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Abstract: Malva pseudolavatera Webb & Berthel. is a plant from the Malvaceae family that has
long been included in the human diet due to its various curative effects. Many plant leaf extracts
from the various species of Malva genus have been reported to possess anti-cancer properties,
however, studies on M.pseudolavatera Webb & Berthel. leaves have documented anti-inflammatory
and anti-oxidant effects with no emphasis on their possible anti-cancer potential. The present study
explores the anti-cancer properties of Malva pseudolavatera Webb & Berthel. leaf extract on acute
myeloid leukemia (AML) cell lines in vitro and deciphers the underlying molecular mechanism.
Treatment of AML cell lines with M. pseudolavatera methanolic leaf extract showed a dose- and
time-dependent inhibition of proliferation and a dose-dependent increase in apoptotic hallmarks such
as an increase in phosphatidylserine on the outer membrane leaflet and membrane leakage in addition
to DNA fragmentation. The pro-apoptotic effect was induced by reactive oxygen species (ROS) as
well as an upregulation of cleaved poly(ADP-ribose) polymerase (PARP), increase in Bax/Bcl-2 ratio,
andrelease of cytochrome-c from the mitochondria. Major compounds of the extract included methyl
linolenate, phytol,γ-sitosterol, and stigmasterol as revealed by gas chromatography coupled with mass
spectrometry, and amino acids, amino acid derivatives, tiliroside, 13-hydroxyperoxyoctadecadienoic,
and quercitrin as detected by liquid chromatography coupled to mass spectrometry.

Keywords: Malva pseudolavatera Webb & Berthel.; apoptosis; acute myeloid leukemia; reactive
oxygen species

1. Introduction

Malva pseudolavatera Webb & Berthel. is an annual or biennial subshrub that grows in fields
and roadsides in coastal areas and low-altitude mountain regions [1]. Commonly known as “tree
mallow” in North America and “khubbaza” in the Middle East, it is a plant of the Malvaceae family [2].
Previously named Lavatera cretica (Malvaceae family), the species was transferred to the Malva genus
and is currently called M. pseudolavatera or Malva linnaei or Malva multiflora [3]. Malva pseudolavatera
Webb & Berthel. is the accepted name of the species as included on http://www.theplantlist.org [4].
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Apart from being used as food in some regions such as in Turkey, Spain, and Pakistan, leaves of
the Malva genus plants have been traditionally used in folk medicine all around the world to treat
a multitude of diseases, most commonly diarrhea, arthritis, inflammation, cough, and respiratory
infections [5]. Among the 50 species of Malva, M. pseudolavatera Webb & Berthel. is known for its
versatile uses [6]. In Spain, it is considered as a remedy for influenza, upper respiratory tract infections,
and cough [7], whereas in Portugal, it is used for its laxative, analgesic, and antiseptic effects [8].
In fact, studies showed that M. pseudolavatera Webb & Berthel. aqueous leaf extracts were able to
scavenge free radicals and inhibit lipoxygenase activity in vitro, indicating its potent antioxidant and
anti-inflammatory activities [9].

Malva species leaves have a lot of similarities in the overall morphology and anatomy, and only
differ in some characteristics such as the number of lobes, size of the blade, or margin dentation.
Leaves of many Malva species such as M. sylvestris and M. parviflora share a common basic chemical
composition as they all contain anthocyanins, flavonoids, essential oils, and tocopherols [10,11]. In fact,
many studies have shown the inhibitory effects of leaf extracts from Malva species on cancer cell
lines. The methanolic extract from M. sylvestris leaves exhibited a dose-dependent cytotoxicity on
melanoma and lymphoma cell lines in vitro [12]. Moreover, the ethanolic extract from M. parviflora
leaves showed mild cytotoxicity against the MCF-7 human breast adenocarcinoma cell line [13].
Other studies have reported that the hexane and methanol extracts from M. parviflora leaves inhibited
the proliferation of HeLa cervical carcinoma cells, but the aqueous extract did not cause any inhibition
of cell proliferation [14]. However, no studies have examined the anti-cancer potential of extracts from
M. pseudolavatera Webb & Berthel. leaves.

Acute myeloid leukemia (AML) is a type of cancer that starts in the bone marrow and quickly
moves undifferentiated myeloblasts into the blood [15]. It is an aggressive malignancy with incidence
levels still on the rise in several countries including Canada, UK, and Australia [16]. Chemotherapy is
the main treatment for AML [17] and plants have long been used as important sources for novel
chemotherapeutic drug characterization [18,19].

In the present study, we investigated the potential anti-cancer properties of M. pseudolavatera Webb
& Berthel. methanolic leaf extract (MMLE) on AML cell lines in vitro and deciphered the underlying
molecular mechanism.

2. Materials and Methods

2.1. Cell Culture

Acute myeloid leukemia cell lines, namely Mono-Mac-1, U937, and KG-1 (American Type Culture
Collection), were cultured in Roswell Park Memorial Institute medium (RPMI, Sigma-Aldrich, St. Louis,
MO, USA)supplemented with 10% fetal bovine serum (FBS) (GibcoTM, Dublin, Ireland) and 100 U/mL
penicillin and 100 µg/mL streptomycin (Lonza, Basel, Switzerland) in a humidified incubator at 5%
CO2 at 37 ◦C. Trypan blue exclusion method was used to count the cells before experimentation.

2.2. Isolation and Culture of Mesenchymal Stem Cells (MSCs) from Rat Bone Marrow

A single, 12-week-old rat was provided by the animal facility at the Lebanese American University.
The animal was maintained under optimal laboratory conditions and received food and water ad
libidum. All experiments were approved by the university’s Animal Care and Use Committee (ACUC)
and complied with the Guide for the Care and Use of Laboratory Animals (Committee for the Update
of the Guide for the Care and Use of Laboratory Animals, 2010) [20,21]. MSCs were isolated from rat
bone marrow according to a modified procedure. Briefly, the rat was sacrificed by CO2 asphyxiation
and both hind legs were aseptically removed. Femoral and tibial bones were then isolated and washed
with 70% ethanol and placed in sterile phosphate buffered saline (PBS, Lonza) supplemented with
100 U/mL penicillin and 100 µg/mL streptomycin (Lonza). After removing the bone epiphyses with
sterilized scissors, the bone marrows were flushed out using a needle filled with Dulbecco’s modified
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Eagle medium (DMEM, Sigma-Aldrich) supplemented with 10% fetal bovine serum (GibcoTM) and
100 U/mL penicillin and 100 µg/mL streptomycin (Lonza). The cells collected were then incubated in
vented flasks at 37 ◦C with 5% CO2. After 5 days of daily medium change, MSCs were identified by
their spindle-shaped morphology as observed using the ZOE fluorescent cell imager (Bio-Rad, Irvine,
CA, USA) [22–24].

2.3. Isolation and Culture of Normal Mononuclear Cells (MNCs) from Human Bone Marrow (BM)

Normal mononuclear cells were offered by Dr. Marwan El-Sabban’s Lab at the American University
of Beirut (AUB) as a kind gift. The normal MNCs were obtained originally from bone marrow aspirate
leftovers of healthy patients attending AUB Medical center (AUB-MC). BM aspirates were centrifuged
on Ficoll/Hypaque (GE Healthcare Life Sciences, Uppsala, Sweden), a density gradient step to separate
MNCs from red blood cells and neutrophils. Then the buffy coat was aspirated and seeded in petri
dishes using Dulbecco’s modified Eagle’s medium (DMEM)-low glucose (Sigma-Aldrich, Saint Louis,
MO, USA) supplemented with 10% FBS (Gibco, Dublin, Ireland) and 100 U/mL penicillin and 100 µg/mL
streptomycin (Lonza, Basel, Switzerland) in a humidified incubator at 37 ◦C and 5% CO2. One week
later, the cells in suspension were collected as a purified MNC population and cultured in the same
conditions as detailed by Zibara et al. [25].

2.4. Plant Material

Malva pseudolavatera Webb & Berthel. leaves were collected from Batroun, Lebanon (34.2498◦ N,
35.6643◦ E. 20 m above sea level), during January 2018, and identified according to the indications
and characteristics described by Edgecombe [2], and then identified by Dr. Nisrine Machaka-Houri,
plant researcher and expert on Lebanese flora [26]. A voucher specimen was deposited in the Beirut
Arab University Herbarium (ID-RCED2019-361).

2.5. Preparation of Crude Leaf Extract (MMLE)

Leaves were washed with distilled water, stored between paper towel sheets at 4 ◦C for 2 weeks
to dry out, then ground and left to shake in absolute methanol at 200 rpm for 1 week. The extract was
later filtered through a cheesecloth and centrifuged at 15,000 rpm to discard the pellet. Methanol was
evaporated using a rotary evaporator. The methanolic crude extract was weighed, then dissolved in
dimethyl sulfoxide (DMSO) and diluted with RPMI to a final concentration of 9 mg/mL. When applied
on the cell lines, the DMSO level maximally reached 0.8% at 360 µg/mL for KG-1 and Monomac-1 and
1% at 450 µg/mL for U937.

2.6. Cytotoxicity Assay

AML cells and MSCs were seeded in 96-well plates at a density of 0.5× 105 cells/well and incubated
overnight before treatment of triplicates of wells with increasing concentrations of M. pseudolavatera
Webb & Berthel. methanolic leaf extract (MMLE). After 24 or 48 h of incubation, WST-1 cell proliferation
reagent (Roche, Mannheim, Germany) was used to estimate cell viability according to the manufacturer’s
guidelines. Absorbance of each well was detected at 450 nm using a MultiskanTM FC microplate
photometer to quantify metabolically-active cells before calculating the percent proliferation relative to
the control untreated cells.

2.7. Cell Cycle Analysis

Monomac-1 cells were seeded in 6-well plates at a density of 1 × 105 cells/well and incubated
overnight before treatment with increasing concentrations of MMLE for 24 h. Cells were then fixed
overnight with ethanol, and the DNA was stained with propidium iodide (PI, Sigma-Aldrich) after the
enzymatic removal of RNA using RNase (Roche). DNA content was measured using an Accuri C6
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flow cytometer to determine the distribution of cells in each cell cycle phase: pre-G0/G1 phase cells
had <2n, G0/G1 phase cells had 2n, S phase cells had between 2n and 4n, and G2/M phase cells had 4n.

2.8. Apoptosis Detection Using Fluorescent Annexin V Staining

Monomac-1 and KG-1 cells were seeded in 24-well plates at a density of 1 × 105 cells/well and
incubated overnight before treatment with increasing concentrations of the MMLE for 24 h. Cells were
then stained with annexin V-FITC (Abcam, Cambridge, UK)and visualized with the ZOE fluorescent
cell imager under bright-field conditions then the filter was set for FITC before merging the images.

2.9. Apoptosis Quantification by Dual Annexin V/PI Staining

Monomac-1 cells were seeded in 6-well plates at a density of 2 × 105 cells/well and incubated
overnight before incubation with increasing concentrations of the MMLE for 24 h. Cells were then
stained with annexin V-FITC and PI (Abcam) according to the manufacturer’s instructions and analyzed
by the Accuri C6 flow cytometer. Annexin V binds to phosphatidylserine molecules translocated to
the outer layer of the cell membrane upon apoptosis induction. PI reaches the cellular DNA in cells
that have lost the cellular membrane integrity, so it stains late apoptotic and necrotic cells but not
viable and early apoptotic cells. This allowed for the discrimination between viable, early apoptotic,
late apoptotic, and necrotic cells.

2.10. Cell Death ELISA

Monomac-1 and KG-1 cells were seeded in 24-well plates at a density of 2 × 105 cells/well
and incubated overnight before treatment of duplicates of wells with increasing concentrations of
MMLE. Treatment with the chemotherapeutic drug, etoposide (Abcam) at a concentration of 100 µM
(58.85 µg/mL) was used as positive control. After 24 h, cells were collected and lysed in incubation
buffer before quantification of fragmented cytosolic histone-associated-DNA content using the Cell
Death ELISA kit according the manufacturer’s instructions (Roche). Extracted DNA was then incubated
in wells coated with biotin-associated anti-histone antibodies, followed by incubation with anti-DNA
antibodies linked to peroxidase enzyme, then washed with washing buffer before the addition of the
peroxidase substrate. Absorbance at 405 nm was measured by spectrophotometry using a MultiskanTM

FC microplate photometer and the DNA fragmentation enrichment factor (absorbance of treated
cells/absorbance of non-treated cells) was calculated as the ratio of absorbance in the treated samples
to that of the untreated controls.

2.11. Western Blot

Monomac-1 cells were plated in 6-well plates at a density of 5 × 105 cells/mL before treatment
with two increasing concentrations of MMLE for 24 h. The concentrations used were the closest to the
IC50. Total proteins were extracted using the Qproteome mammalian protein prep kit (Qiagen, Hilden,
Germany) and quantified using the Lowry method. Proteins were then separated by SDS-PAGE
(10%) and transferred to PVDF membranes that were blocked with 5% skimmed milk, then incubated
with primary antibodies: anti-β-actin (Santa Cruz Biotechnology, Dallas, Tx, USA), anti-cytochrome-c
and anti-cleaved poly(ADP-ribose) polymerase (PARP) (Abcam), anti-Bax and anti-Bcl2 (Elabscience,
Houston, TX, USA). β-actin was used as a loading control. Membranes were then washed and
incubated with a secondary antibody (Bio-Rad, Irvine, CA, USA) followed by exposure for image
development using Clarity™ Western ECL substrate (Abcam) on a ChemiDoc machine (Bio-Rad).
Quantification using the ImageJ program allowed us to calculate the relative expression of proteins,
as compared to the loading control.
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2.12. Reactive Oxygen Species Detection

Using the DCFDA cellular ROS detection assay kit (Abcam), levels of ROS were quantified
in Monomac-1 and KG-1 cells treated with increasing concentrations of MMLE. Tert-butyl
hydrogen peroxide (TBHP) is a potent ROS inducer and was used as a positive control. DCFDA
(2′,7′-dichlorodihydrofluorescein diacetate) oxidative conversion to H2DCFDA upon ROS reduction
was quantified by spectrofluorometry on the Varioskan™ LUX multimode microplate reader (Thermo
Fisher Scientific, Bremen, Germany).

2.13. Gas ChromatographyMass Spectrometry Analysis of the Methanolic Extract of M. Pseudolavatera Webb &
Berthel. Leaves

MMLE composition was analyzed using gas chromatography coupled with mass spectrometry
(GC-MS). The carrier gas used was helium with splitless injection and a flow rate of 1.2 mL/min was
applied. A temperature program consisted of 2 min at 70 ◦C, from 70 ◦C to 130 ◦C at 8 ◦C/min and hold
for 5 min, from 130 ◦C to 180 ◦C at 2 ◦C/min and hold for 10 min, from 180 ◦C to 220 ◦C at 15 ◦C/min
and hold for 2 min, and then from 220 ◦C to 280 ◦C at 15 ◦C/min and hold for 22 min. Preliminary
identification of the various compounds was performed by comparing their mass spectra with the
literature (NIST11 and Wiley9). Percentage composition was computed from GC peak areas.

2.14. Liquid ChromatographyMass Spectrometry Analysis of the Methanolic Extract of M. Pseudolavatera
Webb & Berthel. Leaves

A 2.5 µg sample was injected into C18 Gravity-SB Nucleodur (300 Å, 1.8 µm, 2 × 100 mm,
Macherey-Nagel, Düren, Germany) using a Dionex Ultimate 3000 analytical RSLC system (Dionex,
Germering, Germany) coupled to a heated electrospray source HESI source (Thermo Fisher Scientific,
Bremen, Germany). The separation was performed with flow rate of 300 µl/min by applying a gradient
of solvent B from 3% to 50% within 35 min, followed by column washing and re-equilibration steps.
Solvent A was composed of water with 0.1% formic acid, while solvent B consisted of acetonitrile with
0.1% formic acid. Eluting compounds were analyzed on a QExactive HF-HT-Orbitrap-FT-MS benchtop
instrument (Thermo Fisher Scientific, Bremen, Germany). MS1 scan was performed with 60,000
resolution, AGC (automatic gain control) of 3e6 and maximum injection time of 200 ms. MS2 scan
was performed in Top10 mode with 2 m/z isolation window, AGC of 5e5, 15 000 resolution, maximum
injection time of 50 ms, and averaging 2 µscans. Higher-energy collisional dissociation (HCD) was
used as the fragmentation method with normalized collision energy of 28%. For compound analysis,
mzCloud and ChemSpider database for chemicals were used.

2.15. Statistical Analysis

All experiments were repeated three times (n=3). Statistical analyses were performed using
GraphPad Prism 8. The data was reported as mean ± SEM and the p-values were calculated by
t-tests or two-way ANOVA depending on the experiment. Significant differences were reported with *
indicating a p-value of 0.01 < p < 0.05, ** indicating a p-value of 0.001 < p < 0.01, *** indicating a p-value
of 0.0001 < p < 0.001, and **** indicating a p-value of p < 0.0001.

3. Results

3.1. M. pseudolavatera Leaf Extract Exhibits Selective Anti-Proliferative Effects on AML Cell Lines

In order to detect the percent proliferation of AML cell lines, MSCs, and MNCs treated with
MMLE, WST-1 cell proliferation reagent was used. A dose-dependent and time-dependent significant
decrease in proliferation of the three AML cell lines, Monomac-1, KG-1, and U937 was observed with
an IC50 of 200 µg/mL and 86.80 µg/mL for Monomac-1 (Figure 1A), 207.9 µg/mL and 89.47 µg/mL for
KG-1 (Figure 1B), and 402 µg/mL and 229 µg/mL for U937 (Figure 1C) after 24 h and 48 h, respectively.
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The extract had no significant cytotoxic effect on MSCs and MNCs (Figure 1D,E). This indicates that
MMLE exhibits selective anti-proliferative effects on all AML cancer cell lines used.
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3.2. M. pseudolavatera Leaf Extract Induces Cellular Fragmentation in AML Cell Lines 

In order to elucidate the mechanism by which MMLE exerted its cytotoxic effect, PI staining was 
performed. To check for any cell cycle arrest and analyze the cell cycle distribution of Monomac-1 cells treated 

Figure 1. Proliferation of Monomac-1 (A), KG-1 (B), U937 (C), mesenchymal stem cells (MSCs) (D),
and normal mononuclear cells MNCs (E), after 24 h and 48 h of treatment with methanolic leaf extract
(MMLE). A significant dose- and time-dependent inhibition of proliferation of the three AML cell lines
was noticed with increasing concentrations of MMLE. Significant differences were reported with *
indicating a p-value: 0.01 < p < 0.05, ** indicating a p-value: 0.001 < p < 0.01 and *** indicating a p-value:
0.0001 < p < 0.001.

3.2. M. pseudolavatera Leaf Extract Induces Cellular Fragmentation in AML Cell Lines

In order to elucidate the mechanism by which MMLE exerted its cytotoxic effect, PI staining was
performed. To check for any cell cycle arrest and analyze the cell cycle distribution of Monomac-1
cells treated with MMLE, DNA content was quantified by PI staining followed by cytometric analysis.
A dose-dependent increase in cellular fragmentation was detected as the cells gradually shifted
from the G0/G1, S, and G2/M stages to the pre-G0/G1 stage where cells are fragmented and contain
DNA <2n. In fact, the proportion of Monomac-1 cells in the pre-G0/G1 stage increased significantly
from 8.05% in the untreated cells to 74.9% in cells treated with 270 µg/mL (after IC50) (Figure 2).
This shows that MMLE does not induce a cell cycle arrest, but rather activates a mechanism leading to
cellular fragmentation.
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Figure 2. Cell cycle analysis of Monomac-1 treated with MMLE for 24 h (A). The percentage of the cells
in different phases of cell cycle was determined by C Flow software (B) A significant increase in the
pre-G and a decrease in G0/G1, S, and G2/M in a dose-dependent manner was obtained and indicated
an increase in DNA fragmentation in Monomac-1 cells upon MMLE treatment.

3.3. M. pseudolavatera Leaf Extract Significantly Induces Apoptosis in AML Cell Lines

To explore whether cell death is induced by apoptosis, annexin V staining was followed by
fluorescence microscopy. Upon treatment with increasing concentrations of MMLE, a marked increase
in annexin binding on Monomac-1 cells was observed, indicating a shift of phosphatidylserine from
the inner leaflet to the outer leaflet of the cell membrane, a major apoptotic event (Figure 3A).
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Figure 3. Annexin V (A) and annexin V/PI staining (B,C) of Monomac-1 cells treated for 24 h with
increasing concentrations of MMLE. A significant increase in positively stained cells was observed upon
24 h treatment with increasing concentrations of MMLE (A). A decrease in annexin-negative/PI-negative
stained cells and an increase in annexin-positive/PI-negative, annexin-positive/PI-positive, and
annexin-negative/PI-positive stained cells were noted in Monomac-1 treated with 90, 180, and 270 µg/mL
for 24 h.

To quantitatively assess the induction of apoptosis, flow cytometry analysis was carried out after
annexin V/PI staining and cells were distributed into four quadrants where the lower left quadrant
represents normal healthy cells, negatively staining for both annexin V and PI. The lower right quadrant
represents early apoptotic cells which stain positively only for annexin V. The upper right quadrant
represents the late apoptotic cells, staining positively for both annexin V and PI. The upper left quadrant
represents necrotic cells which stain positively for PI only. After 24 h of treatment with increasing
concentrations of MMLE, a decrease in Monomac-1 healthy cells from 84.3% in the control group to
18.2% at 270 µg/mL was coupled to a significant increase in early apoptotic cells from 17.8% in the
control to 44.9% when treated with 270 µg/mL MMLE. A significant increase in late apoptotic cells
from 4.5% to 27.7% was also observed upon treatment (Figure 3B,C). This shows that apoptosis is the
likely mechanism by which MMLE inhibits the proliferation of AML cell lines.

To validate apoptosis induction, DNA fragmentation was quantified by Cell Death ELISA
kit. A 5.0-fold and 12.8-fold significant increase in DNA fragmentation was observed upon 24 h
treatment of Monomac-1 with 180 µg/mL and 270 µg/mL, respectively (Figure 4A), which correspond
to concentrations below and above the IC50. A similar pattern of DNA fragmentation was noted in
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KG-1 cells with a 1.7-fold and 2.5-fold increase after 24 h treatment with 135 µg/mL and 270 µg/mL
respectively (Figure 4B). The increase of the dual stain fluorescence using annexin V/PI dual staining
and DNA fragmentation confirms that MMLE induces apoptosis in Monomac-1 and KG-1 cell lines in
a dose-dependent manner.
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Figure 4. Cell Death ELISA on Monomac-1 (A) and KG-1 cells (B) treated with increasing concentrations
of MMLE and a positive control treated with etoposide for 24 h. A significant dose-dependent increase in
the enrichment factor was observed in both Monomac-1 and KG-1 cells when treated with concentrations
before and after IC50. Significance relative to the control was reported with * indicating a p-value:
0.01 < p < 0.05 and *** indicating a p-value: 0.0001 < p < 0.001.

3.4. M. pseudolavatera Leaf Extract Causes Upregulation of Pro-Apoptotic Proteins

Western blot analysis was then performed to determine the apoptotic signaling pathway induced
by MMLE on Monomac-1 cell line treated with 2 different concentrations, before and after the IC50,
for 24 h. Upon treatment of Monomac-1 cells with 270 µg/mL of MMLE, an upregulation of cleaved
PARP (c-PARP) was observed (Figure 5). This treatment also induced a downregulation of the
anti-apoptotic protein Bcl-2, coupled to an upregulation of the pro-apoptotic protein Bax indicating
an increase in the Bax/Bcl-2 ratio (Figure 5) leading to apoptosis. This was further confirmed by the
observed dose-dependent upregulation of cytochrome-c upon treatment of Monomac-1 with MMLE
(Figure 5).
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Figure 5. Western blot analysis and quantification of expression levels of apoptosis-regulating proteins
in Monomac-1 cells treated with MMLE for 24 h. Significant upregulation of pro-apoptotic proteins
such as cleaved poly(ADP-ribose) polymerase (PARP), Bax, and cytochrome-c and downregulation
of anti-apoptotic proteins such as Bcl-2 were observed upon treatment of Monomac-1 cells with 180
µg/mL and 270 µg/mL. Significance relative to the control was reported with * indicating a p-value: 0.01
< p < 0.05, ** indicating a p-value: 0.001 < p < 0.01, and *** indicating a p-value: 0.0001 < p < 0.001.
Detailed information of western blot can be found at Figure S1.

3.5. M. pseudolavatera Leaf Extract Induces Oxidative Stress in AML Cell Lines

Reactive oxygen species levels (ROS) in Monomac-1 and KG-1 treated with increasing
concentrations of MMLE were quantified using the DCFDA Cellular ROS Detection Assay kit.
The recorded ROS levels showed a significant upregulation reaching 1.608-fold increase and 1.351-fold
increase at 360 µg/mL for Monomac-1 and KG-1, respectively (Figure 6). This indicates that the extract
is inducing oxidative stress by production of excess ROS in AML cell lines.
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Figure 6. Fold change of ROS in Monomac-1 (A) and KG-1 cells (B) treated with increasing concentrations
of MMLE and a positive control treated with 20 µM of TBHP. ROS levels increased significantly with
increasing concentration of MMLE for both Monomac-1 (A) and KG-1 cells (B). Significance relative to
the negative control was reported with * indicating a p-value: 0.01 < p < 0.05, ** indicating a p-value:
0.001 < p < 0.01, and *** indicating a p-value: 0.0001 < p < 0.001.

3.6. Chemical Elucidation of M. pseudolavatera Leaf Extract Using GC-MS

The chemical composition of the extract was assessed using gas chromatography coupled
to mass spectrometry (GC-MS) (Figure 7). Table 1 shows the major and minor constituents of
the extract, some of which have been identified. The major compound (Peak 5: 31.7912%) was
(Z,Z,Z)-9,12,15-octadecatrienoic acid methyl ester and another omega-3 fatty acid ester that os
hexadecatrienoic acid was identified Peaks 7,10,13: (0.0463%). The second most abundant compound
was phytol (Peak 6: 19.3447%). γ-sitosterol also constituted an important portion of the extract (Peak
25: 13.2396%) along with stigmasterol (Peak 24: 5.3751%).
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Figure 7. Chromatogram of M. pseudolavatera Webb & Berthel. methanolic leaf extract elucidated by
GC-MS. Analysis of the different peaks obtained at different retention times with varying areas under
the peak showed the presence of many compounds in different amounts.

Table 1. Table showing the composition of the M. pseudolavatera Webb & Berthel. methanolic leaf
extract as elucidated by GC-MS.

Peak RT Compound %MMLE

1 5.751 Unidentified A 0.2141

2 28.7101 Hexadecanoic acid methyl ester 3.4385

3 35.0314 Unidentified B 1.4208

4 35.9573 (E,E)-9,11-Octadecadienoic acid methyl ester 2.7188

5 36.3974 Methyl linolenate 31.7912

6 36.8717 Phytol 19.3447

7 37.3804 Octadecanoic acid methyl ester 1.3903

8 38.7407 Unidentified C 0.124

9 38.7864 7,10,13-Hexadecatrienoic acid methyl ester 0.0463

10 38.8093 Unidentified C 0.0408

11 51.7034 2,2′-methylenebis
[6-(1,1-dimethylethyl)-4-methyl-phenol 1.6741

12 53.607 Unidentified D 1.47

13 56.3158 Unidentified E 1.4302

14 56.4415 (Z,Z,Z)-9-(3-hexenylidenecyclopropylidene)-,
2-hydroxy-1-(hydroxymethyl)nonanoic acid, ethyl ester 8.0675

15 56.584 Unidentified F 1.5

16 57.4074 Unidentified G 0.2354

17 57.505 Unidentified H 0.3

18 57.8875 Cyclotetracosane 0.6203

19 58.322 Unidentified I 0.31

20 59.5393 α-Tocopherol 0.3324

21 60.168 Unidentified J 0.3748

22 60.2195 Unidentified K 0.9207

23 60.3509 3-β-Ergost-5-en-3-ol 1.5331

24 60.6538 Stigmasterol 5.3751

25 61.2311 γ-Sitosterol 13.2396

26 61.4254 3-methoxy-19-Norpregna-1,3,5(10)-trien-17-ol 1.2401

27 64.94 Unidentified L 0.39
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3.7. Chemical Elucidation of M. Pseudolavatera Leaf Extract Using LC-MS

The chemical composition of the extract was assessed using liquid chromatography coupled with
mass spectrometry (LC-MS). Table 2 shows the major identified constituents of the extract. The two
major compounds detected were the amino acids DL-phenylalanine and DL-tryptophan (RT = 2.609 min
and 5.583 min, respectively). Other important abundant compounds were tiliroside (RT = 23.857 min),
13-hydroperoxyoctadecadienoic acid (RT = 35.512 min), and quercitrin (RT = 18.598 min). Many other
compounds were identified as well.

Table 2. Table showing the composition of the M. pseudolavatera Webb & Berthel. methanolic leaf
extract as elucidated by liquid chromatography coupled with mass spectrometry (LC-MS).

RT Compound Area Max

2.609 DL-phenylalanine 1.21 × 106

5.583 DL-tryptophan 1.10 × 106

23.857 Tiliroside 4.25 × 105

10.893 5-[(6,7,8-trimethoxy-4-quinazolinyl)amino]pentyl nitrate 3.12 × 105

35.512 13-hydroperoxyoctadecadienoic acid 1.95 × 105

14.915 N-acetyl-L-phenylalanine 1.12 × 105

18.865 3-amino-2-pyrazinecarboxylate 1.04 × 105

18.598 quercitrin 7.35 × 104

13.603 N-(4-{methyl[(1-methyl-1H-pyrazol-4-yl)
methyl]sulfamoyl}phenyl)acetamide 7.21 × 104

26.441 Decyl hydrogen sulfate 6.97 × 104

14.775 Suberic acid 6.73 × 104

19.007 9-hydroxynonanoic acid 6.10 × 104

16.791 L-acetyltryptophan 5.12 × 104

14.082 5-(benzyloxy)-2-piperazinopyrimidine 5.05 × 104

4. Discussion

Natural products from plants have been widely considered an important source for identifying
drugs with anti-cancer properties since they are rich in bioactive components having multiple targets
with minimal side-effects [18,27]. In fact, of all pharmaceutical drugs present on the market, one-third
are plant-derived [28], and many chemotherapeutic drugs which have been isolated from plants
are now used as standard-of-care in cancer treatment regimens. In this study, the methanolic leaf
extract of M. pseudolavatera Webb & Berthel. was examined for its anti-proliferative and pro-apoptotic
effects on AML cell lines since leaves from other Malva species have shown cytotoxic effects on other
cancer types [12–14]. In a previous study by Solowey et al. (2014), the ethanolic extract from Urtica
membranacea showed potent anti-cancer effects at 750 µg/mL and 1500 µg/mL and these concentrations
showed to be therapeutically correlated to a mouse breast cancer model with no side-effects [29]. These
concentrations are higher than the concentrations of MMLE used to treat AML cells for 24 and 48 h.
For the rest of this study, all experiments were performed with 24 h incubation of the extract in order
to elucidate the mechanism of action of the extract in inhibiting cancer cell proliferation, although
therapeutic levels are best reached after 48 h of incubation.

Moreover, the inhibitory effect of MMLE on the proliferation of the AML cell lines was significantly
stronger than its effect on the growth of the MSCs and MNCs which exhibited resistance to the extract
with no significant toxicity. These results supported the promising effects of the extract in selectively
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targeting cancerous cells with minimal if any effects on normal healthy cells, which is a major advantage
of an effective chemotherapeutic drug exhibiting target selectivity [30].

An important mechanism by which chemotherapeutic drugs achieve their selective cytotoxicity is
by activating apoptosis or programmed cell death [31]. Many hallmarks of apoptosis were detected in
AML cell lines treated with MMLE among which were both membrane and nuclear changes typically
detected by flow cytometry and protein blots [32].

Another characteristic of apoptosis alongside DNA fragmentation and membrane moieties flipping
is the cleavage of poly(ADP-ribose) polymerase (PARP) [33]. PARP was previously reported to play an
important role in salvaging cells suffering from DNA damage because it is involved in DNA repair.
In fact, the cleaved fragment of PARP-1 binds to double strand breaks in the DNA preventing DNA
repair machinery from accessing the damage leading to apoptosis. So, upregulation of cleaved PARP
(c-PARP) in Monomac-1 treated with MMLE implies that DNA repair is no longer occurring, which
promotes cell death via apoptosis induction [34].

Bcl-2 and Bax are also involved in the control of cell survival by decreasing and increasing the
permeability of the outer mitochondrial membrane, respectively [35,36]. The reported increase in the
Bax/Bcl-2 ratio upon MMLE treatment confirms the increase in mitochondrial membrane permeability.
This promotes the release of cytochrome-c from the mitochondria, explaining its upregulation, which is
essential for the activation of caspases leading to apoptosis [37]. In fact, exploiting chemotherapeutic
effects on mitochondrial membrane leakage was shown to be effective in selectively triggering apoptosis
in cancer cells since metabolic reprogramming is an inherent step required for hyperproliferation of
cancer cells [38].

Another aspect of apoptotic cell death involves reactive oxygen species (ROS). Excess cellular ROS
levels cause oxidative stress which damages proteins, DNA, and cellular membranes and activates
death-receptor-mediated or mitochondrial apoptotic pathways [39]. However, a previous study
showed that aqueous extract from M. pseudolavatera Webb & Berthel. possesses antioxidant properties
by scavenging free radicals [9]. The differential effect of MMLE can be attributed to variation in its
concentration, implying its dose-dependent activity. In fact, in similar medicinal plants with anti-cancer
properties, extracts were shown to exhibit antioxidant activity at low concentration of the extract,
without achieving any cytotoxicity. At high concentrations, that same extract was shown to be cytotoxic
and induced ROS [40]. In MMLE, an antioxidant compound(s) may be present in high concentrations
and hence act to destroy the mitochondrial membrane and generate ROS. This mechanism was
described in green tea extract with the phenolic compound epigallocatechin gallate that can decrease
lipid peroxidation and enhance antioxidant capacity in hepatocytes at low concentrations and destroy
the mitochondrial membrane and generate intracellular oxidative stress at high concentrations [41].

The examination of the extract composition by GC-MS and LC-MS provided insight into some
of the potential compounds in MMLE responsible for its pro-apoptotic effects. Abundant identified
molecules included amino acids like-phenylalanine (Phe) and tryptophan (Trp) (detected by LC-MS)
as well as some of their acetylated derivatives. These two essential amino acids were not previously
shown to possess such activity. Omega-3 fatty acid esters (detected by GC-MS) and these two amino
acids (phe and trp) were previously shown to slow the growth of many types of cancers and increase
patient outcomes when included in a standard regimen of chemotherapy since they increase the
sensitivity of the cells to the conventional therapies. They also exhibit selective toxicity on cancer
cells of various types but not on normal cells [42,43]. This could explain the selective toxicity seen on
AML cell lines and not on MSCs and MNCs. Also, (13S)-hydroperoxyoctadecadienoic (13-HPODE)
detected by LC-MS, is a linoleic acid derivative previously shown to inhibit growth of a chronic myeloid
leukemia cell line K-562 [44]. In fact, the mechanism of action described was ROS-mediated and
caspase-dependent apoptosis which could explain the effects observed by MMLE on AML cell lines.

Phytol, another major compound detected by GC-MS, is a diterpene alcohol and it was previously
found to inhibit the growth of many cancer cell types, among which acute T-cell lymphoblastic
leukemia (Molt-4) cells in a dose- and time-dependent manner. The effects of phytol were attributed
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to apoptosis demonstrated by DNA fragmentation and formation of apoptotic bodies. In other
studies, phytol was found to have a synergistic effect with some used chemotherapeutic drugs
like β-caryophyllene, in addition to inducing apoptosis in epidermoid carcinoma cells (A431) and
immortalized keratinocytes (HaCaT cells) by ROS induction, activation of the apoptotic pathway
involving the release of cytochrome-c, the activation of the caspase pathway, cleavage of PARP, and an
increase in the Bax/Bcl-2 ratio [45,46]. These previously reported effects are consistent with the current
observed morphological and molecular changes in AML cell lines upon treatment with MMLE. Another
detected alcohol is quercitrin (by LC-MS). It is a plant-derived polyphenol found to enhance the
effect of topotecan in breast cancer cell lines [47,48]. It was also found to reduce the cytotoxicity and
genotoxicity of topotecan in bone marrow cells of mouse models in a dose-dependent manner [49].

Another important phytochemical detected by LC-MS is tiliroside. It is a glycosidic flavonoid
present in many edible plants [50]. It was found to be cytotoxic against human CML cell line K-562 [51]
and to inhibit cell proliferation and induce apoptosis via the extrinsic pathway in breast cancer cell
lines MCF-7 and T47D [52].

Phytosterols, particularly γ-sitosterol and stigmasterol, are also important constituents of the
extract (detected by GC-MS). γ-sitosterol was previously shown to be cytotoxic against colon and liver
cancer cell lines by downregulating c-myc and inducing apoptosis [53]. Moreover, stigmasterol was
formerly studied for activating apoptosis in hepatocellular carcinoma cell lines through upregulation of
the Bax protein and downregulation of the Bcl-2 protein [54]. In another study, stigmasterol inhibited
the proliferation of gastric cancer cell lines through a mitochondrial pathway [55], in accordance with
the effects MMLE exhibited on AML cell lines in this study.

All these findings suggest that MMLE contains many compounds which can potentially be acting
together as cancer growth inhibitors through inducing ROS and activating apoptosis in AML cell
lines. Many compounds detected by GC-MS and LC-MS were not previously known for their effects
on cancer cell lines and many other compounds were not identified. This should also be taken into
account when explaining the pro-apoptotic effect of MMLE on AML cells.

5. Conclusions

In conclusion, Malva pseudolavatera Webb & Berthel. methanolic leaf extract showed a promising
selective anti-proliferative and pro-apoptotic effect on acute myeloid leukemia cell lines, by cleaving
PARP, releasing cytochrome-c, and increasing the Bax/Bcl-2 ratio. Chemical analysis of the extract
showed that it is a ROS inducer and that it contains many compounds that are potentially anti-cancer
compounds. Future work aims at exploring the effect of the extract on other types of cancer cells,
fractionating the extract to identify the compounds with highest biological therapeutic activity and
confirming the efficacy of the extract in vivo.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/2/435/s1,
Figure S1: Western blot analysis and quantification of expression levels of apoptosis-regulating proteins in
Monomac-1 cells treated with MMLE for 24 h.
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