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Abstract: Digital Pathology is the process of converting histology glass slides to digital images 

using sophisticated computerized technology to facilitate acquisition, evaluation, storage, and 

portability of histologic information. By its nature, digitization of analog histology data renders it 

amenable to analysis using deep learning/artificial intelligence (DL/AI) techniques. The application 

of DL/AI to digital pathology data holds promise, even if the scope of use cases and regulatory 

framework for deploying such applications in the clinical environment remains in the early stages. 

Recent studies using whole-slide images and DL/AI to detect histologic abnormalities in general 

and cancer in particular have shown encouraging results. In this review, we focus on these 

emerging technologies intended for use in diagnostic hematology and the evaluation of 

lymphoproliferative diseases. 
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1. Introduction 

Digital pathology (DP) is the process of converting histology glass slides to digital images 

enabled by sophisticated computerized technology to facilitate management and interpretation of 

histologic information using machine learning (ML) techniques [1]. Machine learning, a branch of 

artificial intelligence (AI), consists of algorithms and statistical models that automate the 

performance of particular tasks. The system learns from previously saved data to make predictions 

on new data with minimal human intervention and without using direct instructions. 

ML frameworks have evolved considerably over the past few decades. Traditional methods 

include algorithms such as support vector machine (SVM), neural network (NN), logistic regression, 

random forest, and naïve Bayes. On the other hand, modern deep learning (DL) methods include 

convolutional neural networks (CNN or ConvNet), recursive neural networks, long short-term 

memory (LSTM), deep belief networks, convolutional deep belief networks, Boltzmann machines, 

stacked auto-encoders, tensor deep stacking networks, spike-and-slab RBMs, compound 

hierarchical-deep models, deep coding networks, deep q-networks, encoder–decoder networks, and 

multilayer kernel machine. DL algorithms are based on the artificial neural network principle, which 

emulates the structure and the function of human brain neurons (Figure 1). The neural network 

consists of thousands of layers of neurons, with each group of neurons that correspond to a certain 

layer receiving input from neurons of the underlying layer. Neurons subsequently use supervised, 

unsupervised, or semi-supervised learning to detect certain characteristic and pathognomonic 

features that are then stacked together and fine-tuned to generate a new output transmitted to the 

next layer [2,3]. 
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Figure 1. A neural network is a computer system modeled on the human brain. 

Deep learning applications encompass a broad scope of disciplines, including image 

recognition, visual art processing, natural language processing, and bioinformatics. DL applications 

are gradually making their way into the healthcare system, particularly in medical devices and 

electronic record networks. For instance, ML is integrated into state-of-the-art robotic-assisted 

surgery. Automated knot-tying using recurrent neural networks (RNN) was employed by Mayer et 

al.; this method showed impressive results in speeding up knot-tying and ultimately reducing 

overall surgical procedure time [4]. In the same scope, Schulman et al. trained robots to tie knots 

using human demonstration via trajectory transferring [5]. In the modern era of aging populations, 

emerging ML technologies that involve ambulatory monitoring of the elderly are also becoming 

increasingly relevant. The latter include ML techniques integrated into wearable sensors for the 

detection of falls, optimized to differentiate between accidents and the activities of daily living. Six 

DL techniques were trained and their performance was compared in one study; the K-Nearest 

Neighbor (K-NN) and the Least Squares Method (LSM) classifiers showed the best outcomes [6]. 

The concept of personalized medicine is gaining widespread applicability in virtually all sectors 

of medicine. Large-scale trials aimed at integrating clinical, genetic, immune, and metabolic data 

underpinning personalized health have shown promising results. Phenotype-expression 

Association eXplorer (PEAX) is an analysis technique that integrates visual phenotype modeling 

with statistical data testing. It is an open-source tool that merges statistical analysis with interactive 

decision tree algorithms, allowing physicians to put together clinical and molecular information to 

improve prognosis and treatment response predictions. PEAX was used to investigate evidence of 

correlation between the presence of single nucleotide polymorphisms in the β-adrenergic receptor 

gene and treatment response in left-sided heart failure cases [7]. In another study, automated 

phenotyping of patients using DL on data in electronic health records showed improved accuracy 

for predicting mortality, length of hospital stay, and discharge [8]. 

Whole-slide imaging (WSI) has recently been cleared by the United States Food and Drug 

Administration (FDA) for primary clinical diagnostic evaluation [9]. The clearance of the Philips 

IntelliSite Pathology Solution marked a major milestone in DP and is expected to push the 

boundaries of computational innovation in healthcare. Recently, the FDA has given clearance for 

Leica Biosystems to begin marketing of the Aperio AT2 DX System for clinical diagnosis in the U.S 

[10]. These regulatory developments have ushered a steady increase in the recognition of the 

potential of DP to enhance pathologists’ productivity and accuracy. The details of such 

enhancements remain largely speculative, but they include facilitating access to subspecialty 
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expertise, as well as integration of AI-based applications that can improve diagnosis, classification, 

tumor grading, and stain interpretation [11]. For instance, ConvNet achieved outstanding results in 

differentiating between benign and malignant skin lesions [12]. Similarly, Arvaniti et al. used a 

DL-based algorithm to automate and standardize Gleason grading of prostatic adenocarcinoma and 

showed promising results particularly in cases with heterogeneous Gleason patterns [13]. To the best 

of our knowledge, the largest survey that summarizes deep learning models in DP is by BenTaieb 

and Hamarneh [14]. It encompasses more than 84 studies, including nine cohorts. The analysis 

concluded that standardization of image acquisition is needed for breakthrough of DP deep learning 

models into clinical practice and workflow. 

Interestingly, a review of the literature shows limited numbers of studies of DP applications in 

hematopathology. Some cited reasons include the need for high-power magnification and perceived 

reliance on oil immersion objectives [15]. Notwithstanding, the advent of new ML algorithms has 

increased interest in and applications of WSI and DP in hematopathology. In this review, we focus 

on the applications of these emerging technologies in diagnostic hematology and the evaluation of 

lymphoproliferative diseases. 

2. Digital Microscopy for the Identification of Normal and Abnormal Peripheral Blood Elements 

Accurate identification of peripheral blood elements and various leukocyte subsets are an 

essential part of the investigation of benign and malignant hematologic diseases. Manual analysis of 

peripheral blood smears is time-consuming, labor-intensive, and subjective. Several analyzers have 

been introduced into the market aimed at overcoming these limitations. In 2001, DiffMaster 

OctaviaTM received FDA approval to market a device capable of recognizing peripheral blood 

elements using image analysis. CellaVision DM96 automatic hematology analyzer was introduced 

in 2004, followed by the CellaVision DM1200 in 2009 [16]. The latest version of CellaVision DM9600 

was first launched in 2014 [17]. Of note, Merino et al. recently reported a review summarizing the 

essential cytologic features for optimization of digital images analysis of blood cells, including 

geometric parameters, color, and texture characteristics [18]. 

Software improvements have permitted important advances in the detection of circulating 

poikilocytes using digital microscopy. The CellaVision Software groups RBCs into 21 morphological 

categories. The most consequential of these is the schistocyte group as identified on peripheral blood 

smears (PBS). As the detection of schistocytes raises concern of microangiopathic hemolytic anemia, 

particularly thrombotic thrombocytopenia purpura (TTP), it constitutes a potential critical finding 

that requires emergent medical attention. For this reason, sensitive and specific recognition of 

schistocytes on PBS using automated morphology-based analyzers has received particular attention. 

In studies comparing schistocyte counts between the CellaVision DM96 and conventional manual 

microscopy, the former showed high sensitivity but poor specificity requiring reclassification by an 

expert laboratory professional [19,20]. The low specificity can be attributed primarily to the broad 

range of morphologic forms that can fall within the schistocyte group, which lacks a well-defined 

sine qua non shape. In the latter situation, AI-based algorithms with a dynamic range for learning to 

recognize schistocytes hold promise. The CellaVision analyzer showed better performance in 

recognizing RBCs from patients with hereditary hemolytic anemia. In such a context, the presence of 

certain poikilocyte groups above particular thresholds were shown to be disease specific. For 

instance, the percentage of microcytes showed high sensitivity and specificity for RBC membrane 

disorders at a cutoff of 5.7% [21]. Teardrop cell identification by digital microscopy was also 

investigated with good outcomes [22]. 

Characterization of lymphoid cells in PBS is a critical step that often forms the basis for further 

investigation of hematologic malignancies. Alferez et al. designed a method to improve the 

automatic classification of normal and mature B-cell neoplasms, which included chronic 

lymphocytic leukemia (CLL) and hairy cell leukemia (HCL). Images were segmented using the 

Watershed Transformation image processing technique to include 44 extracted features. The method 

developed showed high precision in automated classification of CLL and HCL cells [23]. In 2015, the 

same group expanded their method and applied the Watershed Transformation to include 113 



Cancers 2020, 12, 797 4 of 18 

extracted features combined with color image segmentation. They tested specimens from healthy 

individuals and patients with CLL, HCL, and mantle cell lymphoma (MCL), and achieved an 

accuracy of 98.07%. The precision, sensitivity, and specificity values were 99.7%, 97.5%, and 98.6%, 

respectively [24]. To expand the range and the precision of recognizing the lymphoid cells in the PB 

by automated digital microscopy systems, the investigators used the support vector algorithm that 

incorporated color and texture in addition to geometrical cytologic features. The accuracy for the 

identification of three categories, including reactive lymphocytes, normal lymphocytes, and 

abnormal lymphoid cells, was 97.67%. Further characterization of the abnormal lymphocytes into 

HCL, MCL, FL, CLL, and prolymphocytes diminished the accuracy to 91.23% [25]. In another 

proof-of-concept, underscoring the efficiency of automated PBS image analyzers, investigators 

categorized a set of features using digital image analysis to distinguish between reactive 

lymphocytes, blasts, and a wider array of abnormal lymphocytes, including CLL, B-cell 

prolymphocytic leukemia (B-PLL), HCL, splenic marginal zone lymphoma (SMZL), MCL, FL, T-cell 

prolymphocytic leukemia (T-PLL), T-large granular lymphocytic leukemia (T-PLL), and Sézary 

Syndrome cells. They included the highest number of extracted features, encompassing 27 related to 

geometry and 2649 related to color and texture, and succeeded in defining multiple sets of features 

that were specific for the different entities [26]. Other studies were conducted to train PBS image 

analyzers to subclassify blasts into myeloblasts or lymphoblasts. A support vector ML algorithm 

was used to test features selection techniques followed by the evaluation of different sets of features 

to ultimately identify the most specific sets for each category of blasts. The true positive rate for the 

identification of reactive lymphoid cells, myeloblasts, and lymphoblasts were 85%, 82%, and 74%, 

respectively [27]. Identification of normal blood elements and white blood cells classification is a 

major part of the daily routine work of laboratory technicians. Automation of this task would 

ultimately save time for more challenging duties. A convolutional neural network algorithm, which 

is currently the state-of-the-art in computer vision, was designed and tested to execute the task. The 

advantage of CNN over other deep learning techniques is its ability to deal with the enormous 

amount of features presented to the software for training. To overcome this obstacle, CNN has two 

additional layers: convolution layers, which perform feature extraction consecutively from the 

image patch to higher-level features, and the pooling layer, which reduces the image size of the 

convolutional layer by subsampling, while preserving the important information. Finally the last 

fully connected layers provide prediction and outputs based on the given features (Figure 2) [28]. 

Compared to classic ML algorithms, CNN showed better results in terms of precision of 

identification of four types of WBCs, including eosinophils, neutrophils, lymphocytes, and 

monocytes. The precision was as high as 93% when the detection was limited to mononuclear cells 

versus polynuclear cells, and dropped to 88% when the four classes are considered [29]. However, to 

be suitable for real-time object detection, the ML software should be able to identify normal and 

abnormal leukocytes at a fast pace. In this scope, a group from China, Wang and coworkers, 

conducted a project for the recognition of the leukocytes in the peripheral blood, exploring the 

outcomes of two single-stage detection frameworks: Single Shot Multibox Detector (SSD), and You 

Only Look Once (YOLOv3) pipelines. Both pipelines use a convolutional approach in which the 

network is able to identify all cells within an image in a single pass through the convent, giving them 

the characteristic of rapid detection. The ultimate aim of the group was to combine good sensitivity 

and accuracy with faster computational speed. Eleven categories of white blood cells were included. 

SSD, with an input size of 300 × 300, slightly out-performs YOLOv3 in terms of mean average 

precision (mAP) for the detection of 11 types of WBCs; the mAP being 93.1% and 92.25%, 

respectively. Moreover, the precision of detection was better for the blasts and mature white blood 

cells compared to the immature types, the accuracies being 97%, almost 100%, and 87%, respectively. 

In terms of inference time, YOLOv3 achieved outstanding outcomes, as the inference time was 14 ms 

per image compared to 53 ms per image for the SSD pipeline [30].  

The application of DP for identification of PB abnormalities has grown beyond the detecting, 

counting, and classifying of blood elements to also incorporating the detection of Plasmodium and 

Babesia organisms. CellaVision DM96 was used to compare the detection rates of these species with 
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conventional microscopy scanning. The parasite detection rate was 81% on regular microscopy and 

as high as 100% for the identification of Plasmodium malariae and Babesia species when parasitemia 

was ≥2.5%, and as low as 63% when parasitemia was <0.1% [31]. 

 

Figure 2. Processing pipeline of a convolutional neural network for the detection of visual categories 

in images. Example of a CNN model proposed previously by other authors. The convolutional layers 

perform feature extraction consecutively from the image patch to higher-level features. The pooling 

layers reduce image size by subsampling. The last fully connected layers provide prediction based 

on the given features. Reproduced with permission from Hanadi El Achi [32]. 

3. Digital Pathology for the Diagnosis of Acute and Chronic Leukemia in Peripheral Blood and 

Bone Marrow 

The classification of leukemic diseases is based on refined criteria that rely on 

immunophenotypic, flow cytometric, cytogenetic, and mutation analysis results, alongside 

histologic and cytologic features. Against this backdrop, efforts are underway to develop tools for 

maximizing and optimizing the extraction of accurate and detailed information from PBS and bone 

marrow (BM) smears as additional ancillary diagnostic tools at baseline and for disease monitoring. 

The lack of strong data on applications of DP in hematologic diseases can be attributed to 

technical limitations of WSI in this area, particularly the unavailability of three-dimensional images. 

Researchers from Stanford University started a new pipeline with super-resolution DP images for 

the interpretation of BM smears. The program consists of constructing a super-resolution image 

from multiple images to create a three-dimensional digital picture. The algorithm allowed a 

significant improvement in image sharpness and resolution when applied to BM aspirate smears 

[33]. 

The evaluation of BM biopsies starts with a proper assessment of the cellularity. The evaluation 

of cellularity is still subjective, and reported based on the visual estimate in correlation with the 

patient’s age. Currently, efforts to standardize the measurement of the BM cellularity using machine 

learning are promising. The HALO imaging software, an image analysis software that uses 

algorithms to report multiplexed morphological data on a cell-by-cell basis in a histology section, 

was used to assess the cellularity of BM trephine biopsies. The correlation with the visual estimate 

performed by expert hematopathologists was merely 81% [34]. On the other hand, VisioPharm 

image analysis platform applications for the diagnosis of lymphoproliferative diseases are limited, 

however the software was tested for quantitation of lymphocytic aggregates in Sjögren biopsies; the 

Bayesian-based algorithm designed matched the pathologists’ scoring in 100% of the cases [35]. 

Along with the other criteria, one of the major critical factors for the classification of 

hematologic malignancies is the BM differential cell counts (DCC); however, this count is 

time-consuming and subject to major inter- and intra-observer bias. Therefore, standardization and 

automation of DCC would tremendously improve the accuracy of the count. Efforts have been 

initiated to apply ML techniques to identify and classify normal BM elements, and promising results 

are emerging [36]. Further, enumeration of blasts in the BM, and distinguishing the different 

categories of these cells, are also pivotal factors for disease diagnosis and classification of acute 
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leukemia [37]. An increasing number of studies related to diagnosing leukemia were conducted after 

2010 using ML algorithms; they included the four common types of leukemia: acute lymphocytic 

leukemia (ALL), chronic lymphocytic leukemia (CLL), acute myeloid, leukemia (AML), and chronic 

myeloid leukemia (CML). Interestingly most of the researchers used the supervised algorithms of 

DL. Recently, investigators have been applying unsupervised methods to minimize the need for 

manual segmentation and feature extraction, which are time consuming tasks for operators, 

particularly in hematology and cytology. This is in line with conducting studies to apply ML in the 

hematopathology field [38].  

Concomitantly, models for automated interpretation of flow cytometry (FC) results for 

diagnosing hematologic malignancies were developed. The drawback of training models for FC 

automated interpretation is the need for large numbers of abnormal cases. The “Data 

Augmentation” methods, such as random cropping, image rotation, and image inversion, are not 

applicable in FC plots. In spite of these obstacles, outstanding outcomes were achieved in terms of 

accuracy of the different models. For instance, Biehl et al., Manninen et al., and Dundar et al. applied 

generalized matrix relevance learning vector quantization, a regularized logistic regression model, 

and non-parametric Bayesian algorithms of deep learning, respectively, for the detection of AML by 

flow cytometry. The range of area under the curve fluctuated between 98% and 100%. Interestingly, 

another group achieved 99.6% accuracy in FC diagnosis of CLL [39–42]. Significant outcomes also 

resulted from applying the support vector machine method to identify the immunophenotypic 

patterns of malignant myeloid cells of CML and the normal/reactive neutrophils [43]. These findings 

make ML algorithms quite valuable for the interpretation of flow cytometry results, in particular for 

the diagnosis of CLL. 

Several studies have attempted to create AI models using PBS and/or bone marrow histologic 

findings. ALL diagnosis received marked attention with a high number of studies that attempted not 

only to diagnose ALL but also to subtype it on morphologic grounds. Only bone marrow specimens 

were selected to detect and classify ALL using supervised ML models by Rehman et al. and Reta et 

al.; these groups achieved an overall accuracy of 98% and 92%, respectively, for sub-classification 

into L1, L2, and L3 vs. normal marrow [44,45]. Shafik et al. applied unsupervised models of Deep 

convolutional neural network to peripheral blood smears and demonstrated a sensitivity of 100% 

and a specificity of 98% for the detection of ALL, and a sensitivity of 97% and specificity of 99% for 

ALL sub-classification into L1, L2, L3 and distinction from normal [46]. Other groups trained 

supervised models for segmentation and classification of ALL, mainly the support vector machine 

(SVM) algorithm. The overall accuracy for the detection of lymphoblasts and differentiating them 

from reactive lymphoid cells ranged from 74% to 99%, with a sensitivity as high as 100% and a 

specificity up to 95% [33]. The best outcomes were obtained by Bhattacharjee et al., who collected 120 

cases and used pattern recognition-based segmentation to train and compare the results of multiple 

classifiers, including artificial neural network (ANN), k-nearest neighbor (kNN), k-means, and 

support vector machine (SVM) [47]. The combination of both BM and PBS analysis for the 

automated diagnosis of leukemia achieved results comparable to PBS alone; however, further 

sub-classification showed sensitivity, specificity, and accuracy >90% for distinguishing L1, L2, and 

L3 ALL subtypes from non-neoplastic cells. A study of AI in ALL has also encompassed 

optimization of therapy using the Phenotypic Personalized Medicine Digital Health Platform, which 

identifies patient-specific factors that correlate drug dosage with phenotypic outputs. The algorithm 

demonstrated that adjusted dosing of combination chemotherapy could enhance treatment 

outcomes and maintenance therapy while reducing the amount of chemotherapy administered and 

ultimately the risk of side effects [48]. 

Automated detection and sub-categorization of acute myeloid leukemia (AML) was also 

investigated. Supervised algorithms and particularly pattern recognition-based segmentation 

methods were widely used along with SVM classifiers. The accuracy of algorithms used has ranged 

from 82% to 97% for the detection of myeloblasts. Reta et al. developed an algorithm to distinguish 

between the FAB subtypes of AML, and they reported an accuracy of 100% for diagnosing M2, M3, 

and M5 [40]. However, the new WHO classification of AML includes numerous entities based on 
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genetic alterations as well as the precise histologic findings and immunophenotypic aberrations; 

hence, we believe that the main benefit of these preliminary studies is to identify the most efficient 

segmentation methods and classifier. Ultimately, gathering enough experience will make the 

digitalization process amenable to adding value to routine diagnostic evaluation and/or disease 

monitoring.  

Few reports investigated automated diagnosis of CLL or atypical CLL (aCLL) by morphology. 

A case report was published in 2014 by a team from the Memorial Sloan Kettering Cancer Center 

described a patient who presented with mild leukocytosis and lymphocytosis; the WBC differential 

by digital microscopy (Cellavision) revealed 60% lymphocytes and 26% large abnormal lymphoid 

cells, overall findings consistent with atypical CLL (aCLL) [49]. The report was presented as a 

proof-of-concept that digital microscopy is a fast screening tool to improve the identification of aCLL 

cases; particularly that this entity has a more aggressive prognosis. This method was further 

explored by another group that included a larger number of cases; however, the study highlighted a 

few pitfalls to be considered in automated diagnosis of aCLL. In particular, there was a higher risk to 

misclassify the atypical cells as plasma cells, monocytes, myelocytes, or blasts, leading to a risk of 

missing the diagnosis [50]. In 2015 and 2016, Alferez et al. developed two platforms for the 

automated recognition of atypical lymphoid cells, including CLL cells. They first used color features 

and the watershed transformation as criteria for segmentation and linear discriminant analysis for 

the recognition, using 1500 images for training. The accuracy in this study was 80% and the 

specificity was 98.6% for the identification of five types of lymphoid cells, which included normal 

lymphocytes, HCL, CLL, MCL, and B-PLL [23]. In 2016, the same group used 4000 images to detect 

the same entities as well as follicular lymphoma cells. They achieved an overall accuracy of 98% for 

the screening of normal lymphocytes, abnormal lymphoid cells, and reactive lymphocytes, and they 

demonstrated an accuracy of 91.23% for the classification of the abnormal lymphoid cells into 

specific disease entities (Table 1) [24]. 
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Table 1. Studies utilizing machine learning (ML) for hematologic malignancies. PB, peripheral blood; LDA, linear discriminant analysis; HC, hairy cells; MC, mantle cells; 

FL, follicular lymphoma; CLL, chronic lymphocytic leukemia; SLA, supervised learning algorithms; SVM, support vector machine; BM, bone marrow; ALL, acute 

lymphocytic leukemia; AML, acute myelocytic leukemia; CML, chronic myeloid leukemia; KNN, K-nearest neighbor; RF, random forest; SL, simple logistic; RC, random 

committee; CNN, convolutional neural network; DCNN, deep convolutional neural network; ANN, artificial neural network; VE, visual estimates; DIA, digital image 

analysis; GMLVQ, generalized matrix relevance learning vector quantization; LDA, linear discriminant analysis; BC, Bayesian clustering; ASPIRE, anomalous sample 

phenotype identification with random effects; FC, flow cytometry; AUC, area under the curve; ICC, Intra-class correlation. 

Study (Reference) 
Entity of 

Interest 
Tissue Objective 

Segmentation 

Identification 

Method 

Classifier  
Number of 

Images 
Accuracy 

Alferez et al. [25] 
Lymphoid 

cells 
PB 

Recognition of atypical 

lymphoid cells 

Clustering of color 

components—water

shed 

transformation—pa

ttern 

recognition-based 

LDA 4389  

98% accuracy  

97.5% sensitivity 

98.6% specificity  

Alferez et al. [24] 
Lymphoid 

cells 
PB 

Normal, reactive, HC, 

MC, FL, CLL, 

prolymphocytes 

Geometry, new 

color and texture 

features—pattern 

recognition-based 

SVM 1500  91%  

Salah [38] 

metanalysis  

ALL, AML, 

CLL, CML 
 Diagnosis of leukemia  

22 studies  

SLA 
  

Ni et al. [43] CML  LN 
Identify malignant 

myeloid cells of CML  
 SVM 9 cases 

≤95.80% specificity 

≤95.30% sensitivity 

Reta.et al. [45] ALL-AML BM 

Distinction ALL vs AML 

and sub-classification of 

ALL 

Pattern 

recognition-based 

KNN, RF, SL, 

SVM, RC 
633  

94% accuracy 

(overall) 

92% AML vs. ALL 

Rehman et al. [44] ALL BM 
Sub-classification of 

ALL  

Threshold-based 

method 

 

CNN 330 97.78% 

Shafique et al. [46] ALL PB 
Detection and 

classification of ALL  
NA DCNN 

760 after 

augmentation 

99% accuracy 

for detection  

96% for 

classification 

Bhattacharjee et al. 

[47] 
ALL PB Detection of ALL 

Pattern 

recognition-based 

ANN, KNN, 

k-means, SVM 
 

100% sensitivity 

95% specificity 
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Hagiya et al. [34] BM cellularity BM 
Assess relatedness 

between VE and DIA 
 

Aperio AT2 

Scanscope  
165 cases 0.81 ICC 

Biehl et al. [39] FC for AML PB, BM Classification of AML NA GMLVQ 179 cases 100% 

Manninen et al. 

[40] 
FC for AML PB, BM Classification of AML NA LDA 359 cases 100% 

Dundar et al. [41] FC for AML PB Classification of AML N/A ASPIRE 

50,000 using the 

resampling 

technique 

99% AUC 

Lakoumentas [42] FC for CLL PB FC diagnosis of CLL NA BC  99% 
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4. Digital Pathology for the Diagnosis and Grading of Lymphoma: 

The use of digital pathology in the diagnosis of lymphoid neoplasms in tissue has also 

been studied (Table 2). Recent projects have shown promising results using ML to detect 

lymphomas with WSI. Compared to other lymphoma entities, pathology diagnosis of follicular 

lymphoma (FL) was the subset with the highest number of studies. The very first projects aimed at 

digitalizing the grading of this entity. Currently the standardized risk stratification method is the 

histological grading system suggested by the World Health Organization (WHO). This method 

requires performing a count of the centroblasts per microscopic high power field (HPF). The average 

count helps classify the disease into one of the three grades: Grade I (0–5 CB/HPF) and Grade II (6–15 

CB/HPF), which belong to the low-risk subset, and Grade III (>15 CB/HPF), a high-risk category [31]. 

However, the narrow ranges of the centroblast counts for the grading along with the subjectivity of 

the count can affect the grade of the disease, and consequently the prognosis and treatment. 

Inter-observer variation can reach up to a 41% lack of consensus between expert pathologists [43]. 

Since centroblast counts should be performed in neoplastic follicles, the generation of an automated 

system that accurately identifies the targeted follicles is a fundamental step toward standardization. 

It was reported that digital reading from WSI with preselected regions improved inter-reader 

agreement, with only 5.9% lacking consensus for centroblast enumeration [51]. However, fields were 

randomly selected by one of the pathologists, and hence might also be affected by subjectivity bias 

through including the zones that look histologically remarkable or of higher grade. 

Other projects used immunohistochemistry (IHC) slides for particular markers to identify the 

neoplastic follicles in a FL case and perform an appropriate selection of the high-power fields for an 

accurate count of the centroblasts. Samsi et al. focused on developing a method to detect neoplastic 

follicles based on IHC for B-cell markers in a lymph node, including CD10 and CD20. Comparison of 

automated segmentation of the follicles with manual segmentation showed an accuracy of 87%. 

Identification of all the follicles in a tissue section can help perform grading on a thorough 

examination of the available tissue instead of limiting the centroblasts count to only 10 HPF, 

ultimately improving the accuracy of grading FL [52,53]. Oger et al. also created a system using 

CD20 to delineate the follicles and refine the results by mapping follicle boundaries on 

high-resolution H&E images [54]. Few projects focused on using only the H&E images solely to 

identify the follicles. Belkacem-Boussaid refined the automated segmentation of the follicles by 

using the concavity index and a recursive watershed operation to reduce the over-segmentation bias. 

The accuracy of their method was 78% [55]. The same group has also published an automated 

method to identify centroblast (CB) cells independently of the digital identification of the follicles. 

The method used both geometric and texture features extraction; the accuracy of distinguishing 

centroblast from non-centroblasts was 82% [56]. Overall, the precision of the different preliminary 

methods designated for the automation of the FL grading is still far from being implemented for 

real-life cases; more accurate platforms and algorithms need to be developed. The most recent 

project conducted by the Ohio University team for the classification of the FL was published in 2015. 

They described a Follicular Lymphoma Grading System (FLAGS) that automatically identifies 

multiple (>10) candidate fields in the tissue section that are suitable for grading; the method uses 

H&E and CD20 stains in combination. The identification step is followed by a classification of the 

selected fields into a high or low grade based on the number of the centroblasts detected. The 

accuracy of the method was 80% [57]. It should be pointed out that for simplification purposes all the 

authors selected straightforward cases of FL without including the diffuse pattern, therefore these 

methods will not classify and grade all the cases with the same high accuracy and precision. 

The earliest efforts to standardize the FL grading were started since 2009 by Sertel et al. who 

used a different perspective; they developed a combined approach using cytologic components and 

the spatial distribution of the areas of interest with color texture analysis. They observed that a better 

classification of the low-grade entities relies on particular color features; hence, the method was very 

successful in identifying the Grade III subsets with a 98.9% sensitivity and 98.7% specificity, but 

more standardization was needed for the lower grade FL. These findings highlight a pitfall of the DP 
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related to the H&E staining, as well as the quality of the WSI, conferring a subjective aspect to the 

automated diagnosis [58]. To overcome this limitation, the same group of researchers developed 

another system for the detection of centroblasts; the method uses a unitone conversion to obtain a 

single channel image that has the highest contrast. Moreover, to refine their results, they used a 

two-step procedure: in the very first step, they identified the non-centroblasts, followed by the 

detection of the centroblasts. The detection accuracy of the method was 80.7% [59]. Overall, the 

efforts of optimizing the automation of hematologic malignancies grading serve, at least in the 

current state, as potential methods for tele-consultation between different institutions for second 

opinions and better patient care.  

Algorithms based on IHC staining have been established to guide the subclassification of 

diffuse large B-cell lymphoma (DLBC) on the basis of the cell-of-origin. However, it did not show a 

high concordance with the gene expression profiles [60,61]. Da Costa developed a new algorithm for 

DLBCL IHC classification through a machine learning method J48, to include CD10, MUM1, FOXP1, 

and BCL-6 into an IHC automated classification algorithm. Interestingly, 91.6% of the cases were 

correctly classified as GC or non-GC, showing a high concordance with the GEP and the prognostic 

significance [62]. A group from Mexico recently published an ML approach based on a combination 

of IHC antibodies included in the different DLBCL algorithms. They performed a comparison 

between the new algorithm and the previously available ones; they used multiple ML structures, 

including artificial neural networks and support vector machine to identify the best classifier. Their 

algorithm showed a 94% accuracy, 93% specificity, and 95% sensitivity, highlighting a high 

agreement with GEP [63]. Another interesting study was conducted in China, aiming to investigate 

the concordance of the IHC molecular subtype among six known IHC algorithms, and to evaluate 

the clinical significance of the different algorithms in patients treated with CHOP/R-CHOP 

(rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) chemotherapy regimens. 

They compared the outcomes of 381 cases of de novo DLBCL, not otherwise specified (NOS) 

patients, to the GEP results. The support vector machine algorithm was used to compare the results 

of the different algorithms. The study showed high concordance rates with the GEP for the Choi and 

Visco–Young algorithms, which suggests the ability of these protocols to consistently separate 

DLBCL–NOS into GCB and non-GCB subtypes. More studies on the same track can help identify the 

most accurate method that adequately correlates with the prognostic effect of the DLBCL subtypes 

[64]. These studies are a proof-of-concept of tremendous importance of AI to make the classification 

of the DLBCL subsets easier and more precise and for exploring the efficacy of the different 

chemotherapy regimens for each sub-category.  

Currently, the clinical risk stratification of DLBCL is based on the International Prognostic 

Index (IPI), the revised IPI, and the National Comprehensive Cancer Network IPI (NCCN-IPI). 

These models are based on clinical and laboratory data. Interestingly, a European group recently 

included more variables and clinical information to the previous algorithms to develop a new model 

for the prediction of the prognosis of DLBCL. The new model is based on ML techniques and is 

available online (https://lymphomapredictor.org) [65]. Finally, treatment resistance to R-CHOP has 

also been investigated by the dint of AI methods. 2D and 3D CT radiographic analysis with ML 

techniques based on random forests (RF) and SVM were tested for constructing the prediction 

models. Lymph nodes sections from a patient with known treatment resistance were contoured and 

segmented before getting analyzed by the platforms. The models provided high prediction accuracy 

for treatment resistance [66]. Hence, AI is finding its way to fulfill the need of identifying DLBCL 

patients that might have treatment resistance to ultimately avoid toxicity from ineffective drugs.  

With regard to the application of AI for the diagnosis of lymphoma, available studies remain 

limited. To our knowledge, only a single study has explored how DL can be used to accurately 

classify cases into one of four categories: benign lymph node, DLBCL, BL, and SLL. The 

convolutional neural network algorithm was used to build the lymphoma diagnostic model for these 

categories based on H&E images. The method’s outcomes showed an excellent diagnostic accuracy 

of 100% [32].  
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The advent of immunotherapy and targeted therapy urges pathologists and oncologists to 

understand the different pathways of diseases, and the interaction of the cellular markers. This can 

be achieved via studying the interaction of the multiple biomarkers expressed by tumor cells. Few 

hematologic entities are diagnosed based on the pattern of co-expression of different membranous, 

cytoplasmic, or intra-nuclear markers. In the same scope, pinpointing small micro-metastasis in 

lymph nodes can be challenging; immunostaining of the different components of the lymph node 

simultaneously would highlight any abnormality undetectable on H&E sections. Therefore, 

multiplexed immunofluorescence for the study of tumor tissues will find a solid base for 

advancement in lymphoproliferative diseases. A review article published recently cited the different 

techniques for multiplexing. The available staining platforms encompass Multiplex staining 

bleaching techniques, Multiplex signal amplification techniques, and mass spectrometry imaging. Of 

these the MultiOmyx platform, which belongs to the staining techniques, allows the analysis of up to 

60 biomarkers in a single slide; the same apply to the Multiplexed ion beam imaging, which can 

analyze up to 100 biomarkers simultaneously; however, the staining time is longer for both methods. 

Numerous automated scanning products are available in the market, such as AxioVision MosaiX, 

Multiplexed ion beam imaging, and MALDI–TOF mass spectrometry. Clear and neat staining and 

scanning techniques are of utmost importance for a better analysis of the tissue, particularly when 

the available specimen is limited to a small core biopsy [67]. 
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Table 2. Studies utilizing ML for mature lymphoproliferative diagnosis, grading, and prognostication. WSI, whole slide image; RW, recursive watershed; DLBCL, diffuse 

large B-cell lymphoma, LN, lymph node, FL, follicular lymphoma; H&E, hematoxylin and eosin; IHC, immunohistochemistry; CI, concavity index; FLAGS, Follicular 

Lymphoma Grading System; GMM, Gaussian mixture model; EM, expectation maximization; ANN, artificial neural networks; SVM, support vector machine; RF, random 

forests; CNN, convolutional neural network. 

Study (Reference) 
Entity of 

Interest 
Tissue Objective 

Segmentation 

Identification Method 
Classifier  

Number of 

Images/Cases 
Accuracy 

Lozanski et al. [51] FL (grading) LN 

Agreement between 

glass slide and WSI 

reading 

N/A N/A 17 cases 95%  

Samsi et al. [52,53] FL LN 
Detection of follicles 

by IHC (CD10/CD20) 

Iterative watershed, color 

and texture features 

Unsupervised 

K-means clustering 

algorithm 

8 images/ 12 images 87%  

Oger et al. [54] FL LN 
Detection of follicles 

by IHC (CD20) 

Comparison of manual 

and automated 

segmentation 

k-means classifier 12  

Belkacem-Boussaid 

[55] 
FL LN 

Detection of follicles 

by H&E 

Region-based 

segmentation,  

CI calculation, RW 

NA  78% 

Belkacem-Boussaid 

[56] 
FL LN 

Identification of 

centroblasts 

Geometric and texture 

features extraction 

Supervised quadratic 

discriminant analysis  
436 images 82% 

Fauzi [57] 

 
FL LN 

Grading of FL  

(H&E, CD20) 

Geometric and color 

features; Manual 

extraction 

k-nearest neighbor 

classifier—FLAGS 
20 slides 80% 

Sertel et al. [58] FL LN Grading of FL (H&E) 

K-means clustering 

algorithm and spatial 

distribution 

Bayesian classifier 510 images 

98.9% sensitivity 

98.7% specificity 

for grade III 

Sertel et al. [59] FL LN  
GMM and EM unitone 

conversion of colors 
 100 images 80% 

Da Costa et al. [62] DLBCL LN 

Sub-classification of 

DLBCL 

(GC/non-GC) 

N/A J48 (WEKA package) 475 cases 92% 

Perfecto-Avalos et 

al. [63] 
DLBCL LN 

Sub-classification of 

DLBCL 

(GC/non-GC) 

N/A ANN and SVM 49 patients 

94% accuracy 

93% specificity 

95% sensitivity 
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Zhao et al. [64] DLBCL LN 

Outcome of patients 

after treatment based 

on the molecular 

subtyping 

algorithms 

N/A 

 
SVM 855 cases 94% 

Biccler et al. [65] DLBCL LN 
Prediction of 

prognosis 
N/A 

Stacking approach of 

ML 
5173 cases 

Excellent 

concordance  

Santiago et al. [66] DLBCL LN 
Treatment resistance 

to R-CHOP 
Manual contouring 

2D and 3D CT 

radiomic analysis with 

RF and SVM 

254 lymph nodes 

75% accuracy 

80% sensitivity 

69% specificity  

Superior results 

with RS 

El Achi et al. [32] Lymphoma LN 
Diagnosis of four 

lymphoma subsets 
Unsupervised CNN 2560 images 100% 
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5. Conclusions and Future Directions: 

Multiple studies have applied ML tools to diagnose hematologic diseases. Some have achieved 

high diagnostic accuracy. However, our review indicates that studies in this field remain limited. 

The outcomes of any digitalization system will ultimately require review/supervision by a 

pathologist who will approve or disaffirm the machine-derived results, taking into consideration 

histologic findings, clinical presentation, and other contingent factors. As such, the primary aim of 

using DP should be to facilitate and standardize the diagnostic process to complement and aid 

human activities in this space. 
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