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Abstract: Demethoxycurcumin (DMC) is an curcumin analogue with better stability and
higher aqueous solubility than curcumin after oral ingestion and has the potential to treat
diverse cancers, including oral squamous cell carcinoma (OSCC). The aim of this study was to
investigate the anticancer effects and underlying mechanisms of DMC against OSCC. We found
that DMC suppressed cell proliferation via simultaneously inducing G2/M-phase arrest and
cell apoptosis. Mechanistic investigations found that the downregulation of cellular IAP 1
(cIAP1)/X-chromosome-linked IAP (XIAP) and upregulation of heme oxygenase-1 (HO-1) were
critical for DMC-induced caspase-8/-9/-3 activation and apoptotic cell death. Moreover, p38
mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK)1/2 were activated
by DMC treatment in OSCC cells, and only the inhibition of p38 MAPK significantly abolished
DMC-induced HO-1 expression and caspase-8/-9/-3 activation. The analyses of clinical datasets
revealed that patients with head and neck cancers expressing high HO-1 and low cIAP1 had the most
favorable prognoses. Furthermore, an combinatorial treatment of DMC with epidermal growth factor
receptor (EGFR) tyrosine kinase inhibitor, gefitinib, significantly enhanced the inhibitory effect of
gefitinib on the proliferation of OSCC cells. Overall, the current study supported an role for DCM as
part of an therapeutic approach for OSCC through suppressing IAPs and activating the p38-HO-1 axis.

Keywords: demethoxycurcumin; apoptosis; inhibitor of apoptosis proteins; heme oxygenase-1;
oral squamous cell carcinoma
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1. Introduction

Oral squamous cell carcinoma (OSCC) accounts for 90% of head and neck cancers located
in the oral cavity and is the sixth leading cancer by incidence worldwide [1]. Despite the development
of treatment modalities for OSCC such as surgical extraction, chemoradiotherapy, or epidermal growth
factor receptor (EGFR)-targeting therapies in the last three decades, the prognosis of OSCC is still
poor due to resistance to treatment modalities and cancer recurrence with an five-year survival rate of
<50% [2]. Moreover, some of these drugs may also exhibit cytotoxic effects on normal cells, thus causing
unpleasant side effects. Due to the unsatisfactory results of these standard treatments for OSCC,
identifying new agents is crucial.

Solid malignant tumors, such as OSCC, have the potential for rapid and unlimited growth due to
resistance to apoptosis [3]. Escape from apoptosis allows cancer cells to survive longer and accumulate
mutations. The overexpression of an family of antiapoptotic proteins termed inhibitor of apoptosis
(IAP) proteins, including cellular IAP 1 and 2 (cIAP1 and cIAP2, encoded by BIRC2 and BIRC3),
X-chromosome-linked IAP (XIAP, encoded by BIRC4), and survivin was reported to confer resistance
to radiation therapy and chemotherapy and cause poor prognoses of patients with head and neck
cancers, including OSCC [4-7]. Therefore, several preclinical and clinical trials aimed at reducing
IAP expression were performed on head and neck cancers. For instance, studies demonstrated that
LCL161, an cIAP1 antagonist, sensitizes an panel of OSCC cell lines to Fas ligand (FasL) treatment [8].
Moreover, the dual antagonist of cIAP/XIAP, ASTX660, was reported to induce the radiosensitization
of head and neck cancers [9].

Heme oxygenase-1 (HO)-1 protein, in non-neoplastic cells, is encoded by an stress-inducible
gene (HMOXI) but, as soon as it has been translated, the protein is active to degrade heme to
biliverdin, carbon monoxide (CO), and free iron [10]. HO-1 was reported to be overexpressed
or downregulated in different cancer types and has a multifaceted role in cancer development
through regulating apoptosis, angiogenesis, and metastasis [11]. For example, the overexpression of
HO-1 can enhance the proliferative or metastatic abilities of pancreatic cancer [12], melanomas [13],
and rhabdomyosarcomas [14] in vitro and in vivo. In contrast, the overexpression of HO-1 exerts
antiproliferative or anti-invasive abilities in breast, lung, and liver cancers [15-17]. In OSCC patients,
HO-1 expression levels were shown to be negatively correlated with cervical lymph node metastasis [18],
but the role of HO-1 in OSCC still requires elucidation.

Curcuminoids comprise three bioactive components, curcumin (CUR), demethoxycurcumin
(DMC), and bisdemethoxycurcumin (BDMC), which are isolated from the rhizomes of Curcuma longa
Linn [19]. CUR, the most abundant component of curcuminoids, was demonstrated to have anticancer
potential due to its capacity to modulate apoptosis-related regulators including IAP or HO-1 in different
cancer types [20,21]. However, previous reports have indicated that CUR is an poorly water-soluble
compound especially in water at acidic or neutral pH and is unstable in alkaline or high-pH conditions.
Therefore, the oral absorption of CUR is dramatically influenced by its low solubility, and the poor
stability of CUR is observed in gastrointestinal fluids [22,23]. Due to the low oral bioavailability,
the clinical use of CUR in cancer therapy is limited. Recently, accumulating evidence proved that
the second most abundant active component of curcuminoids, DMC, is an more efficient and stable
agent than CUR for cancer therapy [24-26]. Until now, the precise cellular mechanisms of DMC against
OSCCs have not yet been fully clarified.

In this study, we investigated the anticancer effect of DMC against human primary and metastatic
OSCC cell lines. In addition, we further explored whether the effect of DMC is related to IAP and
HO-1 expressions.
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2. Results

2.1. DMC Exerts Antiproliferative Activity and Causes G2/M Cell Cycle Arrest in OSCC Cells

Compared to CUR, the structure of DMC lacks one methoxy group directly linked to the benzene
ring, as shown in Figure 1A. To investigate the pharmacological potential of DMC against OSCC,
we examined short-term (24 h) and long-term treatment (8-19 days) effects of DMC on the cell growth
of primary SCC-9 and metastatic HSC-3 OSCC cells, respectively using thiazolyl blue tetrazolium
bromide (MTT) and colony formation assays. As shown in Figure 1B, after 24 h, DMC treatment
concentration dependently inhibited the cell proliferation of both OSCC cells, and the 50% growth
inhibitory concentration (IC50) was around 50 uM. We further observed that the antiproliferative
ability of DMC is stronger on OSCC cells than on the normal gingival epithelial cells. In addition,
the long-term growth of HSC-3 and SCC-9 cells was also significantly reduced following treatment
with 12.5-50 uM of DMC, and the IC50 values were lower than 12.5 uM (Figure 1C). Based on these
results, DMC can likely be useful as a therapeutic agent in managing OSCC. To further analyze
the mechanism involved in DMC-induced cell growth inhibition, we next performed flow cytometry
to evaluate the effect of DMC on the cell-cycle phase distribution in OSCC cells. After 24 h of DMC
(12.5-50 uM) treatment in HSC-3 and SCC-9 cells, the cell cycle distribution in the GO/G1 phase had
markedly attenuated, whereas the distribution of cells in the G2/M phase had markedly increased
in DMC-treated cells compared to vehicle-treated cells (Figure 1D,E), suggesting that cell cycle arrest
in the G2/M phase may contribute to the suppressive effects of DMC on cell viability.
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Figure 1. Demethoxycurcumin (DMC) inhibits the proliferation and colony formation via inducing
Gy/M phase arrest in oral squamous cell carcinoma (OSCC) cells. (A) The chemical structure of DMC.
(B) Two OSCC cell lines, SCC-9 and HSC-3, and one normal gingival epithelial cell line, SG, were
treated with indicated concentrations of DMC (12.5, 25, and 50 pM) or DMSO (vehicle control) for 24 h,
and an thiazolyl blue tetrazolium bromide (MTT) assay was performed to determine the cell viability.
* p < 0.05, compared to the DMSO-treated group. # p < 0.05, compared to the OSCC cells. (C) After
24 h treatment of vehicle or DMC (12.5-50 uM) with OSCC cells, the medium was changed to remove
DMC, and SCC-9 and HSC-3 cells were respectively maintained in fresh medium for 18 and 7 days
to determine the long-term death-inducing effects of DMC. Representative photomicrographs were
shown in the left panel. Data was given semi-logarithmically as a survival fraction/DMC dose plot.
(D) After 24 h treatment of vehicle or DMC (12.5-50 uM) with SCC-9 and HSC-3 cells, the cell-cycle
phase distribution and cell death in the sub-G; phase were analyzed by FACS after propidium iodide
(PI) staining. (E) Diagrams summarize cell-cycle results.

2.2. DMC Treatment Results in the Apoptosis of OSCC Cells

In addition to cell-cycle arrest, an increased sub-G1 apoptotic fraction was also observed in 25 and
50 pM DMC-treated HSC-3 and SCC-9 cells (Figure 1D,E). To confirm apoptosis by cell morphological
observations, HSC-3 and SCC-9 cells were treated with 25 uM DMC for 24 h, stained with Hoechst 33342,
and observed by fluorescence microscopy. Morphological characteristics of apoptosis, such as nuclei
with intensely bright staining and fragmented nuclei, were observed in DMC-treated cells (Figure 2A,
arrows). Apoptosis induced by DMC was further checked by Annexin V-FITC/PI (propidium iodide)
double-staining analysis. Figure 2B,C showed that early (PI-negative/Annexin-V-positive) and late
apoptotic cells (PI-positive/Annexin-V-positive) all dramatically increased in concentration-dependent
manners after treating HSC-3 and SCC-9 cells with DMC (12.5-50 uM). Percentages of total apoptotic
cells treated with DMC ranged 8.9-52.2% in HSC-3 cells and 5.1-46% in SCC-9 cells (Figure 2C).
These results are all hallmarks of apoptosis and demonstrated the ability of DMC to induce the apoptotic
cell death of OSCC cells.
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Figure 2. Demethoxycurcumin (DMC) induces apoptotic cell death in oral squamous cell carcinoma
(OSCC) cells. (A) After 24 h DMC (25 uM) treatment of SCC-9 and HSC-3 cells, the morphological
characteristics of apoptosis were analyzed by fluorescence microscopy after Hoechst 33342 staining.
The red arrows indicated the nuclear fragmentation and condensation which served as apoptosis
indicators. (B,C) Quantitative analysis of cell apoptosis by Annexin-V and propidium iodide (PI)
double-staining flow cytometry in SCC-9 and HSC-3 cells treated with DMC (12.5-50 uM) or the vehicle
for 24 h. One representative example of both cells is displayed in B. Values represent the mean + SD of
three independent experiments (C). * p < 0.05, ** p < 0.01, compared to the vehicle group.

2.3. Targeting of cIAP1 and XIAP by DMC Triggers Caspase-Mediated Apoptotic Cell Death in OSCC

To gain insights into the mechanism of apoptosis induced by DMC in HSC-3 OSCC cells,
we evaluated levels of proteins involved in regulating apoptosis using an human apoptosis
array (ARY009, R&D Systems), which contained 35 different apoptosis-related proteins. Several
apoptosis-related proteins were respectively upregulated and downregulated in DMC-treated HSC-3
cells compared to vehicle-treated cells (Figure 3A). We next validated the results by an Western
blot analysis and found that DMC treatment respectively induced an increase in the HO-1 protein
and decreases in cIAP1/XIAP proteins in concentration-dependent manners (Figure 3B,C). XIAP and
cIAP1 were reported to inhibit intrinsic and extrinsic apoptosis through directly and indirectly
inducing the inactivation of caspases-3, -9, and -8 [27]. Herein, the exposure of HSC-3 cells to DMC



Cancers 2020, 12, 703 6 of 19

(12.5-50 uM for 24 h) concentration-dependently induced the degradation of procaspases-8, -9, and -3,
which respectively generated active forms of caspases-8, -9, and -3 (Figure 3D-G). The cleavage of
poly(ADP-ribose) polymerase (PARP) by caspase-3 was also concentration-dependently induced by
DMC treatment (Figure 3F,G). In addition to HSC-3 cells, the downregulation of cIAP and XIAP,
upregulation of HO-1, and activation of caspases-8/-9/-3 were also observed in DMC-treated SCC-9
cells (Figure S1). These findings suggest that the inhibition of cIAP1 and XIAP was responsible for
the DMC-induced caspase-mediated apoptotic cell death of OSCC cells.
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Figure 3. High-throughput screening of apoptosis-related proteins modulated by demethoxycurcumin
(DMC) in oral squamous cell carcinoma (OSCC) cells. (A, left panel) Representative images of
the apoptotic protein array (R&D System) are shown for vehicle- and DMC-treated HSC-3 cells.
(A, right panel) Proteins involved in apoptosis and regulatory pathways were quantitated using
an densitometer and are represented as multiples of change compared to the controls. (B-G) HSC-3
cells were treated with indicated concentrations of DMC for 24 h, and an Western blot analysis was
used to detect the expression levels of heme oxygenase (HO)-1, cellular inhibitor of apoptosis 1 (cIAP1),
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X-chromosome-linked IAP (XIAP), pro- and cleaved caspases-3, -8, and -9, and poly(ADP-ribose)
polymerase (PARP) (B,D,F). The 3-actin protein levels were used to adjust the quantitative results of
these protein levels and expressed as multiples of induction beyond each respective control. Values
are presented as mean + SD from three independent experiments. * p < 0.05, compared to the vehicle
group (C,E,G).

2.4. HO-1 Is an Critical Upstream Regulator Involved in DMC-Induced Caspase-Mediated Apoptotic Cell
Death in OSCC Cells

To further determine the role of upregulated HO-1 induced by DMC in DMC-mediated growth
inhibition and apoptosis in OSCC cells, we knocked down HO-1 with HO-1-specific siRNA. We observed
that the transfection of HO-1-specific siRNA significantly reversed the DMC-induced increase of HO-1
protein (Figure 4A), with concomitant decreases in the activation of caspases-8/-9/-3 in DMC-treated
HSC-3 cells compared to control siRNA-transfected cells (Figure 4B,C). Moreover, the silencing of HO-1
significantly rescued DMC-mediated growth inhibition (Figure 4D). To further investigate whether
the enzyme activity of HO-1 was involved in the pro-apoptotic effect of DMC, an HO-1 enzymatic
inhibitor, tin protoporphyrin (SnPP) was used. We found the induction of caspase-3 activation by
DMC in SCC-9 cells was reversed by the SnPP pretreatment (Figure 4E). Moreover, we observed
that in the presence of different concentrations of iron protoporphyrin IX (FePP)/heme can result
in non-significant or partial levels of protection against the antiproliferative effect of DMC in SCC-9 cells
(Figure 4F). In the clinic, we analyzed HO-1 gene (HMOX1) expression data obtained from The Cancer
Genome Atlas (TCGA) and found that significantly lower HMOX1 transcripts were observed in head
and neck tumors, compared to normal tissues (Figure 4G). The Kaplan—-Meier (KM) plot revealed
an longer overall survival of head and neck cancer patients with high HO-1 (HMOX1) expression
than patients with low HO-1 expression (p = 0.04; Figure 4H). These data suggest that upregulating
HO-1 is crucial for DMC-induced caspase-mediated apoptotic cell death, and that high HO-1 levels
predict an favorable prognosis in patients with head and neck cancer. In comparison with OSCC
cells (Figure 3C), the inducible level of HO-1 by DMC is lower in normal gingival epithelial cells,
SG (Figure 4I), suggesting that this might be the reason DMC exerts less toxicity on normal oral
epithelial cells.

Furthermore, from the same TCGA database described above, patients with head and
neck tumors with HMOX1"8"/BIRC2!°% had the longest survival times compared to those with
HMOX1'"/BIRC2Migh, HMOX1high/BIRC2M8h, or HMOX1'9W/BIRC2!°W (Figure 4]). Clinical data
indicated that the upregulation of HO-1 and downregulation of cIAP-1 are critical events in retarding
the progression of head and neck cancers.
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Figure 4. Heme oxygenase (HO)-1 is an upstream regulator involved in demethoxycurcumin
(DMC)-induced caspase activation and the subsequent induction of apoptosis in oral squamous
cell carcinoma (OSCC) cells. (A-D) HSC-3 cells were transiently transfected with HO-1-specific siRNA
or control siRNA (siCtrl) and subjected to Western blot and MTT assays. The knockdown efficiency
of HO-1 siRNA is shown in A. HO-1-specific siRNA reversed the DMC-induced increases in cleaved
caspases-3, -8, and -9 (B,C) and the decrease of cell proliferation (D) of HSC-3 cells. Data are presented
as the mean + SD of three independent experiments. * p < 0.05, compared to the vehicle group; # p < 0.05,
compared to the siCtrl-transfected group. (E) Enzyme activity of HO-1 is essential for the pro-apoptotic
effect of DMC in OSCC cells. SCC-9 cells were treated with DMC in the presence or absence of the HO-1
enzymatic inhibitor, SnPP (5 uM), for 24 h, and the expression of cleaved caspase-3 was analyzed by
an Western blotting analysis. (F) The effect of combined treatment with DMC and iron protoporphyrin IX
(FePP)/heme on cell viability of OSCC cells. SCC-9 cells were treated with DMC (50 pM) simultaneously
with or without FePP (25 or 50 uM) for 24 h and then subjected to MTS assay to determine the cell viability.
Columns, mean (1 = 3); bars, SD. *** p < 0.001 compared with the vehicle group. # p < 0.05 compared
with the DMC-treated only group. ns: not significant. (G) Expressions of mRNA levels of HMOX1
(FPKM) in normal tissues (n = 44) and primary head-neck tumors (n = 520). (H) Correlation of HMOX1
expression and overall survival (OS) in head-neck squamous cell carcinoma using an Kaplan-Meier
analysis. (I) SG cells were treated with indicated concentrations of DMC for 24 h, and an Western blot
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analysis was used to detect expression levels of HO-1. (J) All patients were separated into an negative
correlation of HMOX1 and BIRC2 expression, low HMOX1 and high BIRC2 (HOB1), and high HMOX1
and low BIRC2 (H1B0), and others. Data showed that patients in the H1B0 group had the most favorable
prognosis (overall p-value of 0.028). In the negative-correlated groups, patients in the HOB1 group
had an worse prognosis than those in the H1BO0 group (p = 0.01). The head—neck cancer dataset was
retrieved from The Cancer Genome Atlas (TCGA).

2.5. Activation of the p38 MAPK-HO-1 Signaling Cascade by DMC Triggers Caspase-Mediated Apoptotic Cell
Death in OSCC Cells

Previous studies showed that the MAPK signaling pathway plays an important role
in the CUR-mediated apoptosis of diverse cancer types [28]. HO-1 is one of the proteins regulated
by mitogen-activated protein kinase (MAPK) signaling systems [29,30], but the relationship between
MAPK signaling and HO-1 after DMC exposure has not yet been elucidated. Therefore, we examined
whether DMC can induce the activation of three major MAPKSs including extracellular signal-regulated
kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. As shown in Figure 5A,B, DMC significantly
activated JNK1/2 and p38 MAPK, but not ERK1/2, in concentration-dependent manners. To further
determine the role of JNK1/2 and p38 MAPK activation in DMC-induced HO-1 upregulation and cell
apoptosis, 1 h of pretreatment of 10 pM SB203580 (a p38 inhibitor) or 1 uM JNK-in-8 (a JNK inhibitor)
with HSC-3 cells was followed by 50 uM DMC treatment for another 24 h, and then cells were subjected
to Western blotting analysis (Figure 5C). Our results revealed that only the inhibition of p38 MAPK
in HSC-3 cells considerably reversed DMC-induced HO-1 expression and caspase-8/-9/-3 activation
(Figure 5D). A similar phenomenon was also observed in SCC-9 cells (Figure S2). Overall, these results
suggest that DMC induces caspase-mediated cell apoptosis through activating the p38 MAPK-HO-1
signaling cascade in OSCC cells.
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Figure 5. The p38 mitogen-activated protein kinase (MAPK) pathway is involved
in the demethoxycurcumin (DMC)-mediated induction of heme oxygenase (HO)-1 expression and
cell apoptosis. (A,B) HSC-3 cells were exposed to the vehicle or DMC (12.5-50 uM) for 24 h; then,
the phosphorylation status of extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase
(INK)1/2, and p38 were analyzed by Western blot analysis (A). Quantitative results of phospho-MAPKs,
which were adjusted to total MAPKSs and are expressed as multiples of induction beyond each respective
control (B). Data are presented as the mean + SD from three independent experiments. * p < 0.05, compared
to the vehicle group. (C,D) HSC-3 cells were pretreated with SB203580 (10 uM) or c-Jun N-terminal
kinase (JNK)-in-8 (1 uM) for 1 h followed by another 24-h vehicle or DMC (50 uM) treatment. Levels of
cleaved caspase-3, -8, and -9, and HO-1 were analyzed by an Western blot analysis (C). Quantitation of
Western blots normalized to 3-actin was carried out using Image-pro plus processing software (D). Data
are presented as the mean + SD of three independent experiments. * p < 0.05, compared to the vehicle
group; * p < 0.05, compared to the DMC-treated group.

3. Discussion

Accumulating evidence has shown that DMC is an more effective and stable curcuminoid
than CUR or BDMC in cancer treatment of prostate, lung, and brain tumors [24,31,32] and other
diseases [33]. In the present study, we observed that DMC exhibited strong oncostatic effects on OSCC
cells respectively derived from primary and metastatic sites, including G,/M cell-cycle arrest and
apoptotic cell death. Upregulation of the p38 MAPK-HO-1 axis and downregulation of cIAP1/XIAP
were critical for DMC-induced apoptotic cell death in OSCC cells.
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G2/M cell-cycle arrest is one of the most prominent checkpoints of many anticancer agents,
which can induce proliferation inhibition and apoptosis by suppressing the segregation of damaged
chromosomes during mitosis [34]. The present study first revealed that the exposure of OSCC cells
to DMC resulted in an increased percentage of cells in the G,/M phase together with an decrease
in the Gy/G; phase. Meanwhile, an increase in the sub-G; peak, which is an characteristic feature of
cell apoptosis, was also induced by DMC, suggesting that G»/M arrest is an underlying mechanism
inhibiting the growth of DMC-treated OSCC cells, which might further turn on an apoptotic program.
These results are supported by other published studies which indicate that DMC markedly induced
Gy/M arrest in brain and prostate cancers [24,35]. Evidence in the literature indicates that DMC
induced BCL-2-mediated G,/M arrest most effectively among CUR, DMC, and BDMC in brain
tumors [24]. In addition, other positive regulators that participate in the G,/M transition, such as
CDC25C phosphatase and cyclin B1, were downregulated by DMC through inducing reactive oxygen
species (ROS) production in brain tumor cells [36]. Although the DMC-induced increase in ROS
in OSCC cells was recently reported [37], the effect of DMC on these regulators of the G»/M transition
needs to be further investigated in the future.

The IAP family, particularly cIAP1, cIAP2, XIAP, and survivin, are proteins that have substantial
roles in modulating the inactivation of apoptosis and overexpression in OSCC [38]. Among these IAP
proteins, the overexpression of XIAP or cIAP1 was reported to be correlated with an poor prognosis and
chemoresistance in head and neck cancer [6,7]. Hence, an clAP-targeting or cIAP/XIAP dual-targeting
therapeutic approach was recently demonstrated as a potential strategy for treating head and neck
cancers. Moreover, some IAP inhibitors are currently in clinical trials as monotherapy or combination
therapy with chemotherapeutic drugs or radiotherapy in different solid tumors, including head and
neck [27]. The apoptosis array in our present study showed that DMC can suppress the expressions
of cIAP1 and XIAP in OSCC cells, suggesting that DMC might be an potential dual antagonist of
cIAP/XIAP. Actually, another dual antagonist of cIAP/XIAP, ASTX660, was reported to sensitize head
and neck cancer to tumor necrosis factor (TNF) family death ligands (such as TNF and TRAIL) and
radiation [9]. Moreover, the nuclear factor-kappa B (NF-«B) transcription factor was found to be
constitutively activated in OSCC [39] and shown to regulate expressions of cIAP1 and XIAP [40].
Constitutive NF-kB activation has been attributed to an lack of response of SCC-9 OSCC cells to
TNF-« [41]. Furthermore, DMC was recently shown to inhibit NF-«B activity in OSCC cells [37].
Taken together, DMC might enhance the therapeutic effect of chemotherapeutic agents in OSCC
treatment via targeting NF-kB-mediated IAP expression, and this hypothesis is worthy of further
investigation in the future.

In addition to cIAP1/XIAP targeting, DMC was found to significantly induce the upregulation of
HO-1 from the apoptosis array in OSCC cells. Actually, HO-1 was previously reported to be induced by
CUR in diverse cell types and play various roles in different cell types. For example, HO-1 was induced
by CUR to exert its antiproliferative effect in vascular smooth muscle cells [42]. In human monocytes,
CUR-induced HO-1 expression showed its anti-inflammatory effects [43]. In cancer treatment with CUR,
HO-1 induction also plays an conflicting role in different cancer types. In breast cancer, the induction
of HO-1 and its catalyzed byproduct, CO, by CUR can attenuate heat shock protein (HSP) 90 activity
and its client proteins Akt, CDK4, and cyclinD1 to further suppress the invasion and proliferation
of cells [44]. In colorectal cancer (CRC), an pro-apoptotic effect of HO-1 was observed in CRC cells
via the induction of CO and endoplasmic reticular (ER) stress [45]. In contrast, CUR-induced HO-1
played an negative role for its anticancer effect in bladder cancers [46]. Although CO from the heme
degradation reaction catalyzed by HO-1 is previously known to have anti-apoptotic functions [47],
the recent studies mentioned above indicated that heme-mediated CO production also can induce
an pro-apoptotic effect in cancer cells. The opposite role of CO in regulating cell apoptosis might be
due to the amount of CO production. Low doses of CO were reported to prevent apoptosis in different
cell models [48]. In contrast, an moderately high concentration of CO exerts pro-apoptotic effects
toward several cell types, including cancer cells [49]. The production of CO catalyzed by HO-1 was
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reported to further induce HO-1 expression in cancer cells [44], and this positive feedback loop can
promote an high amount of CO production.

As for the role of HO-1 in OSCC, previous studies indicated that the HO-1 expression level was
negatively correlated with lymph node metastasis in OSCC patients [18]. Herein, we also observed
that head and neck cancer patients harboring high HO-1 (HMOX1) expression in tumor tissues had
significantly more favorable overall survival than those with an lower level. Moreover, we observed that
DMC can induce HO-1 upregulation to mediate caspase-dependent apoptosis in OSCC cells, suggesting
that DMC-induced HO-1 plays an positive role in its anticancer effect in OSCC. Our present study has
shown that the induction of caspase-3 activation by DMC was reversed by the HO-1 enzymatic inhibitor,
SnPP, pretreatment, suggesting that the HO-1 enzymatic activity is essential for the pro-apoptotic
effect of DMC. Moreover, different concentrations of FePP/heme were shown to induce non-significant
or partial levels of protection against the anti-proliferative effect of DMC in OSCC cells. Actually,
an previous study has indicated that the free iron-induced upregulation of ferritin plays an critical role
in protecting the CUR-induced apoptosis of keratinocytes [50]. In contrast, CUR was also reported to
act as an iron chelator to interfere with ferritin expression and induce the apoptosis of prostate cancer
cells [51]. Furthermore, the in vivo anticancer activities of DMC have been documented in a xenograft
brain tumor-bearing mice model [26], suggesting the expression level of heme in brain tumors might
not effectively abrogate the anticancer effect of DMC. These results suggest that the anticancer efficacy
of DMC in various cancers in vivo might be dependent on the different proportions of heme-derived
free iron and DMC in tumor tissues. In addition to free iron, the roles of HO-1-catalyzed CO and
other catalyzed byproducts from heme in the anticancer activity of DMC on OSCC should be further
investigated in the future. We next investigated the DMC-mediated signal transduction in regulating
HO-1 expression. On the basis of previous reports that MAPKSs are involved in CUR-mediated HO-1
expression [52], an panel of kinase inhibitors was used to dissect the contribution of MAPKs to
the DMC-mediated upregulation of HO-1. We observed that p38 MAPK activity was essential for
HO-1 expression induced by DMC.

Available data showed that more than 80% oral cancer patients and oral cancer cell lines
exhibit an overexpression of EGFR. Actually, the OSCC cell lines we used here also expressed EGFR
(Figure S3). Various strategies have been developed to disrupt EGFR function for OSCC treatment
such as anti-EGFR antibody (cetuximab) and EGFR tyrosine kinase inhibitors (TKIs) (gefitinib) [53].
Recently, an combination of cetuximab with chemotherapy such as cisplatin, 5-fluorouracil, docetaxel,
or paclitaxel has become the new standard advanced treatment for OSCC [54,55]. Actually, an previous
report has screened almost 600 herbal and natural compounds and found that CUR could promote EGFR
degradation to potentiate the inhibitory effect of gefitinib on gefitinib-resistant lung cancer cells in vitro
and in vivo [56]. Moreover, synergistic inhibitory effects of cetuximab and CUR on cisplatin-resistant
oral cancer cells have also been documented recently [57]. Furthermore, after screening 36 CUR
analogues, DMC was demonstrated to show the best inhibitory effects on both wild-type and mutant
EGER [58]. In fact, we also observed that DMC can inhibit EGFR expression in OSCC cells (Figure S4A)
and further enhance the inhibitory effect of gefitinib on cell proliferation (Figure S4B), suggesting
that the enhancement of DMC on gefitinib-mediated growth inhibition of OSCC cells might be
through inducing EGFR degradation. In addition to targeting EGFR, another CUR analogue, BDMC,
was reported to promote the suppressive effect of PDL-1 antibody on bladder cancer progression
via stimulating cytotoxic T-cell activity and suppressing myeloid-derived suppressor cells (MDSCs)
in an immunocompetent mice model [59], suggesting that DMC might be also an immunomodulatory
compound in the tumor microenvironment. According to these observations, we suggested that
the combination of DMC with cetuximab, gefitinib, or an PDL-1 antibody might be an good treatment
strategy for advanced OSCC.



Cancers 2020, 12, 703 13 of 19

4. Materials and Methods

4.1. Cell Lines and Reagents

The human OSCC lines SCC-9 and HSC-3 were respectively derived from primary and metastatic
sites of tongue squamous cell carcinoma and were obtained from the American Type Culture Collection
(Manassas, VA, USA). The Smulow-Glickman (SG) human gingival epithelial cell line was original from
F.H. Kasten, East Tennessee State University, Quillen College of Medicine, Johnson City, TN. Culture
conditions of both OSCC cell lines were maintained in Dulbecco’s Modified Eagle Medium/Ham'’s
F12 Nutrient Mixture (DMEM/F12; Life Technologies, Grand Island, NY, USA) supplemented with
10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA) and other essential supplements as
previously described [60]. The SG cells were cultured in DMEM medium supplemented with 10% FBS.

DMC of 98% purity, dimethyl sulfoxide (DMSO), SnPP, Hoechst 33342, and thiazolyl blue
tetrazolium bromide (MTT) were purchased from Sigma Chemical (St. Louis, MO, USA). Propidium
iodide (PI) was obtained from Invitrogen (Carlsbad, CA, USA). JNK-in-8 (a JNK1/2 inhibitor) and
SB203580 (a p38 inhibitor) were purchased from Calbiochem (San Diego, CA, USA). The primary
antibodies against cleaved Caspase-8 (#9496), cleaved Caspase-9 (#9505), cleaved Caspase-3 (#9664),
Caspase-8 (#9746), Caspase-9 (#9502), PARP (#9542), Phospho-Erk1/2 (#4370), Erk1/2 (#9102),
Phospho-JNK (#4668), JNK2 (#9258), Phospho-EGFR (#2220), EGFR (#2239), c-IAP1 (#7065), and XIAP
(#2045) were obtained from Cell Signaling Technology (Danvers, MA, USA). Anti-Caspase-3 (610323),
anti-phospho-p38 (612281), and anti-p38 (612168) were purchased from BD biosciences (San Jose, CA,
USA). Anti-f3-actin (ab8226) and anti-HO-1 (ab68477) were purchased from Abcam (Cambridge, UK).
Anti-mouse IgG (5450-0011) and anti-rabbit (5450-0010) secondary antibodies were purchased from
Seracare life sciences (Milford, MA, USA).

4.2. Cell Viability Assay

The cytotoxic effect of DMC on cell viability was measured by an MTT assay-based colorimetric
assay. Briefly, OSCC and SG cells were plated in 24-well plates for 24 h of incubation and treated with
indicated concentrations of DMC (0, 12.5, 25, and 50 uM) for another 24 h. After washing DMC out
of cells, MTT (0.5 mg/mL) was added to the culture medium for 4 h at 37 °C. Finally, the amount of
the MTT formazan product was dissolved in isopropanol, and absorbance values were measured by
an microplate reader (MQX200; Bio-Tek Instruments, Winooski, VT, USA) at 563 nm.

4.3. Plate Colony-Formation Assay

OSCC cells (10%) were plated in six-well plates and incubated for 24 h. Subsequently, cells were
treated with DMC at the indicated concentrations (0, 12.5, 25, and 50 M) and incubated for another 24 h
at 37 °C. Thereafter, the medium was changed to remove DMC, and 7-18 days later, cells were stained
with crystal violet. Colonies were manually counted using Image] free software (National Institutes of
Health, Bethesda, MD, USA).

4.4. Cell-Cycle Distribution Assay

DMC-induced changes in the cell-cycle distribution were analyzed by flow cytometry (Beckman
Coulter, Los Angeles, CA, USA). After treatment, OSCC cells were washed with phosphate-buffered
saline (PBS), fixed with ice-cold 70% ethanol at -20 °C for 12 h, and stained with PI buffer including
RNase A (100 ug/mL). DNA contents of stained cells were determined by an FACScan laser flow
cytometric analysis system. The proportion of nuclei in each phase of the cell cycle was analyzed,
and apoptotic cells with an hypodiploid DNA peak were detected in the sub-G; region.
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4.5. Apoptosis Assays

Apoptotic cell death induced by DMC was determined following the manufacturer’s guidelines
of the FITC-labeled Annexin-V/PI Apoptosis Detection kit (BD Biosciences, San Jose, CA, USA).
After treatment, OSCC cells were washed twice with PBS, resuspended in binding buffer (10 mM
HEPES, 140 mM NaCl, and 2.5 mM CaCl, at pH 7.4), and stained with 5 uL FITC-conjugated
Annexin-V and 5 pL of PI for 20 min in the dark. Data acquisition and analysis were performed
in a Becton—-Dickinson FACSCalibur flow cytometer using CellQuest software (BD Biosciences).

4.6. Nuclear Morphological Analysis by Hoechst 33342

DMC-induced morphological changes in the nuclear chromatin of cells were visualized following
DNA staining using Hoechst 33342. After treatment, OSCC cells were fixed with 4% formaldehyde
solution for 15 min, incubated for 10 min in a Hoechst 33,342 solution, and examined using an Zeiss
Axiophot fluorescence microscope (Carl Zeiss Microimaging, Gottingen, Germany). Morphological
features of apoptotic cells comprised chromatin condensation and nuclear fragmentation.

4.7. Human Apoptosis Proteome Profiler Array

To clarify the pathways through which DMC induced apoptosis, we determined apoptosis-related
proteins using the Proteome Profiler Human Array (R&D Systems, Minneapolis, MN, USA).
After treatment, cell lysate samples (200 ug) were extracted and applied per array set comprised of two
nitrocellulose membranes with spotted capture antibodies. Next, an biotinylated antibody cocktail and
streptavidin-horseradish peroxidase were used to detect the bound material using chemiluminescence
detection. The pixel density of spots was quantified using Image-Pro Plus software. Spot densities
were normalized against respective reference array spots and then against controls.

4.8. Protein Lysate Preparation and Western Blot Analysis

The preparation of protein lysates and performance of the Western blot analysis followed previously
described procedures [61]. Briefly, OSCC cells were lysed and extracted by radioimmunoprecipitation
assay (RIPA) buffer (Sigma-Aldrich, St. Louis, MO, USA). A Western blot analysis was performed
with indicated primary antibodies and horseradish peroxidase-conjugated secondary antibodies.
After washing, blots were incubated with the ECL reagent (Millipore, Billerica, MA, USA),
and the protein expression was detected by chemiluminescence.

4.9. Small Interfering (S)RNA Transfection

HMOX1 gene silencing was performed using siRNAs targeting HMOX1 (#4390824, s6674
Ambion) and an negative control (#4390844, Ambion). Lipofectamine RNAIMAX Transfection
reagent (Thermo Fisher Scientific, Waltham, MA, USA) was used to transfect each siRNA (150 pmol)
into OSCC cells following the manufacturer’s guidelines.

4.10. Bioinformatics Analysis

A clinical analysis of the molecular expression by RNAseq in a head and neck cancer patient cohort
was obtained from The Cancer Genome Atlas (TCGA) UCSC Xena website (https://xenabrowser.net/).
The prognostic significance of HMOX1 and BIRC2 levels in 517 head and neck cancer patients was
examined using an Kaplan—Meier analysis with the best cutoff threshold.

4.11. Statistical Analysis

Values are shown as the mean + standard deviation (SD) from three independent experiments.
Statistical analyses were performed using SigmaPlot, vers. 10.0 (Systat Software, SigmaPlot for
Windows). A non-parametric test was used for comparisons between two groups due to the small
sample size. Differences were considered significant at p values of < 0.05.


https://xenabrowser.net/

Cancers 2020, 12, 703 15 of 19

5. Conclusions

In summary, our data demonstrate for the first time that DMC is effective at suppressing
the expression of cIAP1/XIAP and activating the p38 MAPK-HO-1 axis, resulting in the intrinsic and
extrinsic apoptotic cell death of OSCC cells. Moreover, the cell apoptotic effect was also possibly
contributed by G,/M cycle arrest induced by DMC, and the mechanism is schematically illustrated
in Figure 6. In the clinic, patients with head and neck tumors and HMOX1"8"/BIRC2'°" had the most
favorable prognosis. Therefore, our present findings strongly support the development of clinical trials
to determine whether DMC or DMC combined with other chemotherapeutic drug regimens would be
useful in managing human OSCC.
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Figure 6. A working model shows the molecular mechanism underlying the ability of
demethoxycurcumin (DMC) to suppress the growth of oral squamous cell carcinoma (OSCC) cells.
The antiproliferative activity of DMC against OSCC cells derived from primary and metastatic sites was
attributed to inhibition of cellular inhibitor of apoptosis 1 (cIAP1)/X-chromosome-linked IAP (XIAP)
expression and activation of the p38 mitogen-activated protein kinase (MAPK)-heme oxygenase (HO)-1
axis, with the ultimate induction of apoptotic cell death. Moreover, the induction of G2/M arrest might
be another cause for the DMC-induced apoptotic cell death in OSCC cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/3/703/s1,
Figure S1: Effect of demethoxycurcumin (DMC) on apoptosis-related proteins in oral squamous cell
carcinoma (OSCC) cells, Figure S2: Activation of p38 mitogen-activated protein kinase (MAPK) is involved
in demethoxycurcumin (DMC)-induced heme oxygenase (HO)-1 expression and cell apoptosis in SCC9 cells,
Figure S3: Levels of endogenous epidermal growth factor receptor (EGFR) were analyzed by Western blot
analysis in HSC-3 and SCC-9 oral squamous cell carcinoma (OSCC) cells, Figure S4: Demethoxycurcumin (DMC)
potentiates the growth inhibitory effect of gefitinib on oral squamous cell carcinoma (OSCC) cells.
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