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Simple Summary: Prior radiomic studies have addressed a two-class tumor classification problem
(glioblastoma (GBM) versus primary CNS lymphoma (PCNSL) or GBM versus metastasis). However,
this approach is prone to bias and excludes other common brain tumor types. We addressed a
real-life clinical problem by including the three most common brain tumor types (GBM, PCNSL, and
metastasis). We investigated two key issues using different MRI sequence combinations: performance
variation based on tumor subregions (necrotic, enhancing, edema and combined enhancing, and
necrotic masks), and performance metrics based on the chosen classifier model/feature selection
combination. Our study provides evidence that radiomics-based three-class tumor differentiation is
feasible, and that embedded models perform better than those with a priori feature selection. We
found that T1 contrast enhanced is the single best sequence with comparable performance to that of
multiparametric MRI, and model performance varies based on tumor subregion and the combination
of model/feature selection methods.

Abstract: Prior radiomics studies have focused on two-class brain tumor classification, which limits
generalizability. The performance of radiomics in differentiating the three most common malig-
nant brain tumors (glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and
metastatic disease) is assessed; factors affecting the model performance and usefulness of a single
sequence versus multiparametric MRI (MP-MRI) remain largely unaddressed. This retrospective
study included 253 patients (120 metastatic (lung and brain), 40 PCNSL, and 93 GBM). Radiomic
features were extracted for whole a tumor mask (enhancing plus necrotic) and an edema mask (first
pipeline), as well as for separate enhancing and necrotic and edema masks (second pipeline). Model
performance was evaluated using MP-MRI, individual sequences, and the T1 contrast enhanced (T1-
CE) sequence without the edema mask across 45 model/feature selection combinations. The second
pipeline showed significantly high performance across all combinations (Brier score: 0.311–0.325).
GBRM fit using the full feature set from the T1-CE sequence was the best model. The majority of the
top models were built using a full feature set and inbuilt feature selection. No significant difference
was seen between the top-performing models for MP-MRI (AUC 0.910) and T1-CE sequence with
(AUC 0.908) and without edema masks (AUC 0.894). T1-CE is the single best sequence with compa-
rable performance to that of multiparametric MRI (MP-MRI). Model performance varies based on
tumor subregion and the combination of model/feature selection methods.
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1. Introduction

Glioblastomas (GBM), primary central nervous system lymphomas (PCNSL), and
parenchymal metastatic lesions account for the vast majority of malignant brain tumors in
clinical neuro-oncology. Magnetic resonance imaging (MRI) is most commonly used for
pre-operative characterization of these tumors [1,2]. However, the radiologically observed
imaging features of these malignancies often overlap. Since the treatment strategies are
different (resection followed by chemoradiation for GBM, chemotherapy for PCNSL, and
chemotherapy/radiosurgery for metastatic lesions), early and accurate preoperative dif-
ferentiation of these tumors is critical [2–4]. This is generally achieved through resection
or brain biopsy. Brain biopsy is, however, not always optimal, with misdiagnosis and
under-grading of tumors reported in 9.2 and 28% of neoplastic lesions, respectively [5].
The reported biopsy complication rate varies between 6 and 12%, with a mortality rate
of 0–1.7% [6]. Expert human readers also have modest accuracy, which could be further
improved with the available advanced imaging techniques and/or computational tools [4].
There is therefore a continued need for more accurate pre-operative diagnosis, which may
be conducted non-invasively with more advanced imaging techniques or through artificial
intelligence.

The use of radiomics in brain tumor classification could be extremely helpful for
non-invasive diagnosis since it converts the sparse imaging data into big data (histogram,
texture, and transformed features) using a voxel wise approach. Prior studies have explored
the utility of MRI-derived radiomic features for brain tumor classification [7,8]. However,
most of these studies have generally addressed a two-class problem, either GBM versus
PCNSL [9–11] or GBM versus metastases [12], which is not a pragmatic approach since
this presupposes accurate exclusion of one main category of tumor. The existence of
overlapping texture features of a third pathology and its impact on model prediction and
real-life performance therefore remain unaddressed. Even though such studies have shown
good results, they do not reflect a real-life scenario and follow a more simplistic approach.

What also remain largely unknown are the impact of various machine learning tech-
niques as well as the role of feature selection when dealing with large data in a three-class
problem [11–13]. Similarly, the usefulness of separate segmentations of the enhancing
and necrotic components with edema masks (a total of 3 masks) versus the whole tumor
(necrotic plus enhancing) with edema masks (a total of 2 masks) and their impact on model
performance in a three-class problem remain unexplored. The aim of our study was to
address a three-class problem (GBM vs. PCNSL vs. metastases) using a radiomics-based
approach on retrospective MP-MRI data. We additionally evaluated the impact of different
feature selection and machine learning techniques on overall model accuracy. Finally, we
addressed the relevance of different tumor masks for the same three-class problem.

2. Materials and Methods
2.1. Data Collection

This was a retrospective study approved by the local institutional review board
(IRB-ID 201912239). Between 2010–2018, consecutive patients above the age of 18 years
were identified using a combination of electronic medical records and institutional cancer
registries. Patients with pathologically confirmed GBM (WHO grade IV) and immunocom-
petent PCNSL were identified. Since lung and breast cancer account for most of the cases
of brain metastases, the metastatic lesion cohort was confined to patients with a known
lung or breast primary. Only these two metastatic tumor types were selected to reduce data
heterogeneity as part of this pilot study in order to differentiate the three most common
brain tumor types using radiomics. Eligibility criteria included preoperative MRI scans
that all had multiparametric (axial T1W, T2W, FLAIR, ADC, and T1 contrast enhanced
(CE)) sequences available; presence of a contrast enhancing tumor; and no prior history of
treatment, biopsy, or surgical resection. Patients with non-enhancing tumors, tumors less
than 1 cm in diameter, and motion artifact were excluded.
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A total of 253 patients were included in the study (metastatic (n = 120, 47.4%), PCNSL
(n = 40, 15.8%), and GBM (n = 93, 36.8%); Figure 1).
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2.2. Image Acquisition

Preoperative imaging was performed on 1.5T (232) and 3T (21) MRI system (Siemens,
Erlangen, Germany). The acquisition protocol for brain tumor evaluation at our hospital
includes pre-contrast axial T1W, T2W, FLAIR, diffusion weighted imaging with ADC maps,
gradient echo, and tri-planar T1-CE images (details in Text S1). Five imaging sequences
were evaluated in this study for the analysis: axial T1W, T2W, FLAIR, ADC map, and
T1-CE.

2.3. Image Pre-Processing

Following image anonymization, DICOM images were converted to the NIfTI format.
For enabling the volume of interest to be used with images from all MRI sequences, all
images were resampled and aligned to the same spacing, resolution, and alignment using
nearest neighbor resampling. Images were resampled to a 1 × 1 × 5 mm3 voxel size using
the AFNI package (https://afni.nimh.nih.gov/ (accessed on 05/05/2021)) [14]. Due to
large difference between slice thickness (5 mm) and in-plane spacing (0.5–0.75 mm) in our
subjects, there was a risk of introducing artificial information and bias with upsampling and
information loss with downsampling [15–17]. “As per image biomarker standardization
initiative (IBSI) guidelines, in patients with large slice thickness compared to in plane
voxel size dimensions, it may be beneficial to perform 2D interpolation. This is because if
3D interpolation is performed in these patients, there is a risk of information loss during
downsampling (for example from 0.5 × 0.5 × 5 mm3 to 5 × 5 × 5 mm3). In addition, if
upsampling is performed (for example from 0.5 × 0.5 × 5 mm3 to 0.5 × 0.5 × 0.5 mm3),
there is a risk of introducing artificial information by inferencing a large number of voxels
between slices.” [18]. As such, we performed standardized anisotropic resampling for
all MRI sequences to ensure reproducibility as also performed in prior MRI radiomic
studies [19,20]. Moreover, radiomic features have also been shown to be robust to different
levels of pixel spacing and interpolation [21]. In addition, feature standardization (also
performed in our study) has been shown to improve robustness of radiomic features
beyond pixel spacing and interpolation [21]. All MRI image sequences were mutually
registered to the pre-contrast T1W sequence using Advanced Normalization Tools (ANTs)
(http://stnava.github.io/ANTs/ (accessed on 05/05/2021) [22] followed by min–max

https://afni.nimh.nih.gov/
http://stnava.github.io/ANTs/
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image intensity normalization to 0–255 using the feature scaling method available in the
ANTs registration suite (http://stnava.github.io/ANTs/ (accessed on 05/05/2021). Min–
max normalization is common method of intensity normalizations to preprocess data
before model fitting within an intensity range of 0 and 255 (i.e., 256 different possible
values) [23–25].

2.4. Tumor Segmentation/Region of Interest Delineation

Three-dimensional (3D) volumetric tumor segmentation was performed on axial T1-
CE and FLAIR images by two radiologists (S.P. and G.B.) in consensus using an in-house
developed semi-automatic tool, Layered Optimal Graph Image Segmentation for Multiple
Objects and Surfaces (LOGISMOS) [26]. In patients with multiple lesions, only the largest
lesion was segmented since this approach can provide reliable results by including regions
containing a sufficient number of voxels, and the same approach has also been utilized in
prior studies [27,28]. Four region of interests (masks) were created using T1-CE and FLAIR
images: (i) whole tumor (enhancing plus necrotic); (ii) enhancing only; (iii) necrotic only;
and (iv) peritumoral edema (details in the Supplementary Materials, Figure S1). These
masks were superimposed on all five sequences (T1W, T2W, FLAIR, ADC map, and T1-CE).

2.5. Texture Feature Extraction

International Biomarker Standardization Initiative (IBSI) compliant radiomic features
were extracted using Pyradiomics 3.0 [29]. As there were four masks and five imaging
sequences, there were a total of 20 possible masks and sequence combinations. On each
of these combinations, 107 radiomic features were extracted, consisting of 3D shape, first
order, gray level co-occurrence matrix, gray level dependency matrix features, gray level
run length matrix features, gray level size zone matrix features, and neighboring gray
tone difference matrix features (details in Text S1). The analyzed 253 patient MR images
yielded 1012 3D masks, for which radiomic features were obtained. About 4% of these
masks referenced volumetrically small regions with less than four voxels in one of the
x–y–z directions for which calculation of 3D texture features is of limited value when
considered separately (43 masks—29 necrotic, 6 whole tumor, 6 enhancing, and 2 edema
masks). In our case, to maintain feature-based consistency across subjects when used in
the predictive models, the same set of 3D radiomic features was calculated for all available
masks, including the 43 small ones (there were only 14 3D radiomic features out of a total
of 107 features extracted). Details are provided in the Supplementary Materials (Table S1).

2.6. Feature Harmonization

As data were acquired from two types of MRI scanners (1.5 and 3T), there was the
potential for the different signal intensities to lead to variations in the feature values. To
account for this variation, the ComBat feature harmonization technique [30] was used
prior to model fitting. This technique has been recently applied in radiomics studies
and has been shown reduce feature differences between different scanners [31]. Feature
harmonization was implemented using the neuroCombat package in R version 4.0.2, using
the non-parametric adjustment method to avoid making any distributional assumptions
about the features [32,33].

2.7. Feature Selection

Since large number of feature sets were extracted compared to the sample size, feature
selection was performed to avoid collinearity and reduce dimension. These feature selec-
tion methods included: a linear combination filter, a high correlation filter, and principal
component analysis (PCA). The linear combination (lincomb) filter finds linear combina-
tions of two or more variables and removes columns to resolve the issue and avoid both
collinearity and dimension reduction and it was repeated until the feature set was full rank.
The high correlation (corr) filter removes those variable features from the feature set that
have a large absolute correlation. A user-specified threshold was chosen to determine the

http://stnava.github.io/ANTs/
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largest allowable absolute correlation. For each pipeline, this threshold was set to 0.6 when
using all sequences and 0.8 for the subgroup analyses to retain most important features. By
determining the fraction of total variance that should be covered by the components, the
number of components retained in the PCA transformation was calculated. The threshold
was set at 80% for all sequences and 90% for sub-group analyses, with the intention of
preserving enough information to enable model fitting. Feature selection was performed
using the recipes package in R version 4.0.2 [34,35]. All features were standardized using
the z-score transformation prior to feature selection [21]. In patients with any missing
mask (absence of necrotic/edema masks), radiomic features were not calculated, and in
those, the missing values were imputed using mean imputation. Additionally, model
performance was also evaluated when using all features (full feature set) without a priori
feature reduction (using PCA or correlation filter). In models using a full feature set, fea-
tures were selected through inbuilt (embedded) feature selection of the machine learning
models rather than a separate feature selection method like correlation filter or PCA. The
estimated number of features used in model fitting after feature selection is provided in
the Supplementary Materials (Table S2).

2.8. Model Fitting

Multiple machine-learning predictive models were analyzed to determine the optimal
classifier. These models were: linear classifiers (linear, multinomial logistic, ridge, elastic net
(enet), and LASSO (least absolute shrinkage and selection operator) regression), non-linear
classifiers (neural network, support vector machine with a polynomial kernel (svmPoly),
SVM with a radial kernel (svmRad), and multi-layer perceptron (MLP)), and ensemble
classifiers (random forest, a generalized boosted regression model (GBRM), and boosting
of classification trees with adaBoost).

2.9. Classifier Model Performance Evaluation

All models were fit using the three-feature selection techniques as well as the full-
feature set. Three models could not be fit with the full feature set: linear regression and
multinomial logistic regression since these did not yield a unique solution secondary to
more features than the sample size. In addition, the neural network was too computation-
ally intensive to be fit to the full feature set. Thus, a total of 45 possible model/feature
selection combinations were evaluated. These were then analyzed for all of the combined
sequences as well as for individual MRI sequences. The predictive performance of each
model was evaluated using 5-fold repeated cross-validation. Nested cross-validation was
used to tune important parameters to avoid bias from overfitting. Each cross-validated split
of the data was used to perform feature selection techniques to avoid bias in the estimate of
predictive performance (details in Text S1). The overall workflow is provided in Figure 2.
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3. Statistical Analysis

The data were evaluated using two pipelines. In both pipelines, all five sequences
were evaluated. The first pipeline used whole tumor and edema masks and the second
used necrotic, enhancing, and edema masks (Figure 3). Since the primary goal was to
determine which pipeline performs better in a three-class problem, the radiomics data were
split as follows: the first pipeline included 1070 possible features (2 masks × 5 sequences
× 107 features), and the second pipeline included 1605 possible features (3 masks ×
5 sequences × 107 features).

Additional analysis was performed to assess best predictive performance amongst
individual MRI sequences. This was carried out using the same two pipelines described
above, but with each of the five sequences in the feature set individually. In addition,
models were also fit only to the T1-CE sequence without the edema masks in both pipelines.

Predictive performance was rated with Brier score, the categorical analog to mean
squared error with lower scores indicating better predictive performance. Paired t-tests
were performed on the resampled distribution of the Brier scores for the best perform-
ing models to evaluate if significant differences in predictive performance existed, with
p-values adjusted for multiple comparisons using the false discovery rate adjustment [36].
Model fitting and cross-validated predictive performance was implemented using the
MachineShop package in R version 4.0.2 [37]. Cross-validated multi-class AUC was also
computed using the pROC package in R version 4.0.2 [38]. To provide a measure of the
variance for the Brier score, accuracy, and multi-class AUC, confidence intervals were con-
structed from 1000 bootstrapped samples from the cross-validated estimates. To evaluate
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the significance of the best performing model, a permutation test was performed using
1000 permutations of the data. The permutation test compares the observed measure of
predictive performance (Brier score) to its null distribution, which is obtained by permuting
the class labels.

Cancers 2021, 13, x 7 of 16 
 

 

  

Figure 3. Primary and subgroup analysis workflow of both pipelines. 

4. Results 

4.1. Patient Characteristics 

There were 253 patients (males 128, females 125) in the study population (GBM 93, 

PCNSL 40, metastases 120). The mean age of the population was 62 ± 11.4 years. The de-

mographic and tumor characteristics are provided in Table 1. 

Table 1. Patient demographics and tumor characteristics. 

Demographics GBM PCNSL Metastases 

Patients (253) 93 40 
120; breast (29) 

lung (91) 

Age in years  

(mean ± SD) 
62 ± 11 62 ± 13 62 ± 10 

Gender    

Male 52 22 54 

Female 41 18 66 

Localization    

Supratentorial 91 33 Breast (17); lung (62) 

Infratentorial 2 4 Breast (6); lung (14) 

Both 0 3 Breast (6); lung (15) 

Multiplicity    

Figure 3. Primary and subgroup analysis workflow of both pipelines.

4. Results
4.1. Patient Characteristics

There were 253 patients (males 128, females 125) in the study population (GBM 93,
PCNSL 40, metastases 120). The mean age of the population was 62 ± 11.4 years. The
demographic and tumor characteristics are provided in Table 1.

Table 1. Patient demographics and tumor characteristics.

Demographics GBM PCNSL Metastases

Patients (253) 93 40
120; breast (29);

lung (91)

Age in years (mean ± SD) 62 ± 11 62 ± 13 62 ± 10

Gender
Male 52 22 54

Female 41 18 66
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Table 1. Cont.

Demographics GBM PCNSL Metastases

Localization
Supratentorial 91 33 Breast (17); lung (62)
Infratentorial 2 4 Breast (6); lung (14)

Both 0 3 Breast (6); lung (15)

Multiplicity
Single 83 19 Breast (21); lung (64)
Two 5 8 Breast (2); lung (9)

≥Two (multiple) 5 13 Breast (6); lung (18)

Necrosis
Yes 92 10 Breast (19); lung (68)
No 1 30 Breast (10); lung (23)

4.2. Model Performance

The top-performing model when combining all sequences was GBRM using the high
correlation filter (AUC: 0.910; Brier score: 0.325). T1-CE was the best sequence when com-
paring individual sequences with GBRM using the full feature set, and embedded feature
selection showed the highest performance (Brier score: 0.311; AUC: 0.908) (Table 2). The
permutation test p-value for the GBRM using the full feature set on the T1-CE sequence was
0.0010, which provides strong evidence that this classifier is able to identify a dependency
structure in the data to make accurate predictions.

Table 2. Predictive performance of individual MRI sequences.

Whole Tumor and Edema Masks Necrotic, Enhancing, and Edema Masks

Sequence Model Feature
Selection

Brier
Score
Mean

(95% CI)

Accuracy
Mean

(95% CI)
p-Value Model Feature

Selection

Brier
Score
Mean

(95% CI)

Accuracy
Mean

(95% CI)
p-Value

T1-CE gbrm full

0.361
(0.222,
0.528)

0.756
(0.660,
0.863) - gbrm full

0.311
(0.223,
0.466)

0.796
(0.667,
0.880) -

T1W gbrm full

0.405
(0.292,
0.553)

0.735
(0.620,
0.863) 0.0028 gbrm full

0.340
(0.231,
0.463)

0.771
(0.680,
0.900) 0.0155

T2W rf corr

0.381
(0.280,
0.481)

0.730
(0.660,
0.804) 0.1582 gbrm corr

0.340
(0.224,
0.506)

0.772
(0.608,
0.863) 0.0216

ADC rf lincomp

0.420
(0.320,
0.520)

0.705
(0.600,
0.784) 0.0002 gbrm corr

0.349
(0.197,
0.505)

0.756
(0.686,
0.843) 0.0034

FLAIR rf full

0.418
(0.334,
0.511)

0.699
(0.608,
0.765) <0.0001 gbrm full

0.353
(0.242,
0.479)

0.768
(0.680,
0.863) 0.0092

gbrm: gradient boost regression model; rf: random forest; full: full feature set; corr: high correlation filter; lincomb: linear combination filter.

When assessing model performance without the edema mask, the highest prediction
performance was obtained using the svmRAD classifier with the PCA feature selection
method on the T1-CE sequence (Brier score: 0.325; AUC: 0.894). The paired t-test p-values
were 0.1582, 0.9827, and 0.2540 when comparing all sequences vs. the T1-CE sequence, all
sequences vs. the T1-CE sequence without the edema mask, and the T1-CE sequence vs.
T1-CE sequence without the edema mask, respectively, indicating no significant differences
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in predictive performance between these models. Table 3 provides the top five models with
the lowest Brier score for these sequence–mask combinations.

Table 3. Top five models with the lowest Brier score for models using all sequence and mask combinations.

Using All (Multiparametric MRI) Sequences

Rank Masks Model Feature
Selection Mean Brier 95% CI

Brier
Mean

Multi-AUC
95% CI

Multi-AUC

1 N, E,
edema gbrm corr 0.325 (0.232, 0.488) 0.910 (0.833, 0.959)

2 N, E,
edema gbrm full 0.334 (0.215, 0.434) 0.900 (0.832, 0.963)

3 N, E,
edema rf corr 0.337 (0.269, 0.455) 0.899 (0.805, 0.948)

4 N, E,
edema rf full 0.351 (0.278, 0.466) 0.893 (0.819, 0.962)

5 N, E,
edema svmRad full 0.355 (0.259, 0.468) 0.878 (0.762, 0.947)

Using T1-CE Sequence

Rank Masks Model Feature
Selection Mean Brier 95% CI

Brier
Mean

Multi-AUC
95% CI

Multi-AUC

1 N, E,
edema gbrm full 0.311 (0.223, 0.466) 0.908 (0.820, 0.959)

2 N, E,
edema gbrm corr 0.324 (0.229, 0.430) 0.904 (0.841, 0.964)

3 N, E,
edema rf corr 0.327 (0.265, 0.451) 0.907 (0.808, 0.954)

4 N, E,
edema gbrm lincomb 0.338 (0.225, 0.541) 0.892 (0.797, 0.950)

5 N, E,
edema svmRad PCA 0.340 (0.253, 0.443) 0.894 (0.824, 0.955)

Using T1-CE Sequence without Edema Mask

Rank Masks Model Feature
Selection Mean Brier 95% CI

Brier
Mean

Multi-AUC
95% CI

Multi-AUC

1 N, E svmRad PCA 0.325 (0.255, 0.485) 0.894 (0.255, 0.485)

2 N, E rf corr 0.327 (0.261, 0.458) 0.905 (0.261, 0.458)

3 N, E gbrm full 0.329 (0.230, 0.473) 0.902 (0.230, 0.473)

4 N, E gbrm lincomb 0.330 (0.219, 0.446) 0.901 (0.219, 0.446)

5 N, E svmRad corr 0.331 (0.237, 0.425) 0.895 (0.237, 0.425)

N: necrotic mask; E: enhancing mask; gbrm: generalized boosted regression model; rf: random forest; svmRad: SVM with a radial kernel;
corr: high correlation filter; full: full feature set; lincomb: linear combination filter; PCA: principal component analysis.

Figure 4A–C display the mean estimate of the cross-validated Brier score for all 45
model and feature selection combinations on both pipelines from all sequences, the best
performing individual sequence (T1-CE), and the T1-CE sequence without the edema mask,
respectively.
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4.3. Tumor Subregions Performance

The second pipeline (necrotic, edema, and enhancing masks) performed better in
all sequence combinations than the first. The cross-validated accuracies for the top three
models (GBRM corr, GBRM full, and svmRAD PCA) in the second pipeline were 77, 80,
and 78%, respectively, while those of the top three models for the first pipeline (GBRM,
GBRM, and RF) were 73, 75%, and 75%, respectively. The predictive performance of both
pipelines for all sequence combinations is provided in Table 4 (details in the Supplementary
Materials, Tables S3–S5).

Table 4. Predictive performance of both pipelines for all sequence combinations.

Sequence

Whole Tumor and Edema Masks Necrotic, Enhancing, and Edema Masks

Model Feature
Selection

Brier Score
Mean

(95% CI)

Accuracy
Mean

(95% CI)
Model Feature

Selection

Brier Score
Mean

(95% CI)

Accuracy
Mean

(95% CI)

All
sequences gbrm full

0.370
(0.236,
0.460)

0.732
(0.627,
0.824)

gbrm corr
0.325
(0.232,
0.488)

0.771
(0.608,
0.843)

T1-CE gbrm full

0.361
(0.222,
0.528)

0.756
(0.660,
0.863) gbrm full

0.311
(0.223,
0.466)

0.796
(0.667,
0.880)

T1-CE
without
edema
mask

rf corr
0.357

(0.262,
0.443)

0.752
(0.620,
0.843)

svmRad PCA
0.325
(0.255,
0.485)

0.782
(0.686,
0.860)

gbrm: gradient boost regression model; rf: random forest; full: full feature set; corr: high correlation filter; svmRad: SVM with a radial
kernel; PCA: principal component analysis.
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4.4. Comparison of Predictive Performance between Two Pipelines

The mean difference between the Brier scores for the best models using all sequences
on the two pipelines was 0.045 (p = 0.0002), indicating that the second pipeline using three
separate masks had significantly better predictive performance than the first.

4.5. Feature Importance of the Models

Feature importance was computed for the best performing models in three groups
(Supplementary Materials, Table S6). For first pipeline, features extracted from whole
tumor mask had the highest importance. For the second pipeline, although the necrotic
mask had the highest feature importance, the majority of the important features were
extracted from the enhancing component. These features were a combination of shape and
first- and higher-order texture features.

4.6. Confusion Matrix for the Best Performing Model

The confusion matrix was obtained from the cross-validation resamples from the over-
all best model, which was the GBRM fit to all features from the T1-CE sequence. Overall,
the model performed well in classifying the three tumor types. Incorrect predictions tended
to favor the tumor types with more patients in the observed data. Metastatic tumors make
up the largest percentage of tumors in the observed data (47.4%), and the model correctly
classified these tumors 39.1% of the time. Misclassified metastatic tumors are more likely to
be classified as GBM compared to PCNSL. PCNSL tumors make up the lowest percentage
of tumors in the observed data (15.8%), and the model correctly classified them 9.8% of the
time. Misclassified PCNSL tumors are more likely to be classified as metastatic compared
to GBM. Finally, GBM tumors make up 36.8% of the observed data, and the model correctly
classified them 30.7% of the time. For the misclassified GBM tumors, the model was more
likely to predict metastatic tumors compared to PCNSL (Table 5).

Table 5. Confusion matrix for the best performing model (GBRM fit using the full feature).

Observed Tumor Type

Predicted Metastatic PCNSL GBM Total

Metastatic 39.1% 4.5% 5.1% 48.7%

PCNSL 2.5% 9.8% 1.0% 13.3%

GBM 5.8% 1.5% 30.7% 38.0%

Total 47.4% 15.8% 36.8% 100%
PCNSL: primary CNS lymphoma; GBM: glioblastoma; GBRM: generalized boosted regression model.

5. Discussion

Our study evaluated the diagnostic performance of MP-MRI radiomics using various
feature selection strategies and machine learning classifiers for a three-class classification
problem. We found that using separate masks for tumor sub-components significantly
improved the classification performance over using a combined mask for the enhancing
and necrotic component with an edema mask. The overall best performing model was
the GBRM with embedded feature selection extracted from the T1-CE sequence followed
by GBRM with the high correlation extracted from the T1-CE sequence. The performance
of the individual T1-CE sequence (without additional edema mask features) was also
comparable to that of the best performing models.

We evaluated twelve classifier models and four feature selection methods. Overall,
GBRM and random forest models using embedded feature selection were the best perform-
ing models in both pipelines. Both of these models are ensemble classifiers, which build
prediction models by combining collections of base learning models—in this case, decision
trees. The classifications from many decision trees are aggregated by selecting the class that
is predicted most often. Both approaches allow for non-linear relationships of the features
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in the model and perform embedded feature selection. We also found SVM classifiers using
the radial kernel to be among the top-performing models. SVM classifiers incorporate all
features and uses projection to perform non-linear classification. The high performance of
the RF, GBRM, and SVM classifiers indicates that when using radiomics to differentiate
between GBM, PCNSL, and metastases tumors, it is important to utilize machine learning
techniques that are flexible enough to incorporate non-linear relationships between the
features and tumor classes.

Our study also demonstrates the variations in the model’s performance based on the
combination of machine learning and feature selection techniques. Despite the fact that
the models’ performance was comparable to that of some of the top-performing models,
the overall differences in model performance, even when using the same mask–sequence
combination, calls for a more robust comparison of these techniques to determine the
optimal model. This is critical for model generalizability, as reliance on a single model may
have limitations for wider adoption into clinical practice [39].

Another important observation was that the best predictive models used embedded
feature selection over a priori feature reduction. The high performance of the embedded-
type GBRM and random forest classifiers on the full feature set in our study indicates that
the loss of information from a priori feature selection methods may be considerable and
should not be ignored. Filter selection methods do not incorporate learning, ignore the
effects of interaction among features, and only consider noise in the feature. In contrast,
embedded classifiers involve feature selection as part of model-building process and
identify the suitable feature set as an intrinsic model-building metric during learning.
Unlike wrapper methods, model learning is not separated from the feature selection
process. Embedded models measure the feature usefulness and account for the interaction
of features in a similar manner to that of wrapper methods. However, they are fast, less
prone to overfitting, and computationally less intensive than wrapper methods [40].

Feature importance showed that the majority of the high-performing features were
extracted from the whole tumor mask for the first pipeline; for the second pipeline, the
top-ranked feature was extracted from the necrotic mask. However, for the second pipeline,
the majority of the top-ranked features were from the enhancing mask followed by the
necrotic mask. There was no contribution of edema masks for any of the top-ranked
features. This again highlights the fact that performance of T1-CE without the edema mask
was similar to that of T1-CE with the edema mask and multiparametric MRI. Furthering
our understanding of the biological correlates of these features remains a work in progress.
However, a combination of different radiomic features (first-order, second-order, and shape
features) was seen among the top-performing features. This reemphasizes that different
radiomic features may carry different tumoral information, and, thus, inclusion of multiple
feature types may improve the prediction performance over just first-order features. This
may be especially true for GBM in which there is significant intra-tumor heterogeneity [41].

The comparable performance of T1-CE-derived models to those using MP-MRI is
noteworthy, as the T1-CE sequence is universally performed, and radiomics analysis of a
single sequence and less masks (enhancing and necrotic only) is less resource intensive and
time efficient and may be a more robust approach for integration into clinical workflow.
The comparable predictive performance of T1-CE-based models has also been shown
previously for glioma grading [42] and survival [43].

To date, very few studies have addressed this three-class problem using radiomics. Di
Ieva et al. [44] utilized fractal analysis as a quantitative tool to differentiate among multiple
brain tumor types and found significant difference between lymphoma and high-grade
glioma but not metastases. Their study had a small patient population (n = 78) and utilized
a single quantitative feature (fractal dimension) extracted from the T1-CE sequence only.
Ma et al. [45] used whole-tumor histogram analysis of normalized cerebral blood volume
to differentiate between GBM, PCNSL, and brain metastases. However, their study analysis
showed only two-class classification results (GBM versus PCNSL, GBM versus metastases,
and PCNSL versus metastases), and no three-class classification was performed. Our
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approach is more pragmatic, as using only a two-class approach may introduce a selection
bias and overestimate the classification accuracy.

There are prior non-radiomic studies that have addressed the three-class problem
classification. The majority of them used advanced imaging sequences like perfusion imag-
ing [46], arterial spin labelling [47], spectroscopy [48,49], diffusion tensor imaging [50,51],
or susceptibility weighted imaging [52]. Most of these techniques are complex, are not
universally performed, increase scan time, and require expert evaluation; thus, they are
limited in generalizability. In contrast, our approach analyzed conventional MP-MRI
sequences that are performed routinely at all institutions.

Besides the limitations of retrospective data, our study lacked an external validation
group to improve the generalizability of the optimal model. However, we did perform
nested cross-validation to avoid bias and validated our models. Secondly, we did not assess
deep learning-based models in our study, and their impact on three-class classification
problems remains undefined. We also could not evaluate the impact of genomic varia-
tions (isocitrate dehydrogenase and O6-methylguanine-DNA methyltransferase promoter
methylation (MGMT)) due to the lack of such information in several GBM patients. Lastly,
we only selected metastatic tumors with known lung or breast primary. The inclusion of
only these two metastatic tumor types in our study cohort may have introduced selection
bias. While these are the two most common brain metastases, it is possible that adding
further sub-types of metastases may decrease the overall model performance and affect
model generalizability. However, this study is an improvement in terms of patient selection
compared to prior radiomic studies and reflects a more comprehensive patient population
encountered in clinical practice.

6. Conclusions

Our results show that a three-class problem can be addressed with excellent diagnostic
performance using a radiomics-based approach. Additionally, the choice of appropriate
feature selection and machine learning techniques needs to be more robust since it can have
a significant impact on model performance. Overall, the models developed with separate
enhancing and necrotic masks significantly outperform those where the two components
were treated as a single mask. Finally, radiomic features derived from the T1-CE sequence
performed similarly to MP-MRI-based models for this specific problem.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13112568/s1, Text S1, Figure S1. Block diagram showing mask separation, Table
S1. Least axis length masks, Table S2. Estimated number of features used in model fitting after
feature selection was performed, Table S3. Predictive performance of the top 10 models in terms
of mean cross-validated Brier Score and AUC for models across all sequences, Table S4. Predictive
performance of the top 10 models in terms of mean cross-validated Brier Score and AUC for models
across individual sequences, Table S5. Predictive performance of the top 10 models in terms of mean
cross-validated Brier Score and AUC for models on T1 CE sequence without edema mask, Table S6.
Feature importance for the highest performing models.
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