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Text S1: Semantic Segmentation: U-Net Experiments 
The dataset was prepared for the semantic segmentation experiments by generating 

masks for each image from polygon annotations, where each mask was a stack of Boolean 
arrays, one for each class. For all models, the images and their corresponding masks were 
resized to 512 × 512 pixels with zero-padding to retain the original aspect ratio. Data aug-
mentation was applied to the training set, including horizontal and vertical flipping, ran-
dom rotation, shifting, zooming, adding noise, sharpening, embossing, blurring, and col-
our space augmentations (i.e., brightness, saturation, and contrast) using albumentations 
library [1]. Qubvel’s segmentation library was utilized for implementing U-Net with dif-
ferent backbones [2]. Due to our small dataset, we initialized all backbones with pre-
trained ImageNet weights. Images were normalized according to the data statistics of cor-
responding pretrained models. For training of the models, dice loss was used with an 
Adam optimizer. Hyperparameters were optimized on the validation set for each model 
and selected as shown in Supplementary Table 1. Following hyperparameter optimiza-
tion, the final performance was evaluated on the test set. To further boost the test accuracy, 
test-time augmentation (TTA) was applied by testing the model on the augmented ver-
sions of the image (horizontal and vertical flips and rotations of 0, 90, 180, 270 angles) and 
taking the average of the results. All experiments were run on Tesla V100 graphics pro-
cessing unit (GPU) with 32GB memory. The training plots are shown in Supplementary 
Figure 1. 

Table S1. Backbones implemented with U-Net, number of model parameters (in million) and se-
lected hyperparameters such as batch size and learning rate are shown for each model. 

Encoder Parameters Batch Size Learning Rate Epochs 
EfficientNet-b3 10M 8 0.0002 40 
Densenet-161 26M 4 0.0001 40 
Inception-v4 41M 8 0.0003 40 

EfficientNet-b7 63M 4 0.0001 40 
ResNeXt-101_32x8d 86M 12 0.0001 40 

 
Figure S1. Training plots showing dice loss and dice score on the validation set during training of the U-Net models with 
different backbones. There is an exponential increase in dice score (and a decrease in dice loss) in the early phases of 
training, followed by saturation as the models converge to an optimal solution. 
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Text S2: Instance Segmentation: Mask R-CNN Experiments 
Detectron2 library was used for implementing Mask R-CNN models [3]. All images 

were resized to 400 pixels along the shorter image dimension with a limit of 512 on the 
longer dimension. With regards to data augmentation, vertical and horizontal flipping, 
random cropping, random rotation at multiples of 90 degrees, and colour space augmen-
tations were applied to the training data. Hyperparameters were optimized based on per-
formance on the validation set. Adjustments to the anchor scales and aspect ratios were 
made according to the distribution of our data. As the relative area of the lesion instances 
in our dataset covers a wide range, from a minimum of approximately 38 pixels (i.e., sqrt 
of area) up to 512 pixels when resized, anchor scales were chosen as [[48, 64, 128, 256, 
512]]. Similarly, the aspect ratios (i.e., height to width) of [[0.25, 0.5, 1.0, 2.0, 5.5]] were used 
in our implementation to account for the variation in our dataset, instead of the original 
aspect ratios of [[0.5, 1.0, 2.0]]. For the head of Mask R-CNN, a reduced ROI batch size of 
256 was used to balance the number of foreground and background samples at a ratio of 
1:3. Stochastic gradient descent (SGD) optimizer was selected with a learning rate of 
0.0002, momentum of 0.9, and weight decay of 0.0005 based on optimization experiments. 
All models were run for 10,000 iterations (~76 epochs) at a batch size of 4 including initial 
warm up for ~3 epochs. Learning rate was decayed by 0.1 at iteration 6,000 for all models, 
with an additional earlier decay at iteration 3,000 for the ResNeXt-101 model. To prevent 
overfitting, all models were initialized with pretrained COCO weights and best model 
checkpointing was utilized. The freezing of ResNet stages (pretrained) was found to pro-
vide worse results on our dataset, therefore the entire backbones were fine-tuned. The 
training plots for each model are shown in Supplementary Figure 2. The non-max sup-
pression (NMS) threshold and confidence threshold, which are used at test time to pro-
duce final outputs, were selected as 0.5 to eliminate highly overlapping and low score 
predictions. After hyperparameter optimization, the final performance of the models was 
evaluated on the test set. Results are reported with and without TTA which applies hori-
zontal flipping and processing at 3 different resolutions (400, 500, 600 pixels) and takes 
the average of the augmented results. 

 
Figure S2. The learning curves for the Mask R-CNN models showing box and mask AP results on 
the validation set over 10,000 iterations. Metrics were computed at every 500 iterations due to 
computational overhead. 

Text S3: Object Detection: YOLOv5 Experiments 
The object detection models were developed using YOLOv5 implementation of ul-

tralytics [4]. Images were resized to 512 pixels along the longest image dimension and 
padded along the shorter dimension to a minimum multiple of 32 for rectangular infer-
ence. During training, mosaic data augmentation as well as vertical and horizontal flip-
ping, scaling, shifting, and colour space augmentations were applied to the training set. 
We used the Nesterov SGD optimizer with a learning rate of 0.001, momentum of 0.98, 
weight decay of 0.0005, and batch size of 8. Models were run for 80 epochs, including an 
initial warm up period of 3 epochs. At test time, we used a confidence threshold of 0.55 
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and an NMS threshold of 0.3 to produce final outputs. Furthermore, we utilized TTA by 
applying horizontal flipping and processing at 3 different resolutions (original resolution 
and 2 reduced multiples) on the test set, to improve recall of the models. Ensemble of 
multiple models, such as YOLOv5s and YOLOv5m, was also evaluated to further boost 
performance. Hyperparameters were selected based on performance on the validation set 
by using both random search and a genetic algorithm provided by the repository. We used 
an Nvidia Tesla V100 GPU with 32GB memory for training the models. The training plots 
are shown in Figure S3. 

 
Figure S3. The learning curves for the YOLOv5 models showing AP (left) and AP50 (right) on the validation set over 80 
epochs. 

Text S4: Classification Experiments 
Data augmentation such as horizontal and vertical flipping, rotation at multiples of 

90 degrees, perspective distortion, shifting, shearing, blurring, adding noise, and aug-
menting colour space (i.e., brightness, saturation, contrast, and jitter) were applied at ran-
dom to the training set using PyTorch’s transform functions [5–7]. Images were normal-
ized according to mean and standard deviation of the pretraining settings. Hyperparam-
eters, including data augmentation hyperparameters, were optimized based on perfor-
mance on the validation set and selected as shown in Supplementary Table 2. For Dense-
Net161 and ResNet-152 training, the models were fine-tuned in three stages – heads only, 
some layers (denseblock3 onwards in DenseNet161 and block 3.14 onwards ResNet-152), 
all layers – with learning rate reduction at every stage. Momentum was set as 0.9 for all 
experiments. Learning rate was reduced by a factor of 0.5 when validation loss plateaued 
for at least 3 epochs and the best model was saved during training in order to prevent 
overfitting. After hyperparameter optimization, the final performance was evaluated on 
the test set. All experiments were run with Torch 1.7 and Torchvision 0.8.1 with CUDA 
10.1 using Nvidia Tesla T4 GPU with 16 GB memory. 

Table S2. Selected hyperparameters for the classification experiments. 

Model Optimizer Batch size Learning rate Epochs Weight decay 
EfficientNet-b4 Rmsprop 16 5e-6 35 1e-2 

Inception-v4 SGD 16 1e-3 35 1e-3 
Ensemble SGD 16 1e-3 35 5e-4 

ResNet-152 SGD 16 1e-3, 5e-4, 5e-5 3-12-20 5e-4 
DenseNet-161 SGD 16 1e-3, 5e-4, 5e-5 3-12-20 1e-3 
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