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Simple Summary: Circulating biomarkers for the detection of hepatocellular carcinoma in patients
with dysmetabolic liver disease are an unmet need. In the present study, we observed that serum
values of five biomarkers (namely, AFP, PIVKA-II, GPC-3, adiponectin and IL-6) were significantly
different between patients with and without hepatocellular carcinoma; the best accuracy for the
detection of tumor was achieved by PIVKA-II. Furthermore, we developed a model combining age,
gender, PIVKA-II, GPC-3 and adiponectin that showed an excellent performance for the identification
of patients with hepatocellular carcinoma. This model may be useful for the surveillance of patients
with dysmetabolic liver disease at risk of hepatocellular carcinoma development.

Abstract: Current surveillance strategy for patients with nonalcoholic fatty liver disease (NAFLD)
at risk of hepatocellular carcinoma (HCC) development is unsatisfactory. We aimed to investi-
gate the diagnostic accuracy of alpha-fetoprotein (AFP), protein induced by vitamin K absence or
antagonist-II (PIVKA-II), glypican-3 (GPC-3), adiponectin, leptin and interleukin-6 (IL-6), alone or in
combination, for the discrimination between NAFLD patients with or without HCC. The biomark-
ers were investigated in a cohort of 191 NAFLD patients (median age 62, 54–68 years; 121 males
and 70 females) with advanced fibrosis/cirrhosis, 72 of whom had a diagnosis of HCC. PIVKA-II
showed the best performance for the detection of HCC with an area under the curve (AUC) of 0.853,
followed by adiponectin (AUC = 0.770), AFP (AUC = 0.763), GPC-3 (AUC = 0.759) and by IL-6
(AUC = 0.731), while the leptin values were not different between patients with and without HCC.
The accuracy of the biomarkers’ combination was assessed by a stratified cross-validation approach.
The combination of age, gender, PIVKA-II, GPC-3 and adiponectin further improved the diagnostic
accuracy (AUC = 0.948); the model correctly identified the 87% of the patients. In conclusion, we
developed a model with excellent accuracy for the detection of HCC that may be useful to improve
the surveillance of NAFLD patients at risk of tumor development.

Keywords: adiponectin; AFP; GPC-3; HCC; IL-6; leptin; NAFLD; PIVKA-II; surveillance

1. Introduction

The epidemiological burden of nonalcoholic fatty liver disease (NAFLD) is rapidly in-
creasing worldwide, with an estimated global prevalence of 25% in the general population [1].

Cancers 2021, 13, 2305. https://doi.org/10.3390/cancers13102305 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-0529-9481
https://orcid.org/0000-0002-7245-4445
https://orcid.org/0000-0001-6518-7089
https://orcid.org/0000-0003-4303-2507
https://orcid.org/0000-0002-7611-6099
https://orcid.org/0000-0003-0327-3875
https://orcid.org/0000-0003-1389-7278
https://orcid.org/0000-0002-9421-3087
https://orcid.org/0000-0001-5310-4143
https://www.mdpi.com/article/10.3390/cancers13102305?type=check_update&version=1
https://doi.org/10.3390/cancers13102305
https://doi.org/10.3390/cancers13102305
https://doi.org/10.3390/cancers13102305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13102305
https://www.mdpi.com/journal/cancers


Cancers 2021, 13, 2305 2 of 12

NAFLD includes a broad spectrum of liver diseases, ranging from simple steatosis to non-
alcoholic steatohepatitis (NASH), a condition at risk of progression to liver cirrhosis and
hepatocellular carcinoma (HCC) [2]. In addition, the coexistence of multiple metabolic risk
factors such as obesity and type 2 diabetes mellitus (T2DM) can synergistically promote
tumorigenesis in patients with NAFLD and advanced liver disease [3].

Adipose tissue is recognized as endocrine organ able to produce several adipokines, such
as adiponectin and leptin, involved in the regulation of metabolism and inflammation [4].
Adipokines dysregulation has been associated with systemic low-grade inflammation [5],
impaired hepatocyte proliferation [6] and progression from NASH to HCC [7]. In particular,
interleukin-6 (IL-6) can activate the signal transducer and activator of transcription 3
(STAT3) signaling [8], a major intrinsic pathway involved in cell proliferation, migration
and survival [2,9].

Currently, surveillance programs for patients at risk for HCC development are based
on ultrasound (US) screening at 6-month intervals, while the combined use of serum
biomarkers is still a matter of debate [10–13]. However, US screening is limited by the poor
sensitivity for the detection of small liver nodules [14,15]; besides, NAFLD-related HCC
may develop in the absence of liver cirrhosis [16], hampering the efficacy of current surveil-
lance strategies mainly aimed at patients with cirrhosis. Therefore, novel noninvasive tools
able to improve the surveillance of patients with NAFLD are urgently needed.

Among the traditional HCC biomarkers, protein induced by vitamin K absence or
antagonist II (PIVKA-II), alone or in combination with alpha-fetoprotein (AFP), showed
promising results for the early detection, and even for the prediction, of HCC in patients
with cirrhosis of viral etiology [17–20]. However, the data on NAFLD-related HCC are
scant. Glypican-3 (GPC-3) is an oncofetal protein normally not expressed in the livers of
healthy adults; so far, the available data on the performance of serum GPC-3 for HCC
detection are conflicting and mainly confined to patients chronically infected with the
hepatitis B virus (HBV) or hepatitis C virus (HCV) [21].

To date, the early detection of HCC represents the major goal in order to improve
patients’ survival; thus, the identification of high-performing biomarkers able to promptly
identify patients with HCC among patients at risk of tumor development is an unmet need.
Here, we investigated the diagnostic accuracy of selected tumor biomarkers (i.e., AFP,
PIVKA-II and GPC-3); adipokines (i.e., adiponectin and leptin) and IL-6, alone or in combi-
nation, for the discrimination between patients with or without NAFLD-related HCC.

2. Materials and Methods
2.1. Patients

This retrospective case-control study included patients with dysmetabolic induced-
HCC and patients with NAFLD/NASH without HCC, recruited at the outpatient clinic
of the Unit of Gastroenterology of A.O.U. Città della Salute e della Scienza di Torino—
Molinette Hospital, Turin, Italy between November 2012 and January 2020.

For all patients, the inclusion criteria were age ≥18 years, histological diagnosis of
NASH with advanced fibrosis/cirrhosis or clinical/radiological evidence of cryptogenic
cirrhosis [22], which dysmetabolic etiology was assessed by the presence of metabolic
risk factors (central obesity, T2DM, dyslipidemia and hypertension) [23] in the absence
of other known causes of liver damage. For patients without HCC, a minimum of 1-year
US follow-up after the collection of the serum sample was required. All patients signed
written informed consent.

We excluded patients with a liver disease of other etiology, such as drug-induced liver
disease, viral hepatitis and autoimmune, cholestatic and metabolic/genetic liver disease.
Alcohol-induced liver disease was excluded by selecting patients with a negative history
of alcohol abuse (weekly ethanol consumption <140 g for women and <210 g for men) [24].

The presence of advanced fibrosis/cirrhosis was histologically assessed and scored as
described by Kleiner et al. [25] or clinically determined by means of a liver elastography
(FibroScan®, Echosens™, Paris, France) or hepatic US features and endoscopic signs of
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portal hypertension [26,27]. The diagnosis of HCC was achieved by histological examina-
tion or by contrast-enhanced imaging methods showing the radiological hallmark of HCC
(i.e., the combination of hypervascularity in the late arterial phase and washout on portal
venous and/or delayed phases), following the international guidelines [11]. HCC was
classified according to the BCLC staging system (0 = very early, A = early, B = intermediate,
C = advanced and D = terminal stage) [11].

2.2. Measurement of Circulating Biomarkers

Serum and plasma samples were collected in polypropylene 2-mL tubes labeled with
the study participant identification code and stored at −80 ◦C until analysis. Serum levels
of AFP, PIVKA-II, adiponectin and IL-6 were determined on the fully automated chemilu-
minescent enzyme immunoassay (CLEIA) system, LUMIPULSE G600 II analyzer (Fujirebio
Inc., Tokyo, Japan) using Lumipulse® G AFP-N (assay precision <3%), Lumipulse® G
PIVKA-II (assay precision <4.4%), Lumipulse® G HMW Adiponectin (assay precision ≤4%)
and IL-6 LPG reaction cartridges, according to the manufacturer’s instructions. The lower
limit of detection was 0.075 ng/mL for AFP, 1.37 mAU/mL for PIVKA-II, 0.09 µg/mL for
adiponectin and 0.2 pg/mL for IL-6.

Serum GPC-3 and plasma leptin values were measured by enzyme-linked immunosor-
bent assay (ELISA) using CanAg Glypican-3 EIA (Fujirebio Diagnostics AB, Gothenburg,
Sweden) and Human Leptin Quantikine® ELISA (R&D Systems, Minneapolis, MN, USA),
according to the manufacturer’s instruction. The GPC-3 serum levels were reported in
pg/mL, while the leptin plasma levels were reported in ng/mL.

2.3. Statistical Analysis

Continuous variables were expressed as median and interquartile ranges (IQR), while
categorical variables as number and percentages (%). The D’Agostino-Pearson test was
used to test the data normality. The Mann–Whitney test and Kruskal–Wallis test were used
to compare continuous variables between two or more groups, respectively. The correlation
between continuous variables was assessed by Spearman’s rank correlation coefficient (rs).
To evaluate the diagnostic accuracy of the circulating AFP, PIVKA-II, GPC-3, adiponectin,
leptin and IL-6 alone, the AUC was assessed by receiver operating characteristic (ROC)
curves analysis. A multivariate logistic regression analysis was performed to combine
independent variables for the prediction of HCC. This analysis has been repeated using a
cross-validation approach to compute its performances in predicting the HCC status, using
the scikit-learn package in the Python environment. Specifically, the RepeatedStratifiedKFold
with 5 splits and shuffling samples 20 times and the LogisticRegression functions were
used to evaluate the performance of the classifier using a cross-validation approach, both
with the option random_state = 0. The final performance of the model were computed,
averaging the AUC values over the 100 test sets obtained with the above-described cross-
validated approach. Confidence intervals at a 95% confidence level were computed with a
bootstrap approach by resampling with a replacement 1000 times.

A two-tailed p < 0.05 was considered statistically significant. The statistical analyses
were performed using MedCalc software, version 18.9.1 (MedCalc bvba, Ostend, Belgium)
and in-house scripts in Python programming language.

3. Results
3.1. Patients’ Characteristics

A total of 191 patients (median age 62, 54–68 years; male (M) = 121 and female (F) = 70)
were included in the study. The demographic, clinical and biochemical characteristics of
the study population are reported in Table 1.
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Table 1. Characteristics of the patients included in the study according to the diagnosis of HCC.

Characteristics Controls HCC p-Value

Patients, n 119 72
Age (years), median (IQR) 58 (49–66) 67 (62–70) <0.001

Male gender, n (%) 64 (54%) 57 (79%) <0.001
BMI (kg/m2), median (IQR) 30.8 (28.0–34.0) 30.4 (26.0–31.7) 0.013

Obesity (BMI ≥ 30.0 kg/m2), n (%) 72 (61%) 39 (54%) 0.450
T2DM, n (%) 68 (57%) 43 (60%) 0.764

Dyslipidemia, n (%) * 41 (57%) 83 (69%) 0.086
Hypertension, n (%) 88 (74%) 54 (75%) 1.000

ALT (U/L), median (IQR) 53 (31–72) 34 (24–41) <0.001
AST (U/L), median (IQR) 41 (30–57) 38 (30–50) 0.280
γGT (U/L), median (IQR) 63 (43–120) 87 (57–179) 0.023

Platelets (× 109/L), median (IQR) 194 (161–239) 132 (85–183) <0.001
Albumin (g/dL), median (IQR) 4.1 (3.8–4.4) 3.9 (3.3–4.1) <0.001

Total Bilirubin (mg/dL), median (IQR) 0.8 (0.6–1.0) 0.9 (0.7–1.5) 0.001
INR, median (IQR) 1.05 (1.00–1.11) 1.14 (1.09–1.31) <0.001

Total Cholesterol (mg/dL), median (IQR) 175 (157–203) 168 (139–181) 0.025
HDL-Cholesterol (mg/dL), median (IQR) 46 (39–59) 44 (35–54) 0.368

Triglycerides (mg/dL), median (IQR) 124 (94–160) 115 (84–132) 0.009
Fasting Glucose (mg/dL), median (IQR) 110 (92–129) 112 (100–137) 0.143

Cirrhosis, n (%) 66 (55%) 63 (88%) <0.001
BCLC Stage (0/A/B/C/D), n 7/40/15/7/3
HCC nodules (1/2/3/>3), n 33/16/8/15

Size of major nodule (mm), median (IQR) 18 (15–24)

* Total cholesterol ≥200 mg/dL and/or HDL cholesterol <40 mg/dL for men and <50 mg/dL for women and/or triglycerides ≥150 mg/dL.
p-values for the quantitative variables were calculated by Mann–Whitney test, while p-values for categorical variables were calculated
by Fisher’s Exact test. Abbreviations: alanine aminotransferase (ALT), aspartate aminotransferase (AST), Barcelona Clinic Liver Cancer
(BCLC), body mass index (BMI), gamma-glutamyl transpeptidase (γGT), hepatocellular carcinoma (HCC), high-density lipoprotein
(HDL), international normalized ratio (INR), interquartile range (IQR), low-density lipoprotein (LDL), number (n) and type 2 diabetes
mellitus (T2DM).

Patients with HCC (n = 72) were older than patients without tumor (n = 119) (67,
62–70 years vs. 58, 49–66 years, p < 0.001) and had a higher prevalence of males (n = 57,
79% vs. n = 64, 54%, p = 0.010). No differences were observed in the prevalence of obesity
(p = 0.450), T2DM (p = 0.764), dyslipidemia (p = 0.086) and hypertension (p = 1.000). The
majority of patients were cirrhotic (n = 129, 68%), with a higher prevalence of cirrhosis in
patients with HCC compared to those without tumors (88% vs. 55%, p < 0.001). Consistently,
patients with HCC showed significantly higher values of total bilirubin (p = 0.001) and
INR (p < 0.001) and lower values of platelets (p < 0.001) and albumin (p < 0.001). Among
patients without HCC, 95 had a histological diagnosis of NAFLD/NASH (F3 = 53, F4 = 42),
while 24 had a clinical diagnosis of cirrhosis. Among the patients with HCC, the diagnosis
of tumor was achieved by pathology in 14 patients, by multiphasic computed tomography
(CT) in 35 patients and by dynamic contrast-enhanced magnetic resonance imaging (MRI)
in 23 patients. Overall, 47 patients had a diagnosis of early tumor (BCLC 0 = 7, A = 40) and
22 of advanced tumor (BCLC B = 15, C = 7), while three patients had terminal-stage HCC
(BCLC D = 3).

3.2. Circulating Biomarkers Values in the Study Cohort

The median serum levels of AFP, PIVKA-II, GPC-3, adiponectin and IL-6 were signifi-
cantly higher in patients with HCC compared to those without tumor (all p < 0.001); only
the plasma leptin values were not different between the two groups of patients (p = 0.649)
(Table 2 and Figure 1).
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Table 2. Median biomarker levels according to the presence of HCC.

Biomarkers Controls HCC p-Value

AFP (ng/mL), median IQR 3.8 (2.7–5.1) 6.0 (4.5–13.5) <0.001
PIVKA-II (mAU/mL), median IQR 33 (27–45) 121 (54–1135) <0.001

GPC-3 (pg/mL), median IQR 35 (20–56) 75 (40–104) <0.001
Adiponectin (µg/mL), median IQR 2.17 (1.35–3.30) 4.95 (2.87–7.03) <0.001

Leptin (ng/mL), median IQR 20.6 (9.8–33.4) 20.3 (13.2–34.9) 0.649
IL-6 (pg/mL), median IQR 3.1 (1.9–5.8) 6.0 (4.1–12.5) <0.001

p-values were calculated by the Mann–Whitney test. Abbreviations: alpha-fetoprotein (AFP), glypican 3 (GPC3),
hepatocellular carcinoma (HCC) and interleukin-6 (IL-6).
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The AFP serum values showed a significant stepwise increase from patients with
advanced fibrosis without HCC to patients with advanced tumor (BCLC = B, C and D)
(p < 0.001). The AFP and PIVKA-II levels were significantly different between the patients
with early HCC (BCLC = 0, A) and those with advanced tumor (p < 0.050), while among
patients without HCC, the AFP, GPC3 and IL-6 serum levels were significantly different
between the patients with advanced fibrosis and those with cirrhosis (p < 0.050) (Table S1
and Figure S1).

By the Spearman correlation analysis, we observed that the serum AFP values were
moderately correlated to PIVKA-II (rs = 0.408, 95% confidence interval (CI) 0.283–0.520,
p < 0.001) and to the GPC-3 serum levels (rs = 0.484, 95% CI 0.368–0.586, p < 0.001).
PIVKA-II was moderately correlated to GPC-3 (rs = 0.311, 95% CI 0.177–0.434, p < 0.001),
and GPC-3 was moderately correlated to serum adiponectin (rs = 0.304, 95% CI 0.169–0.428,
p < 0.001) (Figure 2).
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3.3. Diagnostic Accuracy of Circulating Biomarkers for HCC Detection

The diagnostic accuracy of AFP, PIVKA-II, GPC-3, adiponectin and IL-6 for the dis-
crimination between patients with and without HCC was assessed by the receiver operating
characteristic (ROC) curve analysis. The values of the area under the curve (AUC), sen-
sitivity (Se), specificity (Sp), positive likelihood ratio (+LR) and negative likelihood ratio
(−LR) are reported in Table 3. PIVKA-II showed a higher performance with AUC = 0.853,
followed by adiponectin (AUC = 0.770), AFP (AUC = 0.763), GPC-3 (AUC = 0.759) and by
IL-6 (AUC = 0.731) (Figure 3). Similar results were observed, following the stratification
for the BMI and T2DM (Figure S2). By ROC curve comparison, the diagnostic accuracy
for HCC detection of PIVKA-II was significantly superior to the performance of AFP
(∆AUC = 0.090, p = 0.044), GPC-3 (∆AUC = 0.094, p = 0.035) and IL-6 (∆AUC = 0.122,
p = 0.009), while only a trend was observed for the comparison between PIVKA-II and
adiponectin (∆AUC = 0.083, p = 0.075). No other significant differences were observed
from the comparison between AFP, GPC-3, adiponectin and IL-6 (Table S2). Finally, we
performed a sub-analysis to investigate the biomarkers accuracy for the detection of early
tumors (BCLC = 0 and A); PIVKA-II showed the higher performance (AUC = 0.810), fol-
lowed by GPC-3 (AUC = 0.749), adiponectin (AUC = 0.744), AFP (AUC = 0.704) and by
IL-6 (AUC = 0.699) (Figure S3).

Table 3. Diagnostic accuracy of AFP, PIVKA-II, GPC-3, adiponectin and IL-6 discrimination between
the patients with and without HCC.

Biomarker AUC, 95%CI Cut-off * Se Sp +LR −LR

AFP (ng/mL) 0.763, 0.696–0.821 >4.4 76.4 68.9 2.46 0.34
PIVKA-II

(mAU/mL) 0.853, 0.794–0.900 >56 75.0 85.7 5.25 0.29

GPC-3 (pg/mL) 0.759, 0.691–0.817 >64 62.5 82.4 3.54 0.46
Adiponectin

(µg/mL) 0.770, 0.704–0.828 >3.68 62.5 81.5 3.38 0.46

IL-6 (pg/mL) 0.731, 0.662–0.792 >3.6 79.2 62.2 2.09 0.34
* Identified by the Youden J statistic. AUC values were calculated by the receiver operating characteristic curve
analysis. Abbreviations: alpha-fetoprotein (AFP), area under the curve (AUC), confidence interval (CI), glypican-3
(GPC-3), hepatocellular carcinoma (HCC), interleukin-6 (IL-6), protein induced by vitamin K absence or antagonist
II (PIVKA-II), sensitivity (Se), specificity (Sp), positive likelihood ratio (+LR) and negative likelihood ratio (−LR).
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3.4. Predictors of HCC and Model Development

Since the two groups of patients (i.e., patients with and without HCC) showed sig-
nificant differences regarding the demographic, biochemical and clinical features, we
performed a multivariate logistic regression analysis to assess the strength of the associa-
tion with HCC. Age, gender, BMI, ALT, γGT, platelet count, albumin, total bilirubin, INR,
cholesterol, triglycerides, AFP, PIVKA-II, GPC-3, adiponectin and IL-6 were considered
for inclusion in the multivariate analysis. A logistic regression analysis was based on a
stepwise approach keeping the variables at a significance level below 0.01 [28]. A Log
transformation was made to AFP, PIVKA-II, GPC-3 and IL-6 due to data skewness. The
variables retained in the model are reported in Table 4.

Table 4. Multivariate analysis for the factors associated to HCC.

Variables OR, 95% CI p-Value

Age (years) 1.09 (1.02–1.16) 0.007
Male gender 11.95 (3.48–41.04) <0.001

PIVKA-II (Log mAU/mL) 6.87 (2.03–23.23) 0.002
GPC-3 (Log pg/mL) 15.63 (2.99–81.59) 0.001

Adiponectin (µg/mL) 1.54 (1.23–1.94) <0.001
Abbreviations: confidence interval (CI), glypican-3 (GPC-3), hepatocellular carcinoma (HCC), odds ratio (OR)
and protein induced by vitamin K absence or antagonist II (PIVKA-II).

The obtained formula of the model was:

y = −17.33 + 0.09 × Age + 2.48 × Gender + 1.93 × Log PIVKA-II + 2.75 × Log GPC-3 + 0.43 × adiponectin,

where age in years, 1 for males and 0 for females; the probability (p) of HCC is
given by:

p = 1 / (1 + e−y).

The median pHCC values were 5.0% (95% CI 3.5–8.3) and 82.2% (95% CI 75.0–96.5) in
patients with and without HCC, respectively (p < 0.001). The model showed an excellent di-
agnostic accuracy for the detection of HCC (AUC = 0.948), with a percentage of the patients
correctly classified as 87% in the cross-validation (Figure 4). At the cut-off pHCC = 50%,
the model showed Sp = 88.1%, Se = 86.9%, +LR = 9.00 and −LR = 0.15 for the detection
of HCC.
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4. Discussion

In the present study, we investigated the performances of different biomarkers in-
volved in the oncogenic mechanisms of HCC in patients with NAFLD. Indeed, the biomark-
ers studied were selected on the premise that tumor development in such patients is driven
by the concurrent activation of different oncogenic signaling pathways in accordance with
the “multiple hits hypothesis” [29,30], whereby comorbidities, genetic determinants and
environmental factors simultaneously contribute to NAFLD/NASH-HCC progression [31].
Interestingly, we observed that circulating biomarkers such as PIVKA-II and adiponectin
displayed a good performance for the discrimination between patients with HCC and
those without tumors; remarkably, the combination of demographic features (i.e., age
and gender) together with oncogenic markers (i.e., PIVKA-II and GPC-3) and markers of
adipose tissue dysfunction (i.e., adiponectin) allowed the development of a model showing
an excellent performance for the detection of HCC.

Several different biomarkers have been studied in the last decades in order to improve
and even personalize the surveillance of patients at high risk for HCC development [32–34].
Promising results have derived from comprehensive approaches that have allowed the
detection of a wide spectrum of circulating molecules, including tumor proteins and
nucleic acids (i.e., circulating tumor DNA/RNA) derived from the primary tumor [35],
epigenetic biomarkers such as DNA methylation profiles and noncoding RNAs [36,37] and
genetic variants recapitulated in polygenic risk scores [38]. On the other hand, the study of
serologic biomarkers such as AFP and PIVKA-II has been pursued over time due to their
inexpensiveness, analytical standardization, and acceptable performances [17].

In agreement with previous studies performed in patients with NAFLD [39,40], we ob-
served a good diagnostic accuracy for PIVKA-II (AUC = 0.853) and a moderate performance
for AFP (AUC = 0.763). Interestingly, GPC-3 showed a higher accuracy compared to the
results of our previous study carried out on a cohort of patients with viral related-HCC [18].
Possibly, both the diverse etiology and clinical characteristics of the patients included may
have accounted for the discrepancy observed. In particular, the different prevalence of
cirrhosis in the control groups could have affected the performance of GPC-3. Indeed,
cirrhosis is a preneoplastic condition characterized by genetic, epigenetic and molecular
alterations not yet established in patients with chronic hepatitis but frequently observed in
HCC [41–43]. As a matter of fact, the more we reduce the clinical differences between two
groups of patients, the more the performance of the biomarker decreases.
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Noteworthy, adiponectin showed a performance similar to AFP for the detection
of HCC. A recent meta-analysis including nine studies and a total of 705 HCC patients
and 1390 healthy controls showed that higher adiponectin levels were significantly associ-
ated with liver cancer (standard mean difference = 0.97, 95 %CI 0.02∼1.93, p < 0.05) [44].
Furthermore, in patients with HCV-related cirrhosis, higher serum adiponectin levels
resulted in a predictor of HCC development [45,46] and liver-related mortality [47]. How-
ever, the mechanism by which adiponectin is involved in HCC development is not fully
clear. Reduced adiponectin levels have been associated with metabolic syndrome [4,48];
nevertheless, studies in vitro and in the animal model have revealed an antiproliferative
activity for adiponectin [49,50], suggesting that increased adiponectin levels might have a
protective role in HCC. Consonant with this hypothesis, the administration of adiponectin
(5 µg/kg weekly) blocked tumor progression in a thioacetamide-induced rat HCC model,
resulting in an 80% increased survival rate, 73% reduced average number of nodules and
46% decreased serum AFP [51]. Further studies are needed to confirm the hepatoprotective
and chemoprotective effects of adiponectin against HCC.

Finally, the combination of different biomarkers with clinical and/or demographic
characteristics into simple prediction models allowed the further improvement of the
diagnostic accuracy for HCC detection [52]. However, the majority of these models have
been developed and validated in cohorts of patients chronically infected with HBV or
HCV [28,53–55]; to the best of our knowledge, only the GALAD score was tested in the
setting of NAFLD, showing a high performance for the identification of patients with
HCC [56]. Here, we developed a model including age, gender, PIVKA-II, GPC-3 and
adiponectin that showed a high diagnostic accuracy in cross-validation (AUC = 0.948) for
the detection of HCC in patients with dysmetabolic liver disease; the model allowed to
correctly identify 87% of the patients included in the study. Given the relatively small
number of patients enrolled and the lack of a validation cohort, we applied a machine
learning approach based on a stratified cross-validation to assess the performance of the
model; accordingly, the original sample was partitioned into a training set to train the
model and a test set to evaluate its performance, and the procedure was repeated multiple
times. As a result, the model denoted a high accuracy, with a low risk of overfitting, and
a generalizability of the independent datasets. However, further multicenter studies are
needed to independently validate these findings. Furthermore, a cost-effective analysis
may be useful to assess the benefits produced by the implementation of the model in the
clinical setting with respect to its cost.

5. Conclusions

Our data confirmed the good diagnostic accuracy of PIVKA-II for the detection of HCC
in patients with NAFLD. Furthermore, the combination of age, gender, PIVKA-II, GPC-3
and adiponectin allowed a noticeable improvement in the detection of HCC compared to
each single biomarker used alone. These findings need to be validated in a prospective
surveillance setting in order to assess the ability of the model to predict the HCC occurrence
in patients with dysmetabolic liver disease at risk of tumor development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13102305/s1: Figure S1: Median values of AFP (A), PIVKA-II (B), GPC-3 (C),
adiponectin (D), leptin (E) and IL-6 (F), according to the different stages of liver disease, Figure S2.
Diagnostic accuracy of AFP, PIVKA-II, GPC-3, adiponectin and IL-6 for the detection of HCC in
lean (A) and obese patients (B), and in normal-glucose tolerant (C) and diabetic patients (D), Figure
S3. Diagnostic accuracy of AFP, PIVKA-II, GPC-3, adiponectin and IL-6 for the detection of early
HCC, Table S1: Median biomarker values according to the different stages of liver disease, Table
S2: Comparison of the diagnostic accuracy of AFP, PIVKA-II, GPC-3, adiponectin and IL-6 for the
detection of HCC.
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