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Simple Summary: Breast cancer is one of the most common oncological diseases in women,
as its incidence is rapidly growing. In this study, we have investigated the mechanism of
epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs), demonstrating presence
of an interconnectedness between them. This interconnectedness plays important roles in patient
prognostic, as well as in diagnostic and therapeutic targets. It is identified that there is a common
signature between CSCs and EMT, and this is represented by ALDH1A1, SFRP1, miR-139, miR-21,
and miR-200c. This finding will provide a better understanding of this mechanism, and will facilitate
the development of novel treatment options.

Abstract: Breast cancer is one of the most common oncological diseases in women, as its incidence is
rapidly growing, rendering it unpredictable and causing more harm than ever before on an annual
basis. Alterations of coding and noncoding genes are related to tumorigenesis and breast cancer
progression. In this study, several key genes associated with epithelial-to-mesenchymal transition
(EMT) and cancer stem cell (CSC) features were identified. EMT and CSCs are two key mechanisms
responsible for self-renewal, differentiation, and self-protection, thus contributing to drug resistance.
Therefore, understanding of the relationship between these processes may identify a therapeutic
vulnerability that can be further exploited in clinical practice, and evaluate its correlation with overall
survival rate. To determine expression levels of altered coding and noncoding genes, the Cancer
Omics Atlas (TCOA) are used, and these data are overlapped with a list of CSCs and EMT-specific
genes downloaded from NCBI. As a result, it is observed that CSCs are reciprocally related to
EMT, thus identifying common signatures that allow for predicting the overall survival for breast
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cancer genes (BRCA). In fact, common CSCs and EMT signatures, represented by ALDH1A1, SFRP1,
miR-139, miR-21, and miR-200c, are deemed useful as prognostic biomarkers for BRCA. Therefore,
by mapping changes in gene expression across CSCs and EMT, suggesting a cross-talk between these
two processes, we have been able to identify either the most common or specific genes or miRNA
markers associated with overall survival rate. Thus, a better understanding of these mechanisms will
lead to more effective treatment options.

Keywords: breast cancer; mesenchymal transition; cancer stem cells

1. Introduction

Breast cancer is a high-frequency disease due to its increased incidence, as recorded for the past
few years, and it is now ranked as the second-most deadly form of malignancy in women after lung
cancer [1]. The most common subtype is represented by invasive breast cancer. Despite promising
progress made in pursuing combined treatment strategies, such as surgery, radiation, and chemotherapy,
there remains a significant number of cases where these procedures are incapable of preventing the
occurrence of metastatic disease [2,3]. Therefore, patient care management remains an important
clinical challenge due to the lack of availability of prognostic markers that could stratify a patient’s risk.
In the past few years, there has been an increased interest in verifying the clinical utility of coding and
noncoding genes as important biomarkers for prognostic, diagnostic, and therapeutic targets [2,4–8].

Solid tumors, including breast cancer-associated tumors, comprise a particular subpopulation
of tumor cells, referred to as distinct cancer stem cells (CSCs). CSCs have an infinitely proliferative
potential, multipotency, and self-renewal capacity that could altogether confer resistance to antitumoral
treatments [9], as well as facilitate tumor recurrence and metastasis [10,11].

It has been observed in multiple cases that CSCs display comparable phenotypes to those of normal
stem cells (SCs). Furthermore, as it is already well-known, SCs play a key role in both embryogenesis
and adult/mature organisms, wherein SCs are confirmed to be involved in various diverse regenerative
processes [12]. The most common shared feature of these two types of stem cell populations is related
to their capacity for self-renewal. This observed high potential for cell proliferation is linked with
resistance to replicative senescence [12], thus rendering these CSCs capable of driving tumor growth,
progression, and metastasis due to the expression of stem cell-like features, including CD44/CD24 and
ALDH1 [13]. Furthermore, Wnt (Wingless-related integration site)/β-catenin, Hedgehog, and Notch
are reported to serve as shared signaling pathways [12].

CSCs serve as a considerable challenge when they are intended for use in fighting cancer.
CSCs sustain self-renewing tumorigenic cell fractions; moreover, these cells are involved in drug
resistance, and they are linked to invasion and distant metastasis [14]. Compared to non-stem
cancer cells, CSC populations possess higher levels of resistance to chemotherapy, radiotherapy,
and immunotherapy [5,14].

Epithelial-to-mesenchymal transition (EMT) represents a biological program during which
epithelial cells lose their identity and acquire a mesenchymal phenotype [15]. Thus, EMT has
dual biological roles, playing a physiological role in sustaining organismal development, but under
pathological conditions such as cancer, EMT is associated with increased invasion and migration
rates that further promote high metastatic rates [15,16]. This process can be snatched by cancer cells,
being frequently linked with resistance to apoptosis, acquisition of cancer stem cell characteristics,
and drug resistance [16]. EMT programs/processes/mechanisms promote CSC stemness in many
epithelial tissues; therefore, understanding these relationships may highlight different therapeutic
vulnerabilities that can be further exploited in clinical practice [17].

It has been often reported that breast cancer has CSC signatures at the functional, molecular,
and transcriptional levels [10,18]. Recent studies have found that EMT and CSCs are likely to be
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associated with a high risk for breast cancer recurrence and poor prognosis. Hence, understanding the
mechanisms of breast cancer pathogenesis will aid in the discovery of effective treatment options [19,20].

The Cancer Omics Atlas (TCOA, http://tcoa.cpu.edu.cn) was established to allow for fast and
straightforward querying of the TCGA “omics” data [21]. These data will allow for investigating
transcriptomic patterns of gene expression of population(s) of CSCs, development and maintenance
of CSC phenotype(s), and regulation modes of the cytoprotective mechanism involved in cell
survival, thus evading attack by the immune system. These investigations will contribute to a
better understanding of CSCs and their interconnectedness with EMT biology, as this leads to
identifying major determinants of breast cancer biology.

In an earlier study, we observed critical transcriptomic alterations in breast cancer tissues [5].
Among these, miR-200c and the critical regulators of EMT and CSCs are likely to be useful in the
diagnostic/prognostic of her2-positive breast cancer [5]. Therefore, pursuing additional investigations
of those common EMT and CSCs signatures will have important clinical benefits in breast cancer
management, as these two processes are mediators of resistance to therapy [22]. Therefore, the findings
obtained in this study will improve the development of novel therapeutic agents, as well as aid in
undertaking efforts for developing enhanced and more effective clinical practices for the management
of breast cancer.

2. Results

2.1. Breast Cancer Cell Analysis Reveals Distinct Expression Profiles for EMT

Gene expression analysis using TCOA revealed the presence of 2368 altered genes, consisting of
674 overexpressed and 1694 downregulated genes, at a cut-off value |Fold change| > 1.5 and False
Discovery Rate (FDR) q-value≤ 0.05 (Table S1). Moreover, miRNA analysis identified altered expression
patterns for 47 transcripts, consisting of 19 overexpressed and 28 downregulated miRNAs (Table S2).
Those most frequent changes are displayed in Table S3. In addition, a list of the top 10 upregulated
and downregulated genes, along with their respective miRNAs, are presented in Table 1.

2.2. Integrating Altered Genes to Tumorigenesis and Molecular Pathways

Gene Ontology (GO) for all 2368 altered genes was conducted using the web-based software
Panther (http://www.pantherdb.org). Functions of both upregulated and downregulated mRNAs
(tumoral versus normal tissues) were assigned. The main biological functions altered were related to
catalytic activity for both up/downregulated genes. The classification of related molecular functions
revealed alterations of cellular processes and biological regulation (Figure 1A,B).

The panel of genes responsible for immune response regulation (based on Panther Gene Ontology
classification) points to 29 overexpressed genes, and these are displayed as a network in Figure 1C.
GO is used to further validate involvement of these signature genes in CSC and EMT pathways in
breast cancer. Of these, eight genes, including CXCL6, PTX3, CCL23, ACKR3, CXCL2, CXCL1, KIT,
and CXCL3, are correlated with the overall survival, and these are displayed in Figure 1D. Moreover,
a String network for downregulated genes is presented in Figure 1E, and among these, a single gene,
CXCL9, is found to be correlated with the overall survival rate (Figure 1F). In Figure 1G is displayed
overall survival rate for a 9-gene signature (CXCL6, PTX3, CCL23, ACKR3, CXCL2, CXCL1, KIT,
CXCL3, and CXCL9), and in Figure 1H is represented the survival map same gene signature.

http://tcoa.cpu.edu.cn
http://www.pantherdb.org
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Table 1. Top 10 upregulated and downregulated genes and miRNAs.

Gene Expression Gene p-Value Log2 (Fold
Change)

FDR
(p-Value)

miRNA Expression
Level Symbol FDR

(p-Value)
Log2 (Fold

Change)
FDR

(p-Value)

Upregulated genes

COL10A1 2.40 × 10−176 6.76 5.47 × 10−173

Upregulated miRNAs

hsa-mir-183 4.01 × 10−92 2.95 1.40 × 10−89

COL11A1 3.75 × 10−101 5.88 2.81 × 10−99 hsa-mir-96 3.59 × 10−90 2.87 9.38 × 10−88

MMP11 1.27 × 10−176 5.82 3.27 × 10−173 hsa-mir-141 2.12 × 10−76 2.71 3.16 × 10−74

MMP13 6.76 × 10−94 5.79 3.94 × 10−92 hsa-mir-429 4.08 × 10−63 2.68 3.88 × 10−61

CST1 1.22 × 10−65 5.64 2.52 × 10−64 hsa-mir-200a 2.21 × 10−60 2.58 1.93 × 10−58

MMP1 1.43 × 10−61 4.95 2.58 × 10−60 hsa-mir-196a-1 2.43 × 10−19 2.41 2.86 × 10−18

PPAPDC1A 9.77 × 10−121 4.87 1.50 × 10−118 hsa-mir-182 4.55 × 10−72 2.36 5.29 × 10−70

COMP 2.45 × 10−90 4.76 1.27 × 10−88 hsa-mir-210 2.78 × 10−22 2.36 3.87 × 10−21

NEK2 8.02 × 10−196 4.59 8.23 × 10−192 hsa-mir-21 9.49 × 10−139 2.32 9.93 × 10−136

PKMYT1 9.28 × 10−174 4.56 1.73 × 10−170 hsa-mir-190b 1.14 × 10−31 2.31 2.34 × 10−30

Downregulated genes

ITSN1 5.46 × 10−89 −1.5 2.61 × 10−87

Downregulated
miRNAs

hsa-mir-378c 2.06 × 10 -47 −1.51 9.00 × 10−46

C3orf64 2.19 × 10−88 −1.5 1.02 × 10−86 hsa-mir-675 2.29 × 10−17 −1.52 2.40 × 10−16

C2CD2 1.62 × 10−60 −1.5 2.85 × 10−59 hsa-mir-1258 1.54 × 10−58 −1.56 1.24 × 10−56

CAB39L 4.35 × 10−49 −1.5 5.34 × 10−48 hsa-mir-1-2 2.60 × 10−32 −1.60 5.44 × 10−31

SLC5A4 1.08 × 10−44 −1.5 1.13 × 10−43 hsa-mir-205 8.64 × 10−10 −1.71 4.97 × 10−09

KALRN 3.50 × 10−40 −1.5 3.09 × 10−39 hsa-mir-584 2.52 × 10−33 −1.71 5.49 × 10−32

FZD7 2.30 × 10−37 −1.5 1.85 × 10−36 hsa-mir-511-1 1.39 × 10−40 −1.75 4.55 × 10−39

TMIE 2.38 × 10−37 −1.5 1.92 × 10−36 hsa-mir-483 2.22 × 10−32 −1.78 4.74 × 10−31

NCOA7 3.07 × 10−37 −1.5 2.46 × 10−36 hsa-mir-125b-2 5.03 × 10−44 −1.79 1.95 × 10−42

HAPLN4 4.90 × 10−29 −1.5 2.87 × 10−28 hsa-mir-511-2 7.51 × 10−45 −1.82 3.02 × 10−43
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downregulated immune response BRCA signature (CXCL6, PTX3, CCL23, ACKR3, CXCL2, CXCL1, 

KIT, and CXCL3) of genes with p ≤ 0.05 generated using GEPIA2. (E) A BRCA immune response and 

a functional interaction network based on overexpressed genes. (F) Overall survival rate for a single 

overexpressed (CXCL9) gene. (G) An overall survival rate for a 13-gene signature (CXCL6, PTX3, 

CCL23, ACKR3, CXCL2, CXCL1, KIT, CXCL3, and CXCL9), and (H) a survival map for these selected 
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2.3. Construction of a Gene Network Involved in CSCs and EMT for Breast Cancer Genes (BRCA) 
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Figure 1. Biological significance of the breast cancer (BRCA)-altered gene expression
signatures. (A) Gene ontology (GO) analysis for downregulated genes and (B) GO analysis
for overexpressed/upregulated genes, respectively, using the Panther Gene ontology tool
(http://pantherdb.org). (C) A BRCA immune response functional interaction network based on
downregulated genes generated using STRING 11.0 software. (D) Overall survival rate for the
downregulated immune response BRCA signature (CXCL6, PTX3, CCL23, ACKR3, CXCL2, CXCL1,
KIT, and CXCL3) of genes with p ≤ 0.05 generated using GEPIA2. (E) A BRCA immune response and a
functional interaction network based on overexpressed genes. (F) Overall survival rate for a single
overexpressed (CXCL9) gene. (G) An overall survival rate for a 13-gene signature (CXCL6, PTX3,
CCL23, ACKR3, CXCL2, CXCL1, KIT, CXCL3, and CXCL9), and (H) a survival map for these selected 9
gene signatures.

2.3. Construction of a Gene Network Involved in CSCs and EMT for Breast Cancer Genes (BRCA)

CSCs and EMT are two key mechanisms involved in several solid tumors, including those for
breast cancer, and they are responsible for self-renewal, differentiation, and self-protection, as well as
contributing to drug resistance. When lists of specific transcripts for CSC and EMT are downloaded

http://pantherdb.org
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from NCBI and overlapped with the altered genes, a group of common downregulated and upregulated
genes is identified.

Of downregulated genes, 23 genes display a common shared signature for both CSCs and EMT
gene lists (Figure 2A), and this is presented as a network (Figure 2B). Of these, only ALDH1A1
and SFRP1 are statistically significant, and are correlated with the overall survival rate (Figure 2C).
Moreover, of CSC-specific genes, 38 genes are found in common, but only three genes (CXCL1,
COL17A1, and KIT) are correlated with the overall survival rate (Figure 2D). In addition, from a
panel of 48 EMT-associated genes, only eight genes (BMP5, CXCL14, CRB2, FGF9, NTRK2, MGAT3,
TP63, and WNT11) are correlated with the overall survival rate, and these are displayed in Figure 2E.
In Figure 2F, the overall survival of the 13-gene signature (ALDH1A1, SFRP1, CXCL1, COL17A1,
KIT, BMP5, CXCL14, CRB2, FGF9, NTRK2, MGAT3, TP63, and WNT11) is presented; meanwhile,
in Figure 2G, a graphical representation of same gene signature as the survival map is presented.Cancers 2020, 12, x  7 of 21 
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Figure 2. Common cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) of a
downregulated gene expression signature in BRCA. (A) A Venn diagram presenting downregulated
genes for CSCs and EMT in BRCA (downloaded from NCBI), as well as common signature genes
for both CSC and EMT gene lists; bold-lettered genes predict the overall survival. (B) An interaction
network using String software for a 23-common gene signature involved in both CSC and EMT
mechanisms; red-circled genes predict the overall survival outcomes. (C) BRCA-altered genes involved
in both CSCs and EMT (ALDH1A1 and SFRP1) predicting the overall survival. (D) BRCA-altered
genes involved only in CSCs (CXCL1, COL17A1, and KIT). (E) BRCA-altered genes involved only
in EMT (BMP5, CXCL14, CRB2, FGF9, NTRK2, MGAT3, TP63, and WNT11) predicting the overall
survival. (F) Overall survival rate of a 13-gene signature (ALDH1A1, SFRP1, CXCL1, COL17A1, KIT,
BMP5, CXCL14, CRB2, FGF9, NTRK2, MGAT3, TP63, and WNT11). (G) A survival map of the selected
13-gene signature.

Of the upregulated genes, 11 genes (MMP9, BIRC5, EZH2, FOXM1, AURKA, HOTAIR, GATA3,
POSTN, EPCAM, FOXA1, and IQGAP3) display a common shared signature for both CSCs and EMT
gene lists (Figure 3A), but none are correlated with the overall survival rate (Figure 3B). Moreover, of the
24 genes associated with EMT (Figure 3C), only five genes (ESRP, GRLHL2, LEF1, SDC1, and PTK6) are
correlated with the overall survival rate (Figure 3D); whereas, of CSC-associated genes, only PLK1 and
ASCL2 are statistically significant. In Figure 3D, the overall survival of the seven-gene signature (ESRP1,
GRHL2, LEF1, SDC1, PTK6, PLK1, and ASCL2) is presented; meanwhile, in Figure 3E, a heatmap
representation for the same gene signature is presented.

2.4. Construction of a miRNA Network Involved in both CSCs and EMT

For downregulated miRNAs, it was observed that miR-139 was common in both CSC and
EMT transcript lists (Figure 4A). Moreover, three miRNAs (miR-204, miR-205, and miR-224) were
specific for EMT, while seven miRNAs (miR-1, miR-99a, miR-100, miR-125b, miR-145, miR-452,
and miR-483) were specific for CSCs (Figure 4A). Except for miR-452, all common transcripts were
correlated with the overall survival rate (Figure 4B). Using miRTargetLink, miRNAs were identified
that are most relevant to the target genes (Figure 4C,D), but only 11 miRNAs (TAF1D, CRK, SRGAP1,
RANGAP1, KDELR1, PRKG2, SEC63, DHX33, OSBPL10, CXCL3, and IGF1R) were found to be capable
of predicting the overall survival (Figure 4D). The overall survival rate of a seven-gene signature
(TAF1D, IGF1R, CXCL3, MRE11A, THY1, SRGAP1, and CRK), along with a survival map of the
seven-gene signature, are presented in Figure 4E,F. For upregulated miRNAs, it was observed that
there were four common transcripts (miR-21, miR-200a, miR-200b, and miR-200c) between the CSC
and EMT transcript lists, and of these, only three miRNAs (miR-21, miR-200a, and miR-200c) were
correlated with the overall survival (Figure 5A,B). Moreover, it was observed that there were two
miRNAs that were specific for EMT, but only a single miRNA, miR-96, that predicted the overall
survival (Figure 5A,B). In addition, there were two miRNAs that were specific for CSCs but only
a single miRNA, miR-142, that predicted the overall survival (Figure 5A,B). Using miRTargetLink,
miRNAs were identified that were the most relevant to the target genes (Figure 5C,D), but only six
(SLC25A13, RBM27, ELMO2, ATRX, CCNE2, and ZMAT3) were capable of predicting the overall
survival in BRCA (Figure 5D). Furthermore, the overall survival rate of a six-gene signature (SLC25A13,
RBM27, ELMO2, ATRX, CCNE2, and ZMAT3), along with the graphical representation and survival
map of the selected six-gene signature, are presented in Figure 5E,F.
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Figure 3. A common CSC and EMT upregulated (overexpressed) gene expression signature in BRCA.
(A) A Venn diagram presenting altered upregulated genes of CSCs and EMT in BRCA (downloaded
from NCBI), as well as a common signature among CSC and EMT gene lists; bold-lettered genes predict
the overall survival. (B) BRCA-altered genes involved only in CSCs (PLK1 and ASCL2) predicting
the overall survival. (C) BRCA-altered genes involved only in EMT (ESRP1, GRHL2, LEF1, SDC1,
and PTK6) predicting the overall survival. (D) Overall survival rate of a seven-gene signature (ESRP1,
GRHL2, LEF1, SDC1, PTK6, PLK1, and ASCL2). (E) A survival map of the selected seven-gene signature.
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Figure 4. A common CSC and EMT downregulated miRNA expression signature in BRCA. (A) A Venn
diagram of the downregulated genes of CSCs and EMTs in BRCA (downloaded from NCBI), as well
as a signature of common miRNAs for both CSC and EMT transcript lists; bold-lettered genes
predict the overall survival. (B) miRNAs capable of predicting the overall survival (miR-1, miR-100,
miR-125b, miR-139, miR-145, miR-205, miR-224, miR-483, and miR-99b). (C) An interaction network
using miRTargetLink software (strong interaction) for miRNAs involved in both CSCs and EMT and
correlated with the overall survival. (D) An overall survival analysis for genes targeted by miRNA
and correlated with the survival rate (TAF1D, IGF1R, CXCL3, MRE11A, THY1, SRGAP1, and CRK).
(E) Overall survival rate of a seven-gene signature (TAF1D, IGF1R, CXCL3, MRE11A, THY1, SRGAP1,
and CRK). (F) A survival map of the seven-gene signature.
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Figure 5. A common CSC and EMT overexpressed miRNA expression signature in BRCA. (A) A Venn
diagram of the downregulated miRNAs of CSCs and EMT in BRCA (downloaded from NCBI), as well
as a common signature among these CSC and EMT transcript lists; bold-lettered genes predict the
overall survival. (B) Those miRNAs capable of predicting the overall survival (miR-21, miR-96, miR-142,
miR-200a, and miR-200c). (C) An interaction network using miRTargetLink software (strong interaction)
for miRNAs involved in CSCs and EMT and correlated with the overall survival. (D) Overall survival
analysis of genes targeted by miRNA and correlated with the survival rate (SLC25A13, RBM27, ELMO2,
ATRX, CCNE2, and ZMAT3). (E) Overall survival rate of a six-gene signature (SLC25A13, RBM27,
ELMO2, ATRX, CCNE2, and ZMAT3). (F) A survival map of the selected six-gene signature.

2.5. Validation of Altered Transcriptomic Patterns by Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR)

In order to further validate the observed gene and miRNA expression changes, qRT-PCR was
conducted for KIT and LIF genes, wherein B2M and GAPDH genes were used as endogenous controls
for normalization of the qRT-PCR data. Validation of these genes and miRNA transcripts were
conducted using 30 tissue samples collected from the early stages of breast cancer, as well as of matched
pairs of 30 samples of distant normal tissues. A gene expression analysis revealed that KIT levels were
significantly lower, while those of LIF were significantly higher (overexpressed), in tumor tissues,
compared to those of normal tissues (Figure 6). For miRNA analysis, both miR-125b and miR-224-5p
levels were lower, while those for both miR-21-5p and miR-200c-3p were higher in tumor tissues versus
normal tissues (Figure 6).

These qRT-PCR results further validate our earlier gene and miRNA expression profiles.
Furthermore, these findings suggest that, in the early stages of breast cancer, these genes and
miRNAs are useful as biomarkers and as therapeutic targets.
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Figure 6. Gene and miRNA expression alterations in breast cancer. (A) Scatter plots demonstrating the
downregulation of KIT and upregulation of LIF in tumor tissues versus normal tissues. (B) Scatter plots
showing the downregulation of miR-125b and miR-224-5p, as well as the upregulation of miR-21-5p
and miR-200c-3p in tumor tissues versus normal tissues. For normalization of the gene expression data,
B2M and GAPDH were used as the internal controls, whereas, for miRNA data, U6 and RNU48 were
used as the internal controls, based on the ∆∆Ct method (* p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001).

3. Discussion

Despite recent advances and significant progress made in cancer treatment, acquired resistance to
chemotherapeutics remains a major barrier to effectively treat patients, affecting the overall medical
outcome. Therefore, exploring major determinants of the breast cancer biology would be helpful for
improving diagnosis and treatment of breast cancer, and will also allow for identification of novel
therapeutic targets. As there are several molecular pathways exploited by breast cancer cells with EMT,
along with those residing in a stem-like state [22], these mechanisms were also confirmed in our study.
In particular, it was observed that CSCs are closely related to EMT, and that EMT is likely to be critical in
tumor invasion and metastasis [17,23]. Furthermore, CSCs are responsible for tumorigenesis-associated
processes, as these cells display increased resistance to therapy, even promoting tumors post-treatment
relapse [17]. Thus, identification of transcriptional markers for these two pathways in order to
understand resistance towards some of the most prevalently used therapies for treatment of breast
cancer will greatly benefit breast cancer patients. In addition, this will allow for identification of novel
targeted therapies, and also for prognostic markers for disease recurrence. In this study, the overall
findings confirm the critical roles of key EMT and CSC genes in breast cancer patient prognostics.

It is known that cytokines, chemokines, and inflammatory mediators released by tumor
microenvironment components influence proliferation, tumorigenic transformation, and/or apoptosis
of CSCs by various signaling pathways [20]. It was demonstrated that cytokines and chemokines
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are overexpressed in aggressive BRCA tumors, and CXCL2, CXCL3, CXCL5, CXCL6, and CXCL8
chemokines are present at higher levels in metastatic cases [24]. Mechanistic analyses revealed that the
CXCL16/CXCR6 chemokine axis is responsible for regulation of the invasiveness and metastasis of
BRCA via activation of the ERK1/2 signaling pathway [25]. It was observed that PARP inhibitors related
with ERK inhibition reduce the expression level of proangiogenic factors like the case of vascular
endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) [26], supporting the utility of
CXCL16/CXCR6 not only as biomarker but, also, as a therapeutic target.

A panel of five genes (CXCL12, IGF1, LEF1, MMP1, and RACGAP1) was proposed as biomarkers
for prognosis through the survival analysis of BRCA [27]. MMPs are rather considered as target genes
of EMT pathways and MMP expression as a late event of the EMT, being interconnected with key
transcription factors, such as Snail, ETS, and β-catenin [28,29].

In another study, a signature of four immune-related genes (APOD, CXCL14, IL33, and LIFR)
was correlated with breast cancer prognosis [30]. In our study, it was revealed that these EMT
markers are also associated with overall survival rates. Furthermore, an atypical chemokine receptor 3
(ACKR3) is proposed as a therapeutic target [31], as it is directly related to CXCR4 and CXCL12 [31],
thereby promoting cellular migration and activation of the ERK and Akt pathways [31]. It has
been observed that Notch signaling regulates the expression of SEMA3C, CXCL14, CCL20, CXCR7,
and HMGA2, and these are proposed as markers for prometastatic processes [32]. In a recent study,
it was reported that PTX3, SNAI2, IL-8/6, SPARC, MMP-1, and Rab25 are key therapeutic targets in
metastatic breast cancer [33]. PTX3, a key/critical element for PI3K-induced stem cell-like traits and for
EMT, is associated with poor survival rates via PI3K [34,35]. This observation was further confirmed
by the findings obtained in our study.

It is known that CSCs efficiently express ATP-binding cassette (ABC) transporters, deemed as
multidrug resistance proteins, and are capable of protecting cells from drug damage, and they are
also involved in inducing drug resistance [23,36]. Aldehyde dehydrogenase (ALDH), a marker for
CSCs and EMT, is recognized as having a capability in eliminating oxidative stress, and in increasing
resistance to chemotherapeutic drugs [37]. In our study, it is observed that the aldehyde dehydrogenase
family 1 member A1 (ALDH1A1) is correlated with overall survival in BRCA. Previously, it is reported
that overexpression of ALDH1A1, an isozyme linked to CSCs and EMT, is related to different poor
prognostic outcomes [38–40]. Furthermore, a secreted frizzled-related protein 1 (SFRP1) is known to be
responsible for hyperplasia [41], and thus, lack of SFRP1 is accompanied by both tumor development
and poor prognosis for breast cancer [41]. In our study, we found that both ALDH1A1 and SFRP1,
two commonly important genes for EMT and CSCs, are capable of predicting the overall survival rates
for breast cancer.

In this study, we identified yet another CSC marker; COL17A1, a novel TP53 target [42] and a
frequently mutating gene in breast cancer (Table S3), is known to be involved in the regulation of
both cell migration and invasion [42,43]. Moreover, additional markers identified include EGFR, AP-1,
p63, and TGF-β, as their pro-oncogenic functions regulate breast cancer invasiveness, and therefore,
these can be exploited as therapeutic targets in breast cancer [44]. The p53 family member p63 is a
transcriptional regulator of epithelial development and differentiation; moreover, p63 is also involved in
the transcriptional regulation of EGFR genes [44], frequently mutating genes in breast cancer (Table S3).
In addition, in this study, we identified TP63, an EMT gene, as a member of a 13-gene signature
for overall survival. TP63 isomorphs are reported to be related to different basal phenotypes [45].
Furthermore, it is known that TP63 regulation via PI3K/Akt and immune response markers promote
drug resistance in breast cancer [46].

It has been reported that TGF-β1 induced EMT via repression of BMP5 in breast cancer [47].
SDC1, another EMT marker identified in this study, can be used to assess the tumor prognosis [48],
including breast cancer, wherein increased expression levels of SDC1 are associated with the worst
prognosis [49]. This observation is confirmed by findings obtained in our study. Moreover, it has been
demonstrated in a previous study that SCD1 can also promote brain metastasis [50].
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In this study, lower levels of the expression of miR-96-5p in CSCs and EMT are observed.
Apparently, this is a common characteristic of many cancer types, including breast-related cancers.
MiR-96-5p targets and downregulates catenin delta 1 (CTNND1), leading to decreased expression
of β-catenin [51] and loss of WNT11 signaling, thus reducing the cyclin D1 levels and MMP7
expression [51].

Yet another transcript, miR-21, detected in the common signature of CSCs and EMT in our study,
is found to be correlated with the overall survival. It has been reported that miR-21 is generally
overexpressed in most solid tumors, and in breast cancer, this oncomiR is associated with lymph node
metastasis, clinical staging, and differentiation [52]. The utility of serum miR-21 has been intensively
investigated as a marker of colorectal cancer (CRC) diagnosis and progression [53]. In stage II CRC
patients, a high expression of miR-21 is associated with shorter PFS. It also represents a novel predictive
marker for the recurrence of stage II CRC [54]. In addition, miR-21 can influence the response to
chemotherapy, triggering an IL-6/STAT3/NF-κB-mediated signaling loop, along with activation of PI3K
signaling [55]. Moreover, the inhibition of miR-21 is correlated with the inhibition of cell migration
and invasion by blocking PI3K/AKT signaling pathways and reversing the EMT [56].

It has been reported that TP53 regulates EMT and CSCs by modulating miRNAs [57]. Therefore,
the observed loss of TP53 in our study leads to lower levels of miR-200c, thereby promoting expression
of EMT and CSCs markers [57]. In another study, it was reported that miR-200c, resulting from a
mutation in p53, can upregulate the Moesin oncogene, thereby promoting carcinogenesis [58]. In fact,
MiR-200c regulates EMT by inhibiting ZEB1 and ZEB2 expression in breast cancer cells [59], while it
regulates CSCs heterogeneity via targeting the HIPK1/β-Catenin axis [60].

Although various gene expression studies, along with additional information, have already been
previously conducted, there have not been any detailed analyses to identify gene and transcript
signatures that can be used for prognostics for overall survival. In this study, both common and
specific genes and transcripts of CSCs and EMT for BRCA were identified (Figure 7). Furthermore,
validation of early stage breast cancer confirms the critical role of common EMT and CSCs signatures
for a patient prognostic (Figure 7). These common signatures identified in this study will have
important roles as prognostics for overall survival. This is of particular importance for patients for
whom clinical parameters and traditional immunohistochemical markers would lead to an unequivocal
prognosis [61].
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Figure 7. Common and specific transcripts of EMT and CSCs related to the BRCA overall survival.
(A) A Venn diagram of EMT and CSC transcripts predicting the overall survival, and (B) a Circos
representation of transcripts predicting the overall survival rate involved in the immune response,
CSCs, and EMT.

4. Materials and Methods

4.1. Differential Gene and miRNA Expression Analysis for BRCA

Expression data have been retrieved from the TCOA, an important database for exploring TCGA
records. This resource does not require high-level bioinformatics expertise, thus allowing the user to
run different types of analyses. In the “Cancer” module, a user is allowed to select particular cancer
types, and TCOA will further output the top 50 most frequently mutated genes, both upregulated
and downregulated genes, as well as upregulated and downregulated miRNAs. All these values are
provided in association with selected pathologies and, also, compared to normal controls.

4.2. Network Analysis

In order to predict network interactions that will further help in either developing or discovery
of likely biomarkers for clinical diagnosis, or in highlighting novel therapeutic targets for BRCA,
the bioinformatic tool String version 11.0 (https://string-db.org) was used in this study. A gene
enrichment analysis was performed using PANTHER Gene Expression Analysis Tools, a software
providing distinct classifications of the molecular function, biological process, or pathway associations
of selected data [62].

4.3. Survival Analysis

For evaluations of both gene expression data and their correlations with breast cancer survival
rates based on TCGA and GTEx databases, a GEPIA online tool was used (http://gepia.cancer-pku.cn/).
A miRNA survival analysis for BRCA was evaluated using miRpower based on a sample dataset
of n = 1262 breast cancer patients (METABRIC) (http://kmplot.com/analysis/index.php?p=service&
default=true) [63]. Only those genes capable of predicting overall survival outcomes (p-value ≤ 0.05)
were presented.

https://string-db.org
http://gepia.cancer-pku.cn/
http://kmplot.com/analysis/index.php?p=service&default=true
http://kmplot.com/analysis/index.php?p=service&default=true


Cancers 2020, 12, 3053 16 of 20

4.4. Gene and miRNA Validation Using Early Stage Breast Cancer Tissue Samples

A total of 30 histologically confirmed breast cancer patients admitted at The Oncology Institute
“Prof. Dr. Ion Chiricuta” Cluj-Napoca, Romania during 2018–2020 were enrolled in this study.
The study was approved by the institutional ethical committees, and informed consent was collected
from all patients. The age of patients ranged between 33–76 years. All patients were staged according
to the American Joint Committee on Cancer (AJCC) guidelines. Expression of the estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) was
conducted using immunohistochemistry (IHC). Immediately following a modified radical mastectomy
or following an incision biopsy, all tissue samples were snap-frozen in liquid nitrogen for RNA isolation
and stored at−80 ◦C. Stages I and II patients were selected; most were ER- and PR-positive, as described
in Table 2.

Table 2. Clinical characteristics of breast patients included in this study (T: tumor, N: lymph nodes,
and M: metastasis). ER: estrogen receptor, PR: progesterone receptor, and HER2: human epidermal
growth factor receptor 2.

No. Age Diagnostic T N M Stage ER PR HER2/New

1 57 invasive ductal carcinomas 2 0 X IIB + + −

2 68 invasive ductal carcinomas 1C 1 X IIA + + −

3 42 invasive ductal carcinomas 1a 1a X I + + +

4 56 invasive ductal carcinomas 2 0 0 IIB + + −

5 70 invasive ductal carcinomas 2 0 0 IIa + + −

6 43 invasive ductal carcinomas 2 1 0 IIB + + +

7 73 invasive ductal carcinomas 2 0 0 IIA + + +

8 76 invasive ductal carcinomas 2 1 X IIB + + −

9 66 invasive ductal carcinomas 2 1 0 IIB + + −

10 67 invasive ductal carcinomas 2 0 0 IIA + + −

11 62 invasive ductal carcinomas 2 1 0 IIB − − +

12 33 invasive ductal carcinomas 1C 0 0 IA + + −

13 62 invasive ductal carcinomas 2 0 0 IIA + + −

14 67 invasive ductal carcinomas 1C 1 0 IIB + + −

15 39 invasive ductal carcinomas 2 0 X IIA + + +

16 53 invasive ductal carcinomas 1c 0 0 I + + −

17 59 invasive ductal carcinomas 2 0 0 IIA + + −

18 75 invasive ductal carcinomas 2 1 0 IIB + + −

19 64 invasive ductal carcinomas 4 1 0 IIIA + − −

20 41 invasive ductal carcinomas 1c 1a 0 IIA + + −

21 33 invasive ductal carcinomas 2 1 0 IIB + + +

22 73 invasive ductal carcinomas 1c 1 X IIB + + +

23 56 invasive ductal carcinomas 2 0 0 IB + + −

24 51 invasive ductal carcinomas 2 0 0 IB + + −

25 64 invasive ductal carcinomas 2 0 0 IB + + −

26 71 invasive ductal carcinomas 1c 0 0 IA + + +

27 53 invasive ductal carcinomas 2 0 0 IB + + +

28 38 invasive ductal carcinomas 1c 0 X IIB + + −

29 42 invasive ductal carcinomas 1c 1a X IA + + −

30 35 invasive ductal carcinomas 2 0 0 IC + + −
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Total RNA extraction was performed using TriReagent (Ambion, Austin, TX, USA), according to
manufacturer’s instructions. Then, total RNA quality and quantity were evaluated using a NanoDrop
2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA), and 1000 ng of total RNA was
reverse-transcribed into cDNA using a High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA, USA). Subsequently, gene expression levels were determined using a SYBR
Select Master Mix (Applied Biosystems), and RT-qPCR analysis was conducted using a ViiATM7 System.

In addition, 50 ng of total RNA was reverse-transcribed into cDNA using a TaqMan MicroRNA
Reverse Transcription kit (Applied Biosystems). This was followed by a miRNA expression analysis
using a TaqMan Fast Advanced Master Mix (Applied Biosystems). The relative quantification of the
expression levels was conducted using the 2−∆∆CT method.

5. Conclusions

In this study, alterations in gene expressions across CSCs and the EMT were identified, suggesting
the presence of cross-talk between these two processes. Furthermore, this study focused on common,
as well as specific gene and miRNA markers that are correlated with overall survival rates, and these
are summarized and presented in Figure 7. It is apparent that the EMT mechanism as regulated by
CSC stemness features are linked, thus revealing different therapeutic vulnerabilities, and clearing the
way for novel cancer treatments.

Overall, this study supports the utility of public databases to investigate molecular mechanisms
involved in BRCA. In particular, this study provided detailed knowledge of molecular mechanisms
associated with EMT and CSCs, and identified markers useful for survival outcome predictions.
This knowledge can also be useful in identifying novel cancer drugs and for pursuing associated
research studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/10/3053/s1:
Table S1. Altered gene expression signature in BRCA, Table S2. Altered miRNA signature in BRCA and Table S3.
Main mutation related to BRCA.
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