLAIR

hyperintensity;
semiautomatic
segmentation

Univariate and
multivariable Cox

regression analyses
including age, sex,
EOR, KPS, rCBV

Univariate analysis
showed that 10th
percentile ADC in
CEL and T2/FLAIR
were significantly

associated with OS,
but not with PFS. In

multivariable
analysis

diffusion-derived
MRI parameters did
not predict survival.

Shankar et al. [63] 2016 84 R ND

Surgery/biopsy;
RT;

Chemotherapy:
TMZ

Preoperative DWI

FS = 1.5 T, Seq. = EPI.
TR = 8000 ms, TE = 73.6

ms, FOV = 260 mm,
matrix size = 160 × 192,
section ST = 5 mm, gap
= 1.5 mm, b = 0 and b =
1000 in three orthogonal

directions.

nADC min OS

Whole tumour
volume identified

on T1 CEL and
FLAIR; restricted

diffusion ROIs
identified on ADC

map; manual
segmentation

Log-rank analysis
on Kaplan–Meier

data and
multivariate Cox

regression analysis

Positive association
between nADC min

and OS.

Van der Hoorn et al.
[64] 2016 14 R ND

Surgery; RT;
Chemotherapy:

TMZ and
adjuvant TMZ

Postoperative:
preradiotherapy,
postradiotherapy

DWI

FS = 1.5 T, Seq. = EPI,
TR/TE =

6000–12,500/64–108 ms;
flip angle 90◦; FOV

220–300 × 220–300 mm;
52–66 slices; 0–4 mm
slice gap; voxel size

0.86–1.2 × 0.86–1.2 × 4–5
mm, b-value of 0 and

1000 s/mm2, scanned in
3–25 directions.

nADC histogram
metrics

OS,
PFS

ROIs automatically
segmented in

periresectional area
and manually

adjusted.

Univariate and
multivariate Cox

regression analysis
adjusted for age and
MGMT methylation

status

The increase in ADC
value

postradiotherapy in
comparison to

preradiotherapy did
not predict an

increase in PFS or
OS neither in
univariate nor
multivariate

analysis.
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Chang et al. [65] 2016 126 R R

Treatments
pre-recurrence:

surgical
resection + RT +

TMZ;
Chemotherapy
on recurrence:

BV

Pretreatment,
posttreatment DWI

Seq. = Monopolar EPI,
TE/TR = 80–110 ms/4–10
s, section thickness = 5

mm, gap = 1 mm,
matrix size = 128 × 128
mm, FOV= 22–25 cm,

b-value 1000 and 0
s/mm2.

ADC (texture,
4-GMM histogram

metrics)

OS,
PFS

ROIs on T1 CEL,
T2/FLAIR;

semiautomatic
segmentation

Machine-learning
predictive model

based on
random-forest and

including
conventional MRI
and DWI metrics

Model based on
multiparametric

MRI imaging
metrics (of which
DWI) was able to

predict OS

Zolal et al. [39] 2016 31 R R
Surgery; RT;

Chemotherapy:
TMZ

Preoperative
(prior to
second

surgery)

DWI

FS = 1.5 T, b = 0 and
1000 s/mm2, ST of 5 mm,
and voxel sizes between

0.9 and 2 mm.

ADC histogram
metrics

OS,
PFS,
Survival
after
2nd
surgery

ROIs in T1 CEL
(manual selection or

semi-automated
adaptive

thresholding)

Log-rank analysis
on Kaplan–Meier

data and
multivariate Cox

regression analysis
including also age,
EOR, tumour size

ADC histogram
skewness associated
with OS and PFS in
univariate analysis
and with survival

after 2nd surgery in
multivariate

analysis.

Choi et al. [66] 2016 112 R ND
Surgery; RT;

Chemotherapy:
TMZ.

Preoperative DTI

FS = 3 T, b values of 600
s/mm2 and 0 s/mm2, 32

directions, FOV =
8413.4/77; 220 mm;

section thickness = 2
mm, matrix = 112 × 3 ×

112.

MD histogram
metrics

12-OS,
16-OS,
12-PFS

ROIs on T1 CEL;
semiautomatic
segmentation

Log-rank analysis
on Kaplan–Meier

data and
multivariate Cox

regression analysis
with MGMT

methylation status,
age, KPS, EOR

At univariate
analysis, lower MD

histogram
parameters were

significant
predictors of poor

OS and PFS;
Multivariable

models with MD
parameters had

significantly higher
performances that
those without MD
parameters for OS

and PFS prediction.

Huber et al. [67] 2016 122 R ND
Surgery; RT;

Chemotherapy:
TMZ.

Preoperative DTI FS = 3 T, DTI direction
15 or 6 directions mean ADC, FA OS

ROIs in the CEL,
central region (CR),

and the
FLAIR-hyperintense

NE peritumoral
region

Kaplan–Meier
curves; multivariate

Cox regression
analysis with age,

KPS, tumour
volume, infiltration

Patients with low
FA values in CEL

showed a
significantly

improved OS in
univariate analysis.

In multivariate
analysis FA values

could not be
identified as
independent
prognostic

parameters besides
clinical factors.
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Yan et al. [68] 2016 31 R ND
Surgery;

Chemotherapy:
TMZ.

Preoperative,
postoperative DTI

FS = 3 T, Seq. = EPI,
TR/TE = 8300/98 ms; flip

angle 90◦; FOV 192 ×
192 mm; 63 slices; no

slice gap; and voxel size
2 × 2 × 2 mm, b-values
= 0, 350, 650, 1000, 1300,

and 1600 s/mm2, 13
directions.

EOR (extent of
resection) based
on p and q maps

OS,
PFS

ROIs representing
EOR manually
placed on T1

Univariate and
multivariate Cox

regression analysis
including age,

MGMT methylation
status, IDH-1

mutation, tumour
volume and location

larger residual
abnormal q volume

predicted
significantly shorter
PFS; larger resection
of abnormal q area

improved OS.

Puig et al. [25] 2016 15 P ND
Surgery; RT;

Chemotherapy:
TMZ

Preoperative IVIM MRI

FS = 1.5, Seq. = EPI,
slice = 24, TR = 3000 ms,
TE = 76 ms, EPI factor

was 41, FOV = 200 mm,
section thickness = 5
mm, matrix = 96 × 77
mm, pixel size = 2.4 ×

2.9 × 5 mm.13 b-values:
0, 10, 20, 30, 50, 100, 150,
200, 350, 500, 650, 800,

and 1000 s/mm2,
acquisition time was 3
min 48 s per patient.

D, D*, f OS
ROIs in T1 CEL and

NEL; manual
segmentation

Kaplan–Meier
curves; multivariate

Cox regression
analysis with

clinical and DSC
metrics

f and D* in CEL are
associated with 6
months survival

Kondo et al. [69] 2017 76 R ND NS Preoperative DWI NR

L-ADC_L,
B-ADC_L,

B&L-ADC_L
(2-GMM

histogram)

OS,
PFS

ROIs in T1 CEL
manual

segmentation

Kaplan–Meier
curves; univariate

Cox regression
analysis

B&L-ADCL was
strongly associated
with poor PFS and

OS

Krishnan et al. [28] 2017 45 R ND Surgery Postoperative
(pretreatment) DWI, RSI

FS = 3 T, Seq. = EPI,
TE/TR = 96 ms/17 ms,

FOV = 24 cm, matrix =
96 × 966 × 48, voxel size
= 2.5 mm, 4 b-values (b
0, 500, 1500, and 4000

s/mm2, 6 and 15 unique
diffusion directions for
each nonzero b-value,

respectively 8 min scan
time.

ADC and RSI
volume fraction,

10th and 90th
percentile

OS,
PFS

3D ROIs on T1 CEL
and FLAIR

hyperintensity;
semiautomatic
segmentation

Univariate and
multivariate Cox

regression analysis
combined with age,

gender and
resection type

No ADC metrics
were associated

with PFS and OS.
RSI volume fraction
was associated with

PFS and OS, RSI
90th percentile

associated with OS.

Ellingson et al. [70] 2017 258 R R
Chemotherapy:

5 different
regimens

Pretreatment DWI

FS = 1.5 or 3 T, Seq. =
monopolar EPI, TE/TR

= 80–110 ms/4–10 s,
NEX = 1, ST = 5 with
0–1 mm interslice gap,

matrix size = 128 × 128,
FOV = 220–256 mm. b =
0 and b = 1000 s/mm2.

ADC_L (2-GMM
histogram) OS

3D ROIs on T1
subtraction maps;

semiautomatic
segmentation

Log-rank analysis
and multivariate
Cox regression

analysis including
age, enhancing
tumour volume

Pretreatment
ADC_L was an

independent
predictive

biomarker for OS in
anti-VEGF therapies,
but not in lomustine.
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Galla et al. [71] 2017 65 R R Chemotherapy:
BV

Pretreatment,
posttreatment DWI

FS = 3 T, Seq. = EPI,
FOV= 24 × 24 cm2, b= 0,
1000 s/mm2, ST = 5 mm.

changes in nADC
mean and min OS

ROIs on ADC maps
corresponding to
the T1 CEL and
NEL; manual
segmentation

Cox regression
analysis adjusted for

age, tumour size,
prior treatments

The change in mean
ADC was

significantly
associated with OS.
The change in min
ADC in the NEL

was not associated
with OS

Boonzaier et al. [72] 2017 43 R ND Surgery; RT;
Chemotherapy Preoperative DTI

FS = 3 T, Seq. EPI,
TR/TE = 8300/98; flip

angle = 90◦; FOV = 192
× 3 × 192 mm; 63

sections; no section gap;
voxel size = 2.0 × 3.2 ×
3.2 mm; b values 0–1000

s/mm2.

volumetric
analysis: ADC low

volume

OS,
PFS

ROIs in CEL and
NEL regions based

on ADC-rCBV
maps; manual
segmentation

Log-rank analysis
and multivariate
Cox regression

accounting for age,
CE volume, IDH-1
mutation, MGMT

methylation status,
EOR

Volumetric analysis
of ADC-rCBV ROIs

in NEL helps in
stratifying PFS and

OS

Heiland et al. [73] 2017 21 P ND Surgery Preoperative DTI NR AD, RD, mean
MD and FA

OS,
PFS

ROIs on the whole
CEL; manual
segmentation

The Kaplan–Meier,
univariate

Cox-Regression tests

Patients with high
MD in the

contrast-enhancing
region had a

significantly better
OS. Patients with

low FA in the
contrast-enhancing

region had a
significantly better

OS.

Chakhoyan et al.
[26] 2018 23 P ND

Surgery; RT;
Chemotherapy:

TMZ

Postoperative:
pretreatment,
posttreatment

DWI, DKI,
SE

FS = 3 T, Seq. EPI,
TR/TE = 13,400/103 ms,
a flip angle of 90◦, 52

contiguous slices, ST = 3
mm, no inter-slice gap,

an in-plane resolution of
2 mm × 2 mm, matrix =
128 × 128 mm, b values:
0, 50, 100, 250, 500, 750,

1000, 2500, 3500 and
5000 s/mm2. The total

acquisition time for the
DWI scan was 6 min.

ADC, K, D, DDC,
alpha OS

ROIs placed in
NAWM and CEL;

semiautomatic
segmentation

Log-rank analysis
on Kaplan–Meier

curves and
multivariate Cox

regression analysis
including age,
MGMT status,

tumour volume at
baseline

ADC show
significant value in
predicting OS. DKI
and SE metrics did

not show significant
value in OS
prediction.

Li et al. [24] 2018 115 P ND

Surgery;
Adjuvant
therapy

postoperative

Preoperative DTI NR

Joint histogram
features from

Normalized DTI-p
and q maps

OS,
PFS

ROIs in CEL and
NEL; manual
segmentation

Kaplan–Meier, Cox
regression

accounting for
IDH-1 mutation,

MGMT methylation
status, sex, age, EOR

joint histogram
features were

associated with OS
and PFS and

improved survival
model performance.
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Bae et al. [74] 2018 217 R ND
Surgery; RT;

Chemotherapy:
TMZ

Preoperative DTI

FS = 3 T, b values 600
and 0 s/mm2, 32

directions, FOV =
8413.4/77; 220 mm;

section thickness = 2
mm; matrix 112 × 3 ×

112.

Radiomic features OS,
PFS

ROIs in necrosis,
CEL, NEL on

T2/FLAIR;
semiautomatic
segmentation

Random Survival
Forest prediction

model from
multiparametric

MRI

Radiomic prediction
model including

clinical and
multiparametric
MRI metrics (of

which DTI metrics)
was able to predict

OS and PFS

Rulseh et al. [75] 2019 43 R ND
Surgery; RT;

Chemotherapy:
TMZ

Preoperative DWI NR ADC histogram
metrics

OS,
PFS

Whole-brain masks
generated using FSL

The Kaplan–Meier,
univariate

Cox-Regression
analysis

Median ADC was
the best variablefor

PFS prediction,
while p85 was the

best variable for OS
prediction.

Kim et al. [76] 2019 93 R ND

Surgery/biopsy;
RT;

Chemotherapy:
TMZ

Preoperative DWI

FS = 1.5 T, Seq. = EPI,
TR/TE 3000 ms/80 ms;
FOV = 240 × 240 mm;

matrix = 164 × 162; ST =
5 mm; gap = 1 mm, b

value 0 and 1000 s/mm2.

ADC histogram
metrics OS

ROIs on T1CE and
FLAIR; manual
segmentation

Log-rank test on
Kaplan–Meier

curves,
unsupervised

K-means clustering

ADC histogram
parameters

demonstrated a
significant

association with OS.

Buemi et al. [77] 2019 17 R R

Chemotherapy:
13 BV, 4

fotemustine and
BV

Pretreatment,
posttreatment DWI

FS = 1.5 T, Seq = EPI,
TE/TR = 90 ms/1000 ms,
NEX 2, slice thickness 5

mm with 1 mm
interslice distance,

matrix size = 320 × 320
mm, and FOV = RL 240

mm, AP 282 mm, FH
131 mm, b = 0 and b =

1000 s/mm2.

ADC_L, ADC_H
(2-GMM

histogram)

OS,
PFS

ROIs on T1 CEL and
T2/FLAIR

abnormalities;
semiautomatic
segmentation

Kaplan–Meier with
log-rank test,

multivariate Cox
regression adjusted
for clinical variables

In univariate
analysis, ADC_L in

CEL was
significantly

predictive of PFS
and OS. In

multivariate
analysis, the ADC_L
was predictive for

PSF but not OS.

Petrova et al. [78] 2019 54 R R

Chemotherapy:
RT and TMZ

Chemotherapy
on recurrence:

BV

Pretreatment DWI

FS = 1.5 T or 3 T, b = 0
and b = 1000, matrix =
128 × 128, FOV = 22–24
cm with a ST of 5 mm.

ADC histogram
metrics

OS,
6PFS

ROIs on T1 CE;
manual

segmentation

6 machine learning
classifiers

Diffusion and
perfusion imaging
using an SVM was

able to predict 6PFS.
Less power was
shown to predict

OS.

Flores-Alvarez et al.
[79] 2019 36 R ND Surgery; RT;

Chemotherapy Preoperative DTI

FS = 3 T, FOV of 22 × 22
mm2, b-value of 1000
s/mm2, 25 directions,
TR = 10.000 ms, TE =
101.8 ms, ST of 3 mm
and a Matrix array of

112 × 112.

FA OS

ROIs in necrosis,
CEL, oedema,

normal controlateral,
peritumoral oedema;

manual
segmentation

Log-rank test on
Kaplan–Meier

curves

Significant
association between

the peritumoral
oedema

measurement of FA
with intervals of OS.
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Li et al. [80] 2019 80 P ND

Surgery/biopsy;
RT (17.4%,

20/115);
Chemotherapy:

TMZ (73.0%, 84);
Best supportive

care (9.6%,
11/115);

Preoperative DTI NR
histogram analysis

of normalized
DTI-p and q maps

OS,
PFS

ROIs in CEL and
NEL; manual
segmentation

Kaplan–Meier and
Cox regression
accounting for

IDH-1, mutation,
MGMT methylation

status, sex, age,
EOR, tumour

volume

A higher mean
value of anisotropic
diffusion (q) in NE

region was
associated with

worse OS and PFS. 5
p and q histogram

metrics showed
significantly

incremental value in
predicting 12-month

OS and PFS.

Mohan et al. [81] 2019 48 R ND

Surgery; RT;
Chemotherapy:

TMZ. Other
therapies: BV (8

patients)

Preoperative DTI

FS = 3 T, Seq. = Epi,
parallel acquisition

(GRAPPA), acceleration
factor of 2.30 Directions,
a b-value of 1000 s/mm2,
a total acquisition time
of 8 min, TR/TE 5000/86
ms, NEX = 3, FOV = 22
× 22 cm2, slice thickness

= 3 mm, number of
sections = 40.

mean FA, MD OS

ROIs in CC if there
were CE lesions on

T1 or signal
abnormality on T2

and FLAIR; manual
segmentation

Kaplan–Meier with
log-rank test,

multivariate Cox
regression adjusted
for clinical variables

FA from the invaded
CC was positively

correlated with OS.

Yan et al. [82] 2019 51 R ND
Surgery; RT;

Chemotherapy:
TMZ.

Preoperative,
postoperative DTI

FS = 3 T, Seq. = EPI,
TR/TE = 8300/98 ms; flip

angle 90◦; FOV = 192
mm2; 63 slices; no slice
gap; voxel size 2 mm3, b
values (0, 350, 650, 1000,
1300 and 1600 s/mm2),

scanned in 12 directions.

EOR (extent of
resection) based
on p and q maps

OS,
PFS

ROIs representing
EOR on pre-MR;

manual
segmentation

Kaplan–Meier with
log-rank test

Larger abnormal q
regions showed

better PFS and OS
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Park et al. [83] 2020 248 R ND

Surgery; RT; 60
Gy

Chemotherapy:
TMZ

Preoperative DWI

FS = 3 T, Seq. = EPI,
TR/TE = 3000/56 ms; b =
0 and b = 1000 s/mm2,

FOV= 25 cm; ST/gap = 5
mm/2 mm; matrix = 256
× 256; acquisition time,

39 s.

radiomic features OS
ROIs on T1 CEL;
semiautomatic
segmentation

Log-rank test on
Kaplan–Meier

curves; radiomics
predictive models

Multiparametric MR
model

(incorporating also
ADC features) was
able to predict OS

Song et al. [84] 2020 19 R R

Before
recurrence: RT +

TMZ
Chemotherapy
on recurrence:

immune
checkpoint

inhibitors (ICIs)

Pretreatment,
posttreatment DWI

FS = 3 T, Seq. = EPI,
TR/TE = 4025/82 ms, b

value 0 and 1000 s/mm2.

nADC, changes
between pre and
post treatment

PFS6
ROIs on T1 CEL;
semiautomatic
segmentation

Univariate analysis nADC was able to
assess PFS6

Patel et al. [40] 2020 67 R R

35 treated with
BV; 35 repeated

surgery
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Figure 2. Graphic summary of the systematic review results according to the diffusion models and
metrics investigated in the selected studies. The pie chart shows the number of included studies
according to the diffusion MRI model (DWI in green; DTI in orange; other diffusion models in blue).
Number and percentage of studies included in each of the three groups were reported. The bar
plots show the diffusion metrics investigated in each group. Dotted bars count studies on newly
diagnosed GBM patients, while the bars filled with vertical lines count studies on recurrent GBM
patients. The study by Wen et al. [55] was counted three times in the DWI model histogram since they
investigated both histogram and ADC 2-GMM and fDM metrics.

3.3. Association of Diffusion MR Imaging Metrics with OS and PFS

3.3.1. DWI Metrics

A total of 34 studies investigated the association of DWI metrics with survival endpoints.
Among them, 22 involved ND-GBM patients, while the remaining 12 concern R-GBM patients.
Concerning studies involving ND-GBM patients, several of them investigated the power of the
ADC mean, median and minimum (min) values in tumoral regions, sometimes considering also
its normalized value for the normal-appearing white matter (NAWM) or normal contralateral
brain [12,26,44,50,53,56,63]. Romano et al. [44] found that the min ADC values in enhancing the
tumour component on T1-weighted images were associated with PFS and OS and so could be
used as a preoperative parameter to predict patient survival. In particular, patients with higher
ADC min values survived longer than patients with lower ADC min values. Similar results were
found by Nakamura et al. [50] and Shankar et al. [63]. However, the latter considered only OS as
a survival outcome and normalized the ADC min value as the diffusion metric, which showed a
positive correlation with OS. Moreover, according to the survival analysis performed by Elson et
al. [56] in the post-operative, pre-radiotherapy setting, the normalized ADC min associated with the
hyperintense T2/FLAIR regions was a strong predictor of PFS and OS in patients with ND-GBM.
Conversely, Coban et al. [12] found no significant difference in the min ADC between patients
having a short and long OS. Omuro et al. [53] found that preoperative lower normalized ADC



Cancers 2020, 12, 2858 19 of 29

in the maximal portion of the T1 contrast-enhancing tumour was associated with prolonged OS,
but not PFS. In Chakoyan et al. [26], patients with large, positive changes in their post-treatment
median ADC have a higher OS compared to stable or decreasing ADC changes. Other studies
on ND-GBM patients investigated the association with OS and PFS of the ADC histogram metrics
(normalized or not) obtained performing standard histogram analysis [28,41,48,55,57,62,64,75,76]
or using a double Gaussian mixture modelling for a histogram of the ADC intensities within the
considered region [42,55,61,69]. Among the studies investigating the standard ADC histogram
parameters, six studies investigated the association of the standard ADC histogram metrics with
survival outcomes in a postoperative setting [28,41,55,57,64,76]. Li et al. [41], in a postoperative
setting, found that the median and 10th percentile of the normalized ADC values observed pre-and
post-treatment were not associated with OS and PFS in a time-independent analysis, but they were
significantly correlated with OS according to a time-dependent survival analysis. Wen et al. [55] found
an association between the ADC 10th and 50th percentile with both OS and PFS within the T2-enhanced
lesions at 2 months post treatment, while in a study by Lee et al. [57], any association with PFS was
found between the normalized ADC histogram metrics within the T1 contrast-enhancing lesions.
Unfavourable results were also found by Van der Hoorn et al. [64], who evaluated the association of
the histogram parameters of the post-treatment changes in normalized ADC within the periresectional
area with OS and PFS. In this study, the increase in ADC value post-treatment in comparison to
pre-treatment did not predict an increase in PFS or OS neither in the univariate nor multivariate
survival analysis. Krishnan et al. [28] also found no association of ADC histogram metrics within the T1
contrast-enhanced and T2 FLAIR hyperintensity volume with OS and PFS. The remaining four studies
investigating the power of the standard ADC histogram parameters for predicting survival in ND-GBM
patients were performed in a preoperative setting [48,62,75,76]. In a study by Sunwoo et al. [48],
PFS was positively associated with the mean ADC value in enhancing the tumour volumes segmented
on the postcontrast T1-weighted presurgical scans, but not with the ADC 5th percentile in these
regions. The univariate survival analysis performed by Burth et al. [62] showed a positive association
of the ADC 10th percentile in T1-enhancing tumour volumes and hyperintense signal changes on
T2 FLAIR with OS, but not with PFS. However, in multivariable analysis, the diffusion-derived MRI
parameters did not predict survival. In a study by Kim et al. [76], lower ADC histogram parameters
were significant predictors of poor OS. In a longitudinal study by Rulseh et al. [75], the ADC histogram
analysis was performed using a whole-brain approach. Results showed that serial standardized median
ADC and p85 values correlated with PFS and OS, respectively. Four studies investigated the survival
prediction power of the histogram metrics obtained applying double-Gaussian mixture modelling
(2-GMM) to ADC histograms in regions of interest [42,55,61,69]. A study by Pope et al. [42] performed
on preoperative ADC images showed that the ADC mean values for the lower peak (ADCL) of the
2-GMM distribution can stratify PFS in ND-GBM patients with newly diagnosed GBM treated with
BV. Moreover, although no statistically significant findings were found, the BV-treated patients with
low ADCL also tended to have better OS. In the preoperative study by Kondo et al. [69], promising
results also were reported on the association between broader and lower values in the ADCL and PFS
and OS. The remaining two studies were performed in a postoperative setting and showed conflicting
results [55,61]. Chang et al. ND-GBM patients with low ADCL after treatment have shorter PFS and OS
than those with higher ADCL (within contrast-enhancing tumour regions on T1 subtraction images).
The ADC mean values for the higher peak (ADCH) of the 2-GMM were not useful for stratifying
survival. Conversely, according to Wen et al. [55], no ADC parameters from the 2-GMM fitting in T1
contrast-enhancing lesions were found to be associated with either OS or PFS.

Three studies investigated the power of functional diffusion maps (fDMs)-associated parameters
for stratifying survival in ND-GBM patients [43,49,55]. Two of these were by Ellingson et al. [43,49] and
showed that the fDMs and probabilistic fDMs metrics obtained considering pre- and post-treatment
ADC maps were promising PFS and OS predictors. In a study by Wen et al. [55], the fDM metrics
were associated with OS and PFS within the T1 contrast-enhancing lesions, but not in the T2-enhanced
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lesions. Only Park et al. [83] used a radiomic approach for building a multiparametric MR model able
to predict OS in ND-GBM patients and incorporating ADC histogram skewness in its equation.

Concerning studies involving R-GBM patients, all but two studies [39,40] evaluated the predictive
value of the ADC metrics in stratifying PFS and OS for R-GBM patients following a certain radio-
and/or chemo-therapeutic treatment after the occurrence of first or second recurrence. The most
investigated chemotherapeutic regimen was BV. Only two studies [39,40] investigated the ADC metrics
survival prediction power for R-GBM patients undergoing a second surgery. Most of them used ADC
metrics arising from the histogram analysis based on fitting a double-component Gaussian mixture
model to the obtained ADC values [40,45,52,70,77]. In particular, Pope et al. [45] found that low ADCL
within tumour regions placed on pre-treatment contrast-enhancing T1-weighted images at baseline
was associated with worse OS and PFS in BV-treated R-GBM patients. Similar results were obtained
by Ellingson et al. [52]. Differently, Buemi et al. [77] found ADCL in T1 contrast-enhancing tumour
regions useful only for stratifying PFS, but not OS in R-GBM patients prior to BV treatment. In the
same study, ADCL in T2/FLAIR abnormalities was unable to stratify both PFS and OS. In a subsequent
study by Ellingson et al. [70], ADCL was predictive of OS in patients with recurrent GBM treated with
anti-VEGF monotherapy at first or second recurrence. Patel et al. [40] also investigated the utility
of ADCL, concluding that patients with low ADCL have a survival benefit when surgically excised,
whereas large tumours with high ADCL may be best treated with BV. Three studies investigated the
survival predictive power of the ADC monomodal histogram parameters [39,58,78], of which two
involved BV-treated patients [58,78]. In the first it was found that, unlike the normalized ADC 5th
percentile that was also evaluated, the volume of low-ADC lesions in enhancing pre- and post-BV
scans predicted shorter OS [58], while in the second [78], using a machine learning approach, the ADC
histogram metrics in combination with perfusion metrics arising from pre- and post-treatment images
were found to be useful for BV response assessment in terms of PFS and OS. Among the histogram
features inspected by Zolal et al. [39] in R-GBM patients undergoing their second surgery, the ADC
histogram skewness was an independent prognostic factor for OS and PFS after the second surgery.

Two studies [54,65], rather than using a mono or bi-component curve-fitting histogram analysis
as done in the previously described studies, used a four-component one. Rahman et al. [54] evaluated
ADC within the volume of contrast-enhancing and non-enhancing T2/FLAIR lesions in BV R-GBM
patients, revealing a significant association between the histogram parameters and OS and PFS after
performing uni- and multivariable Cox-regression analyses. Chang et al. [65], in a similar study
setting, used machine learning approach based on a multimodal approach, including ADC texture and
four-component histogram metrics, and developed a valid predictive model for OS. The remaining
two studies on R-GBM patients investigated the power of normalized ADC mean and min values in
enhancing and non-enhancing tumoral regions [71,84]. Galla et al. [71] found that in R-GBM patients
treated with superselective intra-arterial cerebral infusion of BV, the change in normalized ADC mean
and min after treatment is predictive of OS. Song et al. [84] found that normalized ADC can be used as
an imaging biomarker to determine PFS in R-GBM patients treated with immune checkpoint inhibitors.

3.3.2. DTI Metrics

A total of 17 studies investigated the association of DTI metrics with survival endpoints, of which
only 1 involved R-GBM patients, while the remaining involved ND-GBM patients. Amongst the
latter, seven studies investigated the power of the mean and min values of diffusion tensor metrics
in the tumoral regions, sometimes considering also their normalized value for normal-appearing
brain tissue, in a preoperative setting [11,47,59,67,73,79,81]. The most investigated features were
mean diffusivity (MD) and fractional anisotropy (FA). Jamjoom et al. [59] found that lower min MD
within enhancing tumour regions predicted shorted OS. Similar behaviour was observed in a study
by Heiland et al. [73] for mean MD. Conversely, the mean MD and values were found not predictive
for OS in studies by Huber et al. and Mohan et al. [67,81] and, normalized for normal contralateral
brain tissue, predictive for OS only in the univariate analysis performed by Zikou et al. [47], but not in
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the multivariate one. Controversial results were also observed concerning FA. In a study by Heiland
et al. [73], a lower FA in the contrast-enhancing region was significantly associated with better OS.
Moreover, Flores-Alvares et al. [79] found significant association between the peritumoral oedema
measurement of FA with OS. Mohan et al. [81] found that FA in corpus callosum infiltrations was able
to be a prognostic marker for prediction of OS in ND-GBM patients. On the other hand, in studies by
Saksena et al. and Huber et al. [11,67], respectively considering tumour on FLAIR signal abnormality
and contrast enhancing zones, FA showed promising results in terms of PFS and OS prediction only in
univariate, but not multivariate survival analysis. Finally, although there is a detected trend towards
better OS for patients with lower FA values, no significant results were found by Zikou et al. [47].

Four studies performed histogram analysis of DTI metrics [59,60,66,74]. In a preoperative setting,
higher MD gradient histogram values of the tumour boundary predicted shorter OS in a study by
Jamjoom et al. [59]. Promising results in terms of prediction of both OS and PFS were also showed
by Choi et al. [66]. Specifically, lower MD histogram parameters were significant predictors of
poor OS and PFS, according to univariate analysis. Multivariable models with MD parameters had
significantly higher performances that those without MD parameters for OS and PFS prediction.
However, conflicting results were obtained in a later study performed by the same group [74] since
any feature from the ADC histogram parameter were useful to build a predictive model based on MRI
radiomic features and clinical and genetic parameters, which lead to better performance in terms of OS
and PFS when compared with models containing clinical and genetic profiles alone. In a postoperative
setting, Wen et al. [60] compared the survival predictive power of the DTI histogram metrics in two
differently treated cohorts, showing MD and radial eigenvalues association with OS and PFS at different
timepoints. Moreover, in the same study, a volumetric analysis on MD low values was performed
and volumetric diffusion parameters were also associated with OS and PFS at different timepoints.
A volumetric analysis on MD low values was also performed in a study by Boonzaier et al. [72],
who found that regions of low MD (implying high cellularity) and high relative cerebral blood volume
(rCBV) (implying vascularity) were correlated with PFS and OS in non-enhancing GBM regions.

The remaining 5 of 16 studies on ND-GBM patients assessed the predictive power in terms of the
OS and PFS of the tensor isotropic and anisotropic components (respectively p and q) [24,51,68,80,82].
In a study by Mohsen et al. and two by Yan et al. [51,68,82], volumetric analyses were performed on
postoperative p and q maps. Mohsen et al. [51], considering visive abnormality volumes on p and q
maps, assessed that a minimal invasive pattern predicts a higher PFS. Similarly, the size of the abnormal
q regions was correlated with OS and PFS in studies by Yan et al. [68,82]. Li et al., in two separate
studies [24,80], evaluated the association with survival outcomes of the histogram and joint histogram
features from the normalized DTI-p and q maps values within the enhancing and non-enhancing
tumour zones. In the first study, the joint histogram features, in particular the proportion of the
non-enhancing tumour subregion with the decreased isotropic diffusion and increased anisotropic
diffusion, were associated with OS and PFS in multivariate models [24]. Similar results on q were
found for histogram analysis performed in the second study by Li et al. [80]. In the same study, the p
and q histogram metrics showed a significantly incremental value in predicting OS and PFS with
respect to the clinical variables alone.

Only Paldino et al. [46], in a longitudinal study, investigated the survival predictive power of
the DTI metrics in R-GBM patients. In particular, changes in the MD mean and FA between pre- and
post-treatment were investigated in the T1 contrast-enhancing zones and abnormalities on FLAIR
images, resulting in significant results in terms of OS and PFS only for changes in the MD mean within
abnormalities on FLAIR images.

3.3.3. Other Models Metrics

Only three of the selected studies investigated the association with survival outcomes of the
diffusion parameters arising from models different from DWI an DTI [25,26,28]. Puig et al. [25]
investigated IVIM metrics within contrast-enhancing and non-enhancing regions, finding that the
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pseudo-diffusion coefficient and perfusion fraction in the contrast-enhancing regions were significant
predictors of 6 months survival. Krishnan et al. [28] performed a survival analysis of the volumetric
and intensities metrics arising from the RSI diffusion technique, comparing them with those arising
from DWI. While none of ADC metrics were associated with OS and PFS, the RSI volume fraction and
90th percentile within the FLAIR hyperintensity tumour regions were associated with PFS and OS.
Lastly, Chakhoyan et al. [26] showed that, in comparison with ADC (which show significant value
in predicting OS), any diffusion metrics arising from the DKI and SE models provided additional
prognostic value.

3.4. Quality Assessment

Results of the QUIPS assessment are shown in Figure 3 and reported in Supplementary Materials
Table S3. The risk of bias was ranked low or moderate across all the studies for all the six QUIPS
domains. Most studies displayed a low risk of bias in the domains of study attrition, outcome
measurement, study confounding and statistical analysis and reporting. All studies were judged to be
at low risk of bias for study attrition, while a higher percentage of studies with moderate risk of bias
was found concerning the study participation domain.

Figure 3. Risk of bias assessment according to the six domains of the Quality in Prognostic Studies
(QUIPS) tool for the 52 studies included in the systematic review.

4. Discussions

In this systematic review, we aimed at investigating the role of the diffusion MR biomarkers in
predicting survival outcomes in GBM patients. In the last decade, although diffusion imaging is not yet
a primary modality in GBM management, an ever-growing number of studies aimed at investigating
the role of diffusion MR metrics in OS and PFS prediction. This is mainly due to the ability of the
diffusion MRI techniques (with respect to traditional morphological MRI) of providing a quantitative
assessment of intratumoral heterogeneity of GBM infiltration, which is of clinical significance for
targeted surgery and therapy, and are crucial for improving GBM patient survival. However, the role of
diffusion MRI metrics in prediction and evaluation of survival outcomes has not been fully addressed
and results are often controversial or unsatisfactory. In this scenario, our systematic review can provide
important new insights and help to reach a common view on the use of diffusion MRI metrics for
GBM prognosis. After appropriate inclusion and exclusion criteria, we examined 52 studies from 2010
onwards, evaluating the association of diffusion MRI metrics with OS and PFS in ND-GBM and R-GBM
patients. We found that the most investigated diffusion metrics were those associated with DWI and
DTI, and only few studies considered different diffusion models (non-Gaussian DWI models and RSI).
The main findings and conclusions of the selected studies varied from each other, often showing
inconsistencies and not a clear idea about the actual usefulness and the effective prognostic power of
the diffusion MR biomarkers.
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The most investigated metrics were the minimum and mean ADC value and its histogram metrics
arising from uni- or bi-variate histogram analysis for DWI, and MD and FA for DTI, either as mean values
or as histogram parameters. These metrics, obtained from different tumour zones (e.g., T1 contrast
enhancement and non-enhancement and FLAIR signal abnormality), showed prognostic significance
in a different study setting for both ND- and R-GBM patients [54,59,63,66,69,76]. However, there is
no shortage of studies showing adverse results [12,47,57,64]. A lower number of studies investigated
metrics arising from different approaches, such as four-component histogram analysis, fDM maps
analysis, radiomics analysis and DTI isotropic and anisotropic components [24,43,49,51,68,74,80,82,83].

The most interesting finding emerged from our analysis is that, in most studies, the diffusion
metrics could not be identified as independent prognostic parameters besides established clinical factors
(like age, KPS, MGMT promoter methylation status and extent of resection) and other quantitative
parameters arising from other MRI techniques (such as rCBV from perfusion MRI or DCE–MRI-derived
metrics), also performing analysis of radiomic features [62,72,74,76,83,84]. In this context, it should
be mentioned that the recently introduced radiomics approach may contribute significantly towards
survival prediction and stratification of GBM patients [74,83], even if further studies specific for GBM
patients are required.

Characteristics of the included studies, such as patient treatment, study aim and setting, diffusion
sequence parameters, areas on which ROIs were placed, diffusion metrics for the same diffusion model,
analysis methods and the OS and PFS definition, were highly variable across studies, preventing us
from performing a meta-analysis. Among the just-mentioned sources of variability, segmentation
approaches used for ROI delineation remained tricky considering that the T1-contrast enhancement
sequence highlights more perfused tumoral regions, reducing the intratumoral heterogeneity sampling.
On the other side, ROI outlining based on FLAIR sequences are affected by peritumoural oedema
that can reduce the significance of the findings due to the inclusion of unaffected components in the
analyses [19,85]. The variability in patient treatment is particularly noticeable in studies on R-GBM
patients, and this is largely due to the lack of a standard of care and the limited efficacy of the therapeutic
options, which also justify the larger presence of clinical trials among studies on R-GBM than those on
ND-GBM [86].

Moreover, since most of included studies were retrospective, they are supposed to have more bias
and should be validated through prospective studies [87].

To our knowledge, this is the first systematic review aiming at summarizing the role of diffusion MR
imaging metrics in predicting survival in GBM patients. To date, systematic studies exploring diffusion
metrics applied to GBM patients aimed at evaluating the power of DWI and DTI for differentiating
GBM from brain metastasis or PCNSL, or from lower grade gliomas [32,33,88]. However, analysis
of survival outcomes was out of the purpose of these works. Oltra-Sastre et al. [89] systematically
reviewed the multiparametric MR imaging biomarkers associated with clinical outcomes, including
the survival outcomes. However, this study was not focused on diffusion metrics and considered
studies on gliomas of any WHO grade.

Nowadays, the greatest drawback of diffusion MRI techniques is the lack of standardization [23,90,91].
Continued research efforts and standardization of acquisition parameters and analytic methods, possibly
with automation, are required to arrive at the most effective approach that can be applied across institutions.
Moreover, due to the ever-growing application of artificial intelligence techniques in the context of medical
imaging, it could be interesting to further explore the association between diffusion metrics and GBM
survival outcomes using machine learning and deep learning techniques, as done by Chang et al.
and Petrova et al. for DWI metrics [65,78] or by Zacharaki et al. and Nie et al. [92,93] for DTI metrics,
even if the latter two works were not specific for GBM patients.

5. Conclusions

In conclusion, although further work is required to optimize the methodology associated with the
acquisition and analysis of diffusion MR parameters, it seems that diffusion metrics may improve the
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prediction of survival outcomes in GBM patients, in particular in combination with clinical parameters
and conventional or radiomic imaging features arising from multimodal techniques.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/10/2858/s1,
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