

Cancers 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/cancers

Supplementary Material: Automated Detection and Classifica-
tion of Oral Lesions Using Deep Learning to Detect Oral Poten-
tially Malignant Disorders
Gizem Tanriver, Merva Soluk Tekkesin and Onur Ergen

Text S1: Semantic Segmentation: U-Net Experiments
The dataset was prepared for the semantic segmentation experiments by generating

masks for each image from polygon annotations, where each mask was a stack of Boolean
arrays, one for each class. For all models, the images and their corresponding masks were
resized to 512 × 512 pixels with zero-padding to retain the original aspect ratio. Data aug-
mentation was applied to the training set, including horizontal and vertical flipping, ran-
dom rotation, shifting, zooming, adding noise, sharpening, embossing, blurring, and col-
our space augmentations (i.e., brightness, saturation, and contrast) using albumentations
library [1]. Qubvel’s segmentation library was utilized for implementing U-Net with dif-
ferent backbones [2]. Due to our small dataset, we initialized all backbones with pre-
trained ImageNet weights. Images were normalized according to the data statistics of cor-
responding pretrained models. For training of the models, dice loss was used with an
Adam optimizer. Hyperparameters were optimized on the validation set for each model
and selected as shown in Supplementary Table 1. Following hyperparameter optimiza-
tion, the final performance was evaluated on the test set. To further boost the test accuracy,
test-time augmentation (TTA) was applied by testing the model on the augmented ver-
sions of the image (horizontal and vertical flips and rotations of 0, 90, 180, 270 angles) and
taking the average of the results. All experiments were run on Tesla V100 graphics pro-
cessing unit (GPU) with 32GB memory. The training plots are shown in Supplementary
Figure 1.

Table S1. Backbones implemented with U-Net, number of model parameters (in million) and se-
lected hyperparameters such as batch size and learning rate are shown for each model.

Encoder Parameters Batch Size Learning Rate Epochs
EfficientNet-b3 10M 8 0.0002 40
Densenet-161 26M 4 0.0001 40
Inception-v4 41M 8 0.0003 40

EfficientNet-b7 63M 4 0.0001 40
ResNeXt-101_32x8d 86M 12 0.0001 40

Figure S1. Training plots showing dice loss and dice score on the validation set during training of the U-Net models with
different backbones. There is an exponential increase in dice score (and a decrease in dice loss) in the early phases of
training, followed by saturation as the models converge to an optimal solution.

Cancers 2021, 13, x 2 of 4

Text S2: Instance Segmentation: Mask R-CNN Experiments
Detectron2 library was used for implementing Mask R-CNN models [3]. All images

were resized to 400 pixels along the shorter image dimension with a limit of 512 on the
longer dimension. With regards to data augmentation, vertical and horizontal flipping,
random cropping, random rotation at multiples of 90 degrees, and colour space augmen-
tations were applied to the training data. Hyperparameters were optimized based on per-
formance on the validation set. Adjustments to the anchor scales and aspect ratios were
made according to the distribution of our data. As the relative area of the lesion instances
in our dataset covers a wide range, from a minimum of approximately 38 pixels (i.e., sqrt
of area) up to 512 pixels when resized, anchor scales were chosen as [[48, 64, 128, 256,
512]]. Similarly, the aspect ratios (i.e., height to width) of [[0.25, 0.5, 1.0, 2.0, 5.5]] were used
in our implementation to account for the variation in our dataset, instead of the original
aspect ratios of [[0.5, 1.0, 2.0]]. For the head of Mask R-CNN, a reduced ROI batch size of
256 was used to balance the number of foreground and background samples at a ratio of
1:3. Stochastic gradient descent (SGD) optimizer was selected with a learning rate of
0.0002, momentum of 0.9, and weight decay of 0.0005 based on optimization experiments.
All models were run for 10,000 iterations (~76 epochs) at a batch size of 4 including initial
warm up for ~3 epochs. Learning rate was decayed by 0.1 at iteration 6,000 for all models,
with an additional earlier decay at iteration 3,000 for the ResNeXt-101 model. To prevent
overfitting, all models were initialized with pretrained COCO weights and best model
checkpointing was utilized. The freezing of ResNet stages (pretrained) was found to pro-
vide worse results on our dataset, therefore the entire backbones were fine-tuned. The
training plots for each model are shown in Supplementary Figure 2. The non-max sup-
pression (NMS) threshold and confidence threshold, which are used at test time to pro-
duce final outputs, were selected as 0.5 to eliminate highly overlapping and low score
predictions. After hyperparameter optimization, the final performance of the models was
evaluated on the test set. Results are reported with and without TTA which applies hori-
zontal flipping and processing at 3 different resolutions (400, 500, 600 pixels) and takes
the average of the augmented results.

Figure S2. The learning curves for the Mask R-CNN models showing box and mask AP results on
the validation set over 10,000 iterations. Metrics were computed at every 500 iterations due to
computational overhead.

Text S3: Object Detection: YOLOv5 Experiments
The object detection models were developed using YOLOv5 implementation of ul-

tralytics [4]. Images were resized to 512 pixels along the longest image dimension and
padded along the shorter dimension to a minimum multiple of 32 for rectangular infer-
ence. During training, mosaic data augmentation as well as vertical and horizontal flip-
ping, scaling, shifting, and colour space augmentations were applied to the training set.
We used the Nesterov SGD optimizer with a learning rate of 0.001, momentum of 0.98,
weight decay of 0.0005, and batch size of 8. Models were run for 80 epochs, including an
initial warm up period of 3 epochs. At test time, we used a confidence threshold of 0.55

Cancers 2021, 13, x 3 of 4

and an NMS threshold of 0.3 to produce final outputs. Furthermore, we utilized TTA by
applying horizontal flipping and processing at 3 different resolutions (original resolution
and 2 reduced multiples) on the test set, to improve recall of the models. Ensemble of
multiple models, such as YOLOv5s and YOLOv5m, was also evaluated to further boost
performance. Hyperparameters were selected based on performance on the validation set
by using both random search and a genetic algorithm provided by the repository. We used
an Nvidia Tesla V100 GPU with 32GB memory for training the models. The training plots
are shown in Figure S3.

Figure S3. The learning curves for the YOLOv5 models showing AP (left) and AP50 (right) on the validation set over 80
epochs.

Text S4: Classification Experiments
Data augmentation such as horizontal and vertical flipping, rotation at multiples of

90 degrees, perspective distortion, shifting, shearing, blurring, adding noise, and aug-
menting colour space (i.e., brightness, saturation, contrast, and jitter) were applied at ran-
dom to the training set using PyTorch’s transform functions [5–7]. Images were normal-
ized according to mean and standard deviation of the pretraining settings. Hyperparam-
eters, including data augmentation hyperparameters, were optimized based on perfor-
mance on the validation set and selected as shown in Supplementary Table 2. For Dense-
Net161 and ResNet-152 training, the models were fine-tuned in three stages – heads only,
some layers (denseblock3 onwards in DenseNet161 and block 3.14 onwards ResNet-152),
all layers – with learning rate reduction at every stage. Momentum was set as 0.9 for all
experiments. Learning rate was reduced by a factor of 0.5 when validation loss plateaued
for at least 3 epochs and the best model was saved during training in order to prevent
overfitting. After hyperparameter optimization, the final performance was evaluated on
the test set. All experiments were run with Torch 1.7 and Torchvision 0.8.1 with CUDA
10.1 using Nvidia Tesla T4 GPU with 16 GB memory.

Table S2. Selected hyperparameters for the classification experiments.

Model Optimizer Batch size Learning rate Epochs Weight decay
EfficientNet-b4 Rmsprop 16 5e-6 35 1e-2

Inception-v4 SGD 16 1e-3 35 1e-3
Ensemble SGD 16 1e-3 35 5e-4

ResNet-152 SGD 16 1e-3, 5e-4, 5e-5 3-12-20 5e-4
DenseNet-161 SGD 16 1e-3, 5e-4, 5e-5 3-12-20 1e-3

References

1. Buslaev, A.; Iglovikov, V. I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible
Image Augmentations. Information 2020, 11, 125, doi:10.3390/info11020125.

2. Yakubovskiy, P. Segmentation Models Pytorch. Available online: https://github.com/qubvel/segmentation_models.pytorch (ac-
cessed on 16 December 2020).

Cancers 2021, 13, x 4 of 4

3. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.-Y.; Girshick, R. Detectron2. Available online: https://github.com/facebookresearch/de-
tectron2 (accessed on 16 December 2020).

4. Jocher, G.; Stoken, A.; Borovec, J.; Christopher, S; Changyu, L.; Hogan, A.; Diaconu, L.; Poznanski, J.; Rai, P.; Ferriday, R.; et al.
Ultralytics/Yolov5: V2.0. GitHub 2020, doi:10.5281/ZENODO.3958273.

5. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison,
A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 8024–8035.

6. Melas-Kyriazi, L. lukemelas/EfficientNet-PyTorch: A PyTorch implementation of EfficientNet. Available online:
https://github.com/lukemelas/EfficientNet-PyTorch (accessed 3 December 2020).

7. Cadene, R. cadene/pretrained-models.pytorch: Pretrained ConvNets for pytorch. Available online:
https://github.com/Cadene/pretrained-models.pytorch#modelinput_size (accessed 1 December 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

